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Abstract-Steady-state evaporation of a saturated liquid droplet and its levitation over a solid surface due 
to momentum-induced pressure in the vapor film is studied by solving the axisymmetric governing equation 
numerically. A previous on~ime~onal analysis shows that the distance (or gap) between the solid 
surface and the droplet decreases when the vapor can penetrate the solid. For porous layers, this one- 
dimensional analysis which is based on Brinkman’s extension to Darcy% law predicts momentum boundary 
layer thicknesses of the order of the square root of the permeability. In typical porous solids, this tbiikness 
is smaller than the pore or particle size. In the present study the Beavers-Joseph semi-empirical boundary 
condition at the interface of the plain (i.e. vapor underneath the droplet) and permeable layers is used 
instead of this onedimensional model. The reduction in the gap size with respect to variations in per- 
meability and thickness of the porous layer is determined for the ranges where this boundary condition is 
valid. The effect of vapor escape through the bottom surface of the porous layer is also studied. This 
axisymmetric model predicts an asymptotic value for the slip velocity and the gap size as the permeability 
increases beyond a certain value. This failure of the model to predict the collapse of the dropiet is due to 
the breakdown of the Beavers-Joseph interact condition for high ~~~biIiti~* However, for practical 
appfications the surface roughness is expected to dominate when the gap size approaches zero. The one- 
dimensional model, i.e. the Brinkman extension, on the other hand, predicts an unrealiitic rapid drop of 
the gap size when the permeability is increased beyond a certain value, because of the assumption of equal 

pressure gradients in the porous and plain layers. 

1. INTROOUCTION 

LEVITATION of saturated liquid droplets has porously 
been studied experimentally and analytically by 
Avedisian and Koplik [l]. In their experimental study 
they observed a reduction in the droplet evaporation 
time whenever the solid surface over which the drop 
lets were levitated was permeable. It should be noted 
that surface roughness can also result in a decrease in 
the droplet evaporation time due to a reduction of 
the average vapor 6Im thickness and a consequent 
increase in the heat transfer rate. In practice, it is 
difficult to construct porous layers which have surface 
roughnesses which are significantly smaller than their 
pore or particle size. Therefore, in these experiments, 
it is the combined effects of surface roughness and 
suction that result in higher evaporation rates. 

Avedisian and Koplik’s [I] analytical study is based 
on a Brinkman extension of Darcy’s law for 6ow 
through porous media. This is equivalent to the 
addition of a macroscopic boundary effect to the 
otherwise bulk resistance model for the flow. They 
also used a heuristic interfacial boundary condition 
between the vapor 6lm and the porous layer, which 
in principle accounts for the presence of the solid 
matrix and leads to a bafance of the shear stress on 
the ffuid at the interface. The result of their analysis 
gives a momentum boundary layer thickness just 
inside the porous layer, which is of the order of the 
pore size. This finding contradicts the basic assump- 

tion required for a continuum treatment of the solid 
and fluid phases by a single moments equation, i.e. 
the elementary representative volume encompasses a 
large enough volume such that an ensemble average 
over a large number of pores is made and yet impor- 
tant physical features such as the boundary layers 
are not masked. This shortcoming of the Brinkman 
extended analysis has gone unnoticed in other 
reported work such as ref. [2], in which a fully 
developed momentum boundary layer thickness equal 
to (4K/a) ‘P and a development length equal to KU& 
were found for forced convection in porous media 
bounded on one side by a flat plate. Depending on 
the structure of the porous medium, this boundary 
layer thickness can be of the order of a tenth of the 
pore size. Furthermore, without a special coordinate 
stretching, in numerical solution the mesh size (or the 
period of the trial functions) have to be of the order of 
a tenth of this ~unda~ layer in order to successfully 
resolve the variation of the velocity 6eld within the 
boundary. This requires resolution of the order of 
0.1 K’/2 where the surface roughness is of the order of 
10K”2 and the linear dimension of the porous medium 
is of the order of 103K”2 or larger. 

In practice, the permeability of the porous layer 
near the surface is not uniform and, depending on 
the manufactu~ng process, it can be larger near the 
surface. When coupled with the unavoidable surface 
roughness, this makes a general analytical treatment 
of the flow near the interface almost impossible. Direct 
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NOMENCLATURE 

4 particle size [m] vi radial velocity at the vapor film/porous 
F integral pressure force at the droplet base layer interface [m s- ‘1 

M vd droplet volume [m”] 

9 gravitational constant W droplet weight IN]. 

h, thickness of the porous layer [m] 

hz thickness of the plain layer fm] Greek symbols 
h 
k’” 

latent heat of vaporization [W kg- ‘] 
: 

Beavers-Joseph proportionality constant 
vapor thermal conductivity [w m- ’ I(- ‘1 vapor film thickness [m] 

K permeability [m’] A boundary layer thickness in the porous 
I vertical distance above the droplet base matrix [m] 

Iml E porosity 

P pressure [N mW2] P dynamic viscosity in the vapor film 

PO ambient pressure around the droplet Pgm - ’ s- ‘1 
mm-7 &fT effective dyn~ic viscosity in the porous 

t, .Y dimensionless radial and axial coordinate medium [kg m- ’ s- ‘1 
axes, R/Ro, X/R0 V kinematic viscosity in the vapor film 

& radius of droplet [m] [m’ s- ‘1 
R, X radial and axial coordinate axes [m] P vapor density [kg m-‘1 

VII axial vapor velocity at the droplet base PI liquid density [kg m- ‘1 
[m s- ‘] * dimensionless stream function 

Re Reynolds number, R,, V& Y stream function [m3 s- ‘1 

2-P surface tem~~ture at the top of the 
: 

dimensionless vorticity 
porous layer [K] vorticity [s- ‘1. 

