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Abstract—Steady-state evaporation of a saturated liquid droplet and its levitation over a solid surface due
to momentum-induced pressure in the vapor film is studied by solving the axisymmetric governing equation
numerically. A previous one-dimensional analysis shows that the distance (or gap) between the solid
surface and the droplet decreases when the vapor can penetrate the solid. For porous layers, this one-
dimensional analysis which is based on Brinkman's extension to Darcy’s law predicts momentum boundary
layer thicknesses of the order of the square root of the permeability. In typical porous solids, this thickness
is smaller than the pore or particle size, In the present study the Beavers-Joseph semi-empirical boundary
condition at the interface of the plain (i.e. vapor underneath the droplet) and permeable layers is used
instead of this one-dimensional model. The reduction in the gap size with respect to variations in per-
meability and thickness of the porous layer is determined for the ranges where this boundary condition is
valid. The effect of vapor escape through the bottom surface of the porous layer is also studied. This
axisymmetric model predicts an asymptotic value for the slip velocity and the gap size as the permeability
increases beyond a certain value. This failure of the model to predict the collapse of the droplet is due to
the breakdown of the Beavers-Joseph interfacial condition for high permeabilities. However, for practical
applications the surface roughness is expected to dominate when the gap size approaches zero. The one-
dimensional model, i.e. the Brinkman extension, on the other hand, predicts an unrealistic rapid drop of
the gap size when the permeability is increased beyond a certain value, because of the assumption of equal
pressure gradients in the porous and plain layers.

1. INTRODUCTION

LEvVITATION of saturated liquid droplets has previously
been studied experimentally and analytically by
Avedisian and Koplik [1]. In their experimental study
they observed a reduction in the droplet evaporation
time whenever the solid surface over which the drop-
lets were levitated was permeable. It should be noted
that surface roughness can also result in a decrease in
the droplet evaporation time due to a reduction of
the average vapor film thickness and a consequent
increase in the heat transfer rate. In practice, it is
difficult to construct porous layers which have surface
roughnesses which are significantly smaller than their
pore or particle size, Therefore, in these experiments,
it is the combined effects of surface roughness and
suction that result in higher evaporation rates.
Avedisian and Koplik's {1] analytical study is based
on a Brinkman extension of Darcy’s law for flow
through porous media. This is equivalent to the
addition of a macroscopic boundary effect to the
otherwise bulk resistance model for the flow. They
also used a heuristic interfacial boundary condition
between the vapor film and the porous layer, which
in principle accounts for the presence of the solid
matrix and leads to a balance of the shear stress on
the fluid at the interface. The result of their analysis
gives a momentum boundary layer thickness just
inside the porous layer, which is of the order of the
pore size. This finding contradicts the basic assump-

tion required for a continuum treatment of the solid
and fluid phases by a single momentum equation, i.e.
the elementary representative volume encompasses a
large enough volume such that an ensemble average
over a large number of pores is made and yet impor-
tant physical features such as the boundary layers
are not masked. This shortcoming of the Brinkman
extended analysis has gone unnoticed in other
reported work such as ref. [2}, in which a fully
developed momentum boundary layer thickness equal
to (4K/e)/? and a development length equal to KU /v
were found for forced convection in porous media
bounded on one side by a flat plate. Depending on
the structure of the porous medium, this boundary
layer thickness can be of the order of a tenth of the
pore size. Furthermore, without a special coordinate
stretching, in numerical solution the mesh size (or the
period of the trial functions) have to be of the order of
a tenth of this boundary layer in order to successfully
resolve the variation of the velocity field within the
boundary. This requires resolution of the order of
0.1K"2 where the surface roughness is of the order of
10K"? and the linear dimension of the porous medium
is of the order of 10°K"? or larger.

In practice, the permeability of the porous layer
near the surface is not uniform and, depending on
the manufacturing process, it can be larger near the
surface. When coupled with the unavoidable surface
roughness, this makes a general analytical treatment
of the flow near the interface almost impossible, Direct
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d, particle size [m]
F integral pressure force at the droplet base

g gravitational constant

hy thickness of the porous layer [m]

h, thickness of the plain layer {m}

h,  latent heat of vaporization [kJ kg~

k vapor thermal conductivity (Wm~' K]
K permeability [m?]

! vertical distance above the droplet base
(m]

p pressure [N m~7]

Pe ambient pressure around the droplet
Nm™7

r,x  dimensionless radial and axial coordinate

axes, R/Ry, X/R,
R,  radius of droplet [m]
radial and axial coordinate axes [m]
Vo  axial vapor velocity at the droplet base
{ms™1
Re  Reynolds number, R,V,/v
T,  surface temperature at the top of the
porous layer [K]
liquid saturation temperature [K]
V' radial and vertical velocity in the vapor
film [ms™']
dimensionless radial and vertical velocity
in the vapor film, U/V,, V/V,

NOMENCLATURE

U radial velocity at the vapor film/porous
layer interface [m s~ ']

V,  droplet volume [m°]

W droplet weight [N].

Greek symbols

o Beavers—Joseph proportionality constant

& vapor film thickness [m]

A boundary layer thickness in the porous
matrix [m]

£ porosity

I dynamic viscosity in the vapor film
kgm~'s™']

He  effective dynamic viscosity in the porous
medium [kgm~'s™ ]

v kinematic viscosity in the vapor film
[m?s™]

p vapor density [kg m ™)

o liquid density [kg m~?]

] dimensionless stream function
L 4 stream function [m*s™ ']

w dimensionless vorticity

Q vorticity [s7'}.

Subscripts
cl center line
D Darcy’s

0 free stream.

simulation of the flow adjacent to these types of inter-
faces may clarify some of the pore-level phenomena
[3-5]. Larson and Hingdon [4, 5] studied the micro-
scopic flow near the surface of a porous medium con-
sisting of semi-infinite lattices of cylindrical
inclusions. They predicted a rapid decay of velocity
over a single lattice cell even at high porosities, which
in genera! supports the boundary layer thickness pre-
dicted by the Brinkman model. However, they also
concluded that Brinkman’s equation fails to predict
the flow field for transverse flow through anisotropic
porous media. In addition, their analysis showed that
the slip velocity (similar to the Beavers-Joseph slip
velocity) is extremely sensitive to the position of the
interface. From their results