T 
UY’V 

liquid saturation temperature [K] 
radial and vertical velocity in the vapor Subscripts 
film [m s- ‘1 Cl center line 

u, C dimensionless radial and vertical velocity D Darcy’s 

in the vapor film, U/V,, V/V, co free stream. 

simulation of the flow adjacent to these types of inter- 
faces may clarify some of the pore-level phenomena 
[3-51. Larson and Hingdon [4, 51 studied the micro- 
scopic flow near the surface of a porous medium con- 
sisting of semi-infinite lattices of cylindrical 
inclusions. They predicted a rapid decay of vetocity 
over a single lattice ceil even at high porosities, which 
in general supports the boundary layer thickness pre- 
dicted by the 3rinkman model. However, they also 
concluded that Brinkman’s equation fails to predict 
the flow field for transverse flow through anisotropic 
porous media. In addition, their analysis showed that 
the slip velocity (similar to the Beavers-Joseph slip 
velocity) is extremely sensitive to the position of the 
interface. From their rest&s it appears that the slip 
velocity model, along with an empirically determined 
boundary condition, describes the interfacial phenom- 
enon more satisfactorily. A model based on the ensem- 
ble average of flow through some interfacial conduits 
has been proposed by Moaveni-Sabet [6]. 

Beavers and Joseph [q obtained a semi-empirical 
relationship for the interfacial velocity of the flow 
through a channel bounded on one side by a porous 
layer; an imposed pressure gradient induces flow 
through both layers. They observed that the bulk 
permeability and bulk porosity are inadequate par- 

ameters for the description of the interfacial velocity. 
However, with an adjustable constant (that varies 
over an order of magnitude) they found a relationship 
for the interfacial velocity. Neaie and Nader [8], and 
by a similar approach Vafai and Thiyagaraja [9], 
applied the Brinkman extended analysis and showed 
that this constant is equivalent to an effective viscosity 
that is used for the presumed continuity of the shear 
stress at the interface. Nieid HO-12] applied the 
boundary condition developed by Beavers and 
Joseph. Saffman [13], through dimensional, scaling 
and boundary-layer (inner and outer solutions) argu- 
ments, showed that the constant in the Beavers- 
Joseph correlation depends on where the interface is 
taken. He shows that within the un~~inty of the 
order of lW~* (associated with surface roughness) in 
the location of the interface, this constant can change 
several fold. 

This study considers the steady-state flow of vapor, 
which is emitted from the surface of an evaporating 
droplet, through the vapor film and the permeable 
solid (which provides the heat for evaporation). 
Figure 1 gives a schematic of the probiem. The axi- 
symmetric flow equations are solved nume~~ily. 
The Beavers-Joseph boundary condition, which was 
obtained for one-dimensional flow, is applied to this 
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FIG. I. A schematic of the system and the computational domain. 

axisymmetric problem ; this extension is assumed to 
be possible provided the additional component of the 
plain layer shear stress along the interface is included. 
(Presently, no experimental or theoretical validation 
of this assumption is available.) The flow through 
the porous layer is described by Darcy’s law (zero 
vorticity), and the reduction of the gap size is exam- 
ined along with the flow through the vapor film and 
the porous layer. In addition, the effect of flow 
through the lower boundary of the porous layer into 
another plain layer is also studied. The heat transfer 
between the upper surface of the porous layer and 
the droplet is nearly dominated by conduction be- 
cause the Peclet number S V,,/a is rather small (for the 
examples given here about 0.30). Note that only a 
fraction of the flow enters the porous layer; there- 
fore, the effective Peclet number is even smaller. For 
the case of a porous layer sandwiched between 
two plain layers, the heat supply can be through volu- 
metric heat generation in the porous layer. 

2. ANALYSIS 

Since only idealized analytical treatment of levi- 
tated droplet evaporation is possible, the following 
assumptions [I] are made : (i) the evaporation is quasi- 
steady and takes place in the film boiling regime; (ii) 
the droplet is hemispherical (for a methanol droplet 
with a radius of 5 mm the Bond number is less than 
one); (iii) the droplet is at rest and isothermal at 

saturation; (iv) the surface temperature of the porous 
medium remains constant and exceeds the Leidenfrost 
temperature of the liquid ; (v) the vapor film thickness 
is uniform and very small, heat transfer is dominated 
by conduction, and radiation is negligible; (vi) mass 
transfer from the upper surface of the droplet is 
neglected; and (vii) the vapor fiow in the film is lami- 
nar and viscous (Re r 14). 

The continuity and momentum equations (for 
axisymmetric, quasi-steady flow) in the vapor film are 

v*u=o (1) 

(U*V)U = -p-‘Vp+vV2U (2) 

and for the porous medium we have 

v.uI, =o (3) 

0 = -P-‘Vp-K-‘vUb. (4) 

Defining the vorticity as 

(5) 

and introducing 

(6) 
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we can write equation (2) in the dimensionless form 
as 

(8) 

where Ro. V,, and pV: are used to scale the length, 
velocity, and pressure for the dimensionless Reynolds 
number 

VoRo 
Re=-. 

Y 

The stream function is related to the vorticity by 

_,=m+t ‘!F 
r ax* ( > ar r dr * (9) 

The vapor velocity at the base of the droplet, V,,, is 
found from the balance of energy at the liquid/vapor 
interface 

(10) 

This equation remains valid for rather small vapor 
flows into the porous layer, although for large flows 
(not attempted here) the contribution of convection 
(Peclet number) must be included. It is assumed that 
Tp remains the same despite the suction. 

Darcy’s law governing the flow in a porous medium 
(equation (4)) written in the stream function-vorticity 
formulation reduces to 

WD =o (11) 

while equations (a), (7), and (9) still hold (zero vor- 
ticity in the porous medium indicates that the Rey- 
nolds number is less than one). The initial conditions 
used are 

* =a=() (12) 

and the boundary conditions are (also given in Fig. 1) 

O<r< 1,x=0, u=O,c= I 

w = - i*.v.r, * = jr’ 
r 

r=O,O<x<S+h,+h,, u=O,o=i$, 

w=lj=o 

r= I,-l<x<O, u-0,0= ;ti, 

w,l, 
r* ,+.*=i 

1 <rdZ,x= -1, u= -b*,v,u=O 

r=2,-l<x<S+h,+hz, U= -i$.,,tT=O 

co= -!,_ 
r 

w = - 5jv,r. 
r 

The maximum value of the stream function is equal 
to f at the edge of the droplet (where both R/R, and 
V/V0 are equal to 1) and remains constant around and 
above the droplet. I is the height of the computational 
domain above the droplet base to model the vapor 
flow around the droplet as it emerges through the 
vapor layer underneath the droplet. The boundary 
condition adopted at the interface of the vapor film 
and the porous surface is the one-dimensional empiri- 
cal model proposed by Beavers and Joseph [7] 

(13) 

where z is a dimensionless parameter that is a charac- 
teristic of the porous layer and is determined exper- 
imentally. Vi the radial vapor velocity in the film 
adjacent to the porous surface, and CTD the Darcean 
velocity given by 

,=A!2 
p dX’ 

A general form of equation (13) is proposed by Nield 
[I I] as 

au av ,+,,=~(ci-cD). 
JK 

(14) 

It should be noted that the convective Darcean 
velocity, L,. in the Beavers-Joseph interfacial model 
(equation (13)) is due to an applied pressure gradient 
along the porous layer as well as the plain layer. Since 
flow through the porous layer is caused by the influx 
through the interface in the problem here, we modified 
equation (13) by setting Cl, equal to zero in order 
to produce realistic results (see the Appendix for a 
detailed explanation). The term EL’ SR, which was 
added to the original Beavers-Joseph model because 
of the extra velocity component, is found to be rather 
small in magnitude compared to ?L’ SX. 

The pressure distribution at the base of the droplet, 
p(R), can be determined for values of d’U/dX* and w 
evaluated at the base of the droplet by the numerical 
integration of equation (15) : 

P s s dp = P f $dR-pV, i” o dR. (15) 
Pd -0 
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When the weight of the droplet is balanced by the 
surface integral of pressure forces, we have 

(f+f’o)2nR dR = g(p-p,)V,, = W. (16) 

3. SOLUTION AND VALIDATION 

The governing equations (6)-(12) subject to the 
boundary conditions shown in Fig. 1 are solved 
numerically using the explicit, two-step finite differ- 
ence scheme and the successive over-relaxation tech- 
nique described by Jaluria and Torrance [ 141. Steady- 
state solutions are obtained for +, o, II, and u in the 
vapor film and porous matrix and around the droplet. 

Proper mixing of forward and backward finite- 
differencing of the interfacial condition is needed in 
order to properly couple the rotational flow in the 
plain layer with the irrotational flow in the porous 
layer. The normalized interfacial condition of equa- 
tion (14) for Cl6 = 0 is combined with the continuity 
of the velocity in the .v- and r-directions at the interface 
and then written in the following second order, finite- 
difference approximation for each grid point (i,J 

along the interface : 

+B,+i.j+ I +BStii- t.i+Betii+ 1.j (17) 

where i and j denote the indices in the r- and x- 
directions, respectively. The coefficients of the stream 
function in equation (17) are given by 

11 3rR, 2 
A=-m-5-p 

BI =& 
11 

B2=-m 

5 aRo 
B,=-+- 

4A.r’ 2JKA.x 

B 
1 1 -_-- 

6 - 2rAr Ar2 ’ 

Note that for two-dimensional flows, the parallel 
component of the velocity does not jump over the 
interface (as is expected when equation (13) is applied 
to one-dimensional flows) even if U,, (which is an 
average value over the porous layer, in the direction 
perpendicular to surface) is not zero. 

A non-uniform grid net with a higher concentration 
of nodal points near the interface of the vapor film 
and the permeable surface covers the computational 

Table I. Influence of grid size on the overall levitation pres- 
sure force F/F, 

0.01 0.02 0.004 0.10 

0.001 1.02 1.01 1.00 0.98 
0.002 I.01 1.00 0.99 0.91 
0.004 0.99 0.98 0.98 0.96 
0.008 0.93 0.93 0.92 0.91 

K/a2 = LO-*“m’, 6 = 1.564x 10m4 m, FM= 1.983.x IO-’ 
N determined with AT = 0.02 and Ar = 0.002. 

domain. A typical net has 101 x 151 (N, x X,V) nodal 
points. The standard convergence test (using pro- 
gressively smaller grid sizes) is performed, with the 
conventional compromise between computational 
economy and accuracy. For example, the variation of 
the overall pressure force at the base of the droplet for 
evaporation over an impermeable surface (K = 10b20 
m2), shown in Table 1, is within 1% when the grid 
spacings change from 0.01 to 0.02 and from 0.002 to 
0.004 in the r- and .x-directions. respectively. The 
length of the computational domain, L, is chosen to 
be equal to 2Ro and I is the height of the domain 
above the base of the droplet (as shown in Fig. 1). 
For longer values of L and 1, no changes are found. 
The computations were performed on an IBM 3090 
mainframe utilizing the vector facilities. 

The solution for the stream function converges 
when the difference between the normalized value of 
$ between any two successive iterations is less than 
lo- 3. The convergence criterion adopted for the vor- 
ticity is such that the value for the normalized differ- 
ence between any two successive computations of the 
maximum o in the computational domain is less than 
10-5. 

The algorithm is validated by computing the flow 
in the gap for the case where K -+ 0, i.e. imposing the 
no-slip condition, and for K = IOe20 m2 using the 
Beavers-Joseph boundary condition. In each case the 
results are identical to the analytical results for imper- 
meable surfaces. 

4. RESULTS AND DISCUSSION 

For evaporation over a permeable surface, it is 
expected that some of the vapor will penetrate the 
porous layer, reducing the vapor film thickness and 
increasing the heat transfer and evaporation rates. A 
new quasi-steady film thickness will then be reached 
where the upward pressure force exerted at the base 
of the droplet balances the weight. For the results 
presented below, the fluid is methanol and the physical 
properties are p = 0.74 kg m- 3, p, = 773 kg m- 3, p = 
204x10-7kgm-‘s-‘,k=3.33x10-2Wm-‘K-’, 
h - 1107.7 kJ kg- ‘, T,, = 337.7 K, Tp = 650 K, I” - 
and R. = 5 x lo-’ m. 

Figures 2 and 3 show the radial and vertical velocity 
profiles (at R = 4 mm from the center line) for three 
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F’~G. 2. Radial velocity profiles in the vapor fdm and the porous layer (at R = 4 mm from the center tine) 
for:(a)Kja’= IO-“m’,h, = IO-‘m,ht=O;(b)kC/a’= IO-“m*,h, = 10-‘m,Ir,=O;(c)lY/z’= IO-” 

m’, h, = 4.7 x IO-‘m, h2 = IOe3 m. 

cases: (a) K/z* = IO-" m2, h, = 10e3 m, hz = 0; (b) It is apparent from the velocity profiles in Figs. 2(a) 
K/‘r2 = IO--” h ,= 10-3, h2= 
lo-‘0, k , = k.7 x lo-*, 

0 ; and (c) K/a* = and 3(a) that for the low permeability, K/a' = IO-" 
h 2 = 10W3 m, where the m*, the vapor encounters a high resistance at the 

parameter K/a2 is the ~~eabifity divided by the porous surface and con~uentIy does not penetrate 
second power of the proportionality constant in the it. The radial velocity profile resembles that of the 
Beavers-foseph interfacial model. The vapor film fully developed laminar flow between parallel plates. 
thickness, 6, in all cases is determined from the balance For the higher permeability in Figs. 2(b) and 3(b), 
of the pressure forces underneath the droplet with the K/a2 = IO-" m’, it is evident that the vapor pene- 
weight of the droplet (equations (15) and (16)). Case trates into the porous layer. It is perhaps worth men- 
(a) simulates evaporation over a nearly impermeable tioning that the maximum radial velocity in the vapor 
surface. Case (b) corresponds to a permeable upper film diminishes as the permeability of the porous sur- 
surface ( K/a2 = IO- ' ' m’) and an irn~~~ble lower face increases. This is expected since a higher degree 
surface (h, = 0). Case (c) allows for vapor penetration of vapor penetration results in a reduction of the flow 
into the upper and lower surfaces of the porous layer rate in the vapor film, as well as the loss of momen- 
(i.e. h2 # 0). tum in the porous matrix. The reduction in the mag- 

0.10 * “1 

v/v0 

(a) 

v/v, 

(b) 

FIG. 3. Vertical velocity profiles, same conditions as in Fig. 2. 
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FIG. 4. Plots of streamlines for the three cases in Figs. 2 and 3. 

nitude of the radial velocity is evidenced in Figs. 2(a) 
and (b). 

Figures 2(c) and 3(c) show the penetration of the 
vapor through the top and bottom surfaces of the 
porous layer. This is illustrated in Fig. 2(c) by the 
two parabolic velocity profiles in the upper and lower 
vapor layers in contrast to the linear profile in the 
middle porous layer. 

The effect of the permeability on the extent of vapor 
penetration in the porous matrix can also be inferred 
from the lines of constant stream function (Fig. 4). 
The streamlines are plotted for the values 0, 0.01, 
0.05,0.10,0.20,0.35,0.45, and 0.50, from left to right 
respectively, for the three indicated cases of evapor- 
ation. For K/a2 = IO-l5 m’, the streamlines all lie 
in the vapor film (Fig. 4(a)). For K/z’ = lo-” m*, 
the streamlines with values higher than 0.35 lie in the 
vapor film, while the lower values of $ penetrate the 
porous layer. However, the vapor tends to change 

t The one-dimensional momentum equations for flow in 
the vapor film and porous layer, given as d*U/dX’ = 
(I/p)(dp/dR) and d’Uo/dX2 = (elp&(dpldR)+(e/K)&,, are 
solved for the boundary conditions U(0) = 0, U(d) = 
U&5), r(dU@)/dx) = tidUo@)/dX) and fY&S+h,) = 0. 
It is assumed that a = J&/p) = I. Note that the assump- 
tion of uniform pressure across both the plain and porous 
layers results in a flow that remains within the porous layer 
instead of returning to the plain layer. 

direction and flow out of the porous matrix due to the 
high resistance it encounters. In fact, almost all of the 
vapor flows out of the porous medium through the 
upper surface, as can be seen in Fig. 4(b), while a 
small portion (+ = 0.01) exits through the side of the 
porous matrix. When the lower surface is permeable 
and the porous layer is thin (case (c)), some of the 
penetrated vapor will escape through the bottom sur- 
face of the matrix (Fig. 4(c)). 

Figure 5(a) shows the variation of initial film thick- 
ness, normalized by the radius of the droplet, with the 
parameter, K/z*. Initial film thickness, 6, is deter- 
mined iteratively from the balance of the surface inte- 
gral of pressure forces exerted at the base of the drop- 
let with the weight of the droplet (equation (16)). As 
expected and obtained by numerical integrations, no 
pressure gradient exists beyond the radius of the drop- 
let. For comparison, the initial levitation heights 
obtained from the one-dimensional analysisi given by 
Avedisian and Koplik [I] are also presented. The lines 
through the data are curves of best fit. It is apparent 
from these results that the two models predict no 
major vapor penetration through the surface for 
values of K/a* (a = 1 for the one-dimensional model) 
less than lo-l2 m*. Unlike the one-dimensional 
model, the axisymmetric analysis does not predict the 
collapse of the droplet (as evidenced by the asymptotic 
behavior of S/R, for high permeabilities). Similar 
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and the interface velocity for h, = IO-’ m and h2 = 0 (one- 
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asymptotic behavior is observed for the interface 
velocity predicted by the axisymmetric model ; this 
behavior contrasts with that of the one-dimensional 
model, which predicts a sharp drop in the radial vel- 
ocity for permeabilities higher than lo-” m2 (Fig. 
S(b)). An explanation of this behavior can be offered 
based on the limitations of the Beavers-Joseph inter- 
facial condition. For values of @equal to or greater 
than IO- lo rn’, the average size of the individual pores 
within the porous matrix exceeds the thickness of the 
vapor layer, thus the assumption of rectilinear flow 
(for the one-dimensional model of Beavers and 
Joseph) in the film breaks down. No general relation- 
ship between the permeability and particle or pore 
size exists [ 151. The porous media which may be used 
in practice. for the problem considered, will be con- 

solidated and ‘particles’ or pore size will not be 
uniform. However, the Carman-Kozeny equation, 
which is valid for non-consolidated spheres of uni- 
form size, i.e. 

Table 2. Ratio of the vapor gap size 
to the particle size (using equation 

(18)) 

K/Z' dP 6% 

;;r:i 
1.2x lo-’ 13.2 
3.8 x IO-’ 4.2 

IO-" 1.2 x 1o-4 1.3 
10-'O 3.8x IO-' 0.4 
IO-9 11.9x 10-4 0.1 

d = 1.564x 10e4m. 

K= (18) 

is used to illustrate the relation between the average 
particle size and K/a* for a = 0.4. It is evident from 
Table2 that for K/a* = IO-“or 10-9m2 the thickness 
of the vapor layer, 6, is less than the average particle 
size, dv This suggests that the levitation height is less 
than the size of the individual pores. 

A similar argument can be made against the validity 
of the one-dimensional model for values of 
K/a* > IO- lo m*. In the one-dimensional analysis, the 
vapor flow in the porous matrix is assumed to be 
governed by 

(19) 

where Uo denotes the local mean velocity within the 
porous matrix and per is an effective viscosity. which 
may differ from the viscosity in the plain vapor film. 
The assumed boundary conditions at the interface are 

U(0) = U,(O) (20) 

dU(0) d%(O) 
PdX= P&T. (21) 

Brinkman’s model (equation (19)) extends the shear 
stress, which is present in the plain layer, into the 
saturated solid matrix. This can be seen as an exten- 
sion to Darcy’s model, which does not include vari- 
ations of shear stress in the porous matrix. Brinkman’s 
model thus predicts the formation of a very thin 
boundary layer within the porous matrix, which 
allows for the transition of the velocity from that of 
the fluid (Vi at the interface) to the Darcean velocity 
((In) below the interface (Fig. 6(a)). Figures 6(b) and 
(c) illustrate the velocity profiles predicted by the 
Beavers-Joseph interfacial model for the two con- 
ditions of Uo = 0 and CJ,, # 0 in equation (14), respec- 
tively. Darcean velocity, U,, in Fig. 6(c) is determined 
by taking the average of the radial component of 
velocity along the x-direction in the porous layer. 
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FIG. 6. Radial boundary layer velocity profiles for: (a) interface velocity with no slip (Brinkman) : (b) 
interface velocity with slip (Beavers-Joseph with (I,, = 0) ; (c) interface velocity with slip (Beavers-Joseph 

with CJ,, # 0). 

Setting Uo not equal to zero in equation (14) will force 
the flow to go through the porous layer. 

The thickness of the boundary layer for one-dimen- 
sional flow can be evaluated as [8] 

where a = S/,/K. The thickness of the boundary layer 
as predicted by equation (22) is of the order of lo- ’ 
m for a gap size of the order of IO-’ m (vapor film 
thickness) and a permeability of lo-” m’. This 
implies that the thickness of the boundary layer may 
be less than the average particle size (depending on the 
relationship between the permeability and the particle 
size) in the porous matrix, so the application of a 
continuum analysis such as Brinkman’s in the bound- 
ary layer produces physically unrealistic results. It 
should be noted that properties such as the effective 
viscosity, pti, or the Darcean velocity, CJ,, are the 
volume-averaged properties, i.e. averaged over a 
length scale larger than the individual particle or pore 
size. Hence, the one-dimensional model of vapor flow 
in the porous medium, governed by Brinkman’s equa- 
tion, would not be valid for the cases in which K”’ 

(the order of the boundary layer thickness) is smaller 
than the average pore size of the porous matrix. It is 
also worth noting that for high permeabilities, the 
magnitude of the surface nonuniformities will be of 
the order of the vapor film thickness. It is possible 
that the higher rate of evaporation of the droplets on 
ceramic surfaces, as reported by Avedisian and Koplik 
[l], is primarily due to surface nonuniformities pro- 
truding into the vapor film and not to the reduction 
of the film thickness resulting from the penetration of 
vapor into the porous layer. 

The axisymmetric and onedimensional models are 

further compared in Fig. 7. The variation of the sur- 
face integral of pressure forces is shown with respect 
to the permeability for three porous layers, lo-‘, 
lo- 3, and lo-’ m (the vapor film thickness is constant 
at S = 1.560x lo-’ m, corresponding to K/r2 = 
lo-” m2, which is the maximum film thickness 
over an impermeable surface). For K/z’ c lo- I3 m2, 
both models predict that no major penetration of 
vapor into the porous layer takes place, as evidenced 
by the balance of the pressure forces. F, with the 
weight of the droplet, W (F = fV = 1.98 x IOU3 N). 
For lo- I3 < K/a2 < lo- lo m2, the two models predict 
that the vapor penetrates through the surface and 
that the degree of penetration increases with higher 

- 6’ Axirymmetric 

lb6 
- lo-1 

__- lO-2 

4 (m21 

FIG. 7. Variation of Fwith respect to h, and K/x’. for hz = 0 
(one-dimensional and axisymmetric). 
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K(m*) a 
FIG. 8. Variation of F with respect to h, and K/a’, for 

h: = IO-’ m (axisymmetric). 

permeabilities. The axisymmetric model predicts a 
higher degree of vapor penetration than the one- 
dimens~onai model for this range of ~~eabiliti~. 
For K/r’ > 10-” m’ the two models deviate from 
each other in their prediction of the pressure forces. 
This is due to the indicated limitations that the two 
models have at high permeabilitien 

The effect of the thickness of the porous layer on 
the pressure forces can also be inferred from Fig. 
7. For higher values of hl, the extent of the vapor 
penetration into the porous medium increases, as indi- 
cated by the lower values of F. Increasing ht beyond 
IOm2 m seems to cause no significant change in the 
values of F, indicating that the extent of vapor pene- 
tration into the porous layer will not be greater than 
0.01 m. 

The variation of the pressure forces with respect to 
K/a2 and h, for a fixed value of kz = IO-’ m (i.e. the 
lower surface is permeable) is illustrated in Fig. 8 fh, 
is @ven as a factor of S in order to present the relative 
magnitude of the porous layer thickness with respect 
to the vapor layer thickness). Values of K/a* < IO-‘-’ 
m2 are not shown since no major vapor penetration 
occurs through the surface and F remains.constant 
independent of h, and hP It is apparent from Fig. 8 
that for values of h, > I56 (2.3 mm), F does not vary 
significantly. This implies that the extent of vapor 
penetration is approximately 2.3 mm (consistent with 
the results shown in Fig. 7). The effect of h2 on the 
pressure forces is illustrated in Fig. 9. The results 
are plotted for a constant porous layer thickness of 
approximately IOS (I.56 mm) and hl of IO-‘, IOe3, 
10v2, and .IO- ’ m. Increasing h2 beyond IO-’ m does 
not cause any changes in F. It can be inferred From Fig. 
9 that as h2 increases, more vapor escapes through the 
bottom surface, allowing for larger reductions in F- 
This implies that the thickness of the vapor film dimin- 

4 fm*) 

FIG. 9. Variation of r with respect to h2 and K/a*, for 
h, = IO-' m (axisymmetric). 

ishes with increasing h2. The upper limit of h2 is deter- 
mined to be 10 mm, beyond which kz has no significant 
effect on the size of the gap. 

5. SUMMARY 

Assuming that it remains valid, the Beavers-Joseph 
boundary condition is applied to the axisymmetric 
flow associated with droplet levitation. The Brinkman 
extension, used in a previous study, is also examined. 
The results indicate the foIlowing. 

(a) The Brinkman extension results in boundary 
layer thicknesses in the porous layer that are of the 
order of the square root of permeability ; in some cases 
these boundary layers are smaller than the length scale 
associated with the elementary representative volume. 

(b) Because of the small gap sizes (for most common 
fluids) the surface roughness, which is also of the order 
of the square root of the liability, plays a signi- 
ficant role and tends to reduce the average gap size. 

(c) The Beavers-Joseph boundary condition ap- 
pears to give physically reasonable results for the 
range in which it is valid. 

(d) A significant increase in the evaporation is pos- 
sible by using a relatively thick porous layer (com- 
pared to the gap size) or by using a thin porous 
layer bounded below by a plain layer. 
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APPENDIX 

As was indicated. inclusion of LID in the interfacial bound- 
ary condition (equation (14)) implies the presence of a pres- 
sure gradient in the porous layer, which is the force driving 
&,. This is illustrated in Fig. Al. which presents the flow 
(streamlines) for the case previously shown in Fig. 4(c), 
except that uo is not set to zero. Note that the flow continues 
through the porous layer, even at large distances from the 
edge of the droplet. This flow is not realistic because the flow 
is expected to favor a return to the gap rather than continuing 
in the porous layer where the resistance is significantly 
larger. Based on this. Darcy’s velocity was not included in 
the boundary condition. 

5 -10~10(m2~. 8-1.564xlO~‘(m), h,-36. h2-163(m). UDfO 
a2 

FIG. Al. Same conditions as in Fig. 4(c) except Lro # 0. 

ANALYSE DE LA LEVITATION DES GGU’I-fELETTES DE LIQUIDE SATURE SUR 
DES SURFACES PERMEABLES 

R(sumCL’Cvaporation dune gouttelette de liquide sature et la levitation sur une surface solide due a la 
pression induite par la quantite de mouvement dans le film de vapeur sont etudiies en r&olvant numerique- 
ment l%quation axisymetrique. Une analyse monodimensionnelle anterieure montre que la distance entre 
la surface solide et la gouttelette d&croit quand la vapeur peut p&Ctrer dans le solide. Pour les couches 
poreuses, une analyse monodimensionnelle qui est ba&e sur I’extension selon Brinkman de la loi de Darcy 
p&lit des cpaisseurs de quantite de mouvement, pour la couche limite, de I’ordre de la racine car& de la 
perm&abilitC. Dans des solides poreux typiques, cette epaisseur est plus petite que le pore ou la taille de 
la particule. Dans la pr&ente etude la condition limite semi-empirique de Beavers-Joseph est utilisee i la 
place. du modele monodiiensionnel. La reduction de la separation par variation de la permeabilite et de 
I’Cpaisseur de la couche poreuse est d&ermin&e dans des domaines od cette condition limite est valable. La 
faibleme du mod&le pour p&dire le collapsus de la gouttelette est due B la defaillance de la condition 
interfaciale de Beavers-Joseph pour Ies fortes perm&abilitis. Ce modele monodimensionnel, l’extension de 
Brinkman pridisent une croissance exagC&ment rapide de la distance quand la permCabiliti est accrue 
jusqu’a une certaine valeur, a cause de I’hypothese de gradients de pression igaux dans les couches poreuses. 
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UNTERSUCHUNG DER SCHWEBUNG VON GESA’lTIGTEN FL(_&SIGKEITSTROPFEN 
AUF DURCHLA;SSIGEN OBERFLACHEN 

Zmataumg-Es wird die stationi& Verdampfung eines gtittigten Fltigkeitstropfens und dessert 
Schwebung iibex einer festen Oberfiiiche aufgrund des vom Impuls induzierten Druckes im DampfEIm 
untersucht. Dazu werden die Erhaltungsgleichungen in achsensymmetrischer Darstellung numerisch gel&. 
Eine friihere eindimensionale Analyse zeigt, daB der Abstand (Spalt) zwischen der festen OberflZxhe und 
dem Tropfen abnimmt, wenn der Dampf den Festkiirper durchdringen kann. Fiir poriise Schichten werden 
mit der Erweiterung nach Brinkman im Darcy-Gesetz Impulsgrenzschichtdicken in der GrGBenordnung 
der Wurzel der Permeabilitlt berechnet. In dieser Untersuchung wird die haib-empirische Randbedingung 
von Beavers-Joseph fiir die GrenzllBche der glatten und der durchlissigen Schicht venvendet. Die Spaltver- 
minderung wurde in Abhlngigkeit von der Permeabilitit und der Dicke der poriisen Schicht sowie der 
DampfabstrBmung durch die porcise Schicht bestimmt. Fiir die Schlupfgeschwindigkeit und die Spaltgr6Be 
wird ein asymptotischer Wert berechnet, wenn die Permeabilitlt iiber einen bestimmten Wert ansteigt. Das 
Versagen des Modells zur Berechnung des Tropfenzusammenbruchs ist mit der Ungiiltigkeit der 
Randbedingung von Beavers-Joseph fiir groBe Permeabilitaten verbunden. Ftir praktische Anwendungen 
jedoch wird erwartet, da6 die Oberfllchenrauhigkeit iiberwiegt, wenn die Spa&& den Wert Null erreicht. 

AHAJIH3 JIEBHT-H HACbImHHblX KAIlEJIb -0CTl.f HA llPOHHI&EMbIX 
IIOBEPXHOCT5IX 

-q Hciuluto VeToK ycToliqBBoGTb ItcuapenslK aacuaIerIir0#KaaJm%EnK~liee 
JleBaTauEK asp TaepJtol uoaepKnocTbio. IIpoKeAemrbdl paitee oImYoMepHbl$i auaJm3 troKa3btaaeq PTO 
paccrorHae (npoMe%yloK) Me%ny TaepnoA noDepKmnxbro II Katt.ll& yMenbmaenx ttpa npomlKtfoKJemul 
rlapa B TBQNloC TWO. &lfi UOpHClWX CJIOCB OlSllOMCpEbI# 8MJlR3 NXOlIa &pCa Ha OCHODC UOJIXOLIII 

6pRHKhsarra UO3BoJtKer 0upeJxeJmTb TOJnItlmy UOTepE KMnyJIbca KaK ae.mmnHy uopuna Kaazpantoro 
ropwa ~3 3mtB’Iemra nponuuac~oc~~. B THIM~ uopscraa nepnw rcnax m TO- -me 
pa3~epa uop ium qacnru B nacroKnte~ VBaium mMec70 oJutoMepxoil MOneJm RcuoJtb3yeTcK 
nony3amspr==oe rpmmwtoe yCJI0rmC 6imePa-m Ho rpu0m pn3m.m o6n;aomemmo (xc. 
nap tra~o~ non ILIIMCP) n -Or0 UtOea. &K J.llIawO~OK, a KoTOpUK KXtIoJIEKelZK yra- 
3aHtioCtQailE’tUOe yUrOBlle,OnpuWrellO yMCUbUEIUtCprUaCepanpOM~OBC~CH~~apO~- 

ham II ~onuumd uop~croro 4x01. H3yraex~ ralOlie 3@eK~ yxwx~n aapa qepe3 BBIBKIH) 
noBePxmcrb uopucroro cnoa. JJaima~ rdonenb uo3Ko~Ed man acnnarrmecKoe 38aqemie coo- 
pocTn cKoJlbxemM = mep npoMexyrra lrpa me= npo HmlaeMocnI cablute O~ImOti 
sen~nimbt.Mo~~~e ~03~onaer011pcmmb prrCnanCMlJ0lBBUlJ'ItaPytlEHiWrpOrmnaOrO YCJIOBiU 

6Hscpa-RxO3&l II&Ml BblCOKOlt IQOURllKCM OCTiI.&IiWIOiiaUOiUWTbBBiIAy,lrro~UparIEXeUICpO- 

XOBaTOCTb UO~~~HCCT~ 6ynn nptoanaaa?a B Cnynae npu6~mxemu pawepanpoMexynta KtQ’JlIo.C 
nPyroLcroP0~0Jw0acepgarM0aMb.puPa6oT== 6;p11lfl(~u1o~,l1oc~wpeam1o 6uc~poeyxe1x1.- 
meme npoMeryna npa yaemmeumr upo~ocrn cabune onpeacnermoft aemmmt~ B ppesronore- 

l00i~ileHCTWI-PiUIHeHTOBLWJlcmtnB UOpliCTOMHO6bMlOBCiUtOMCJlOa. 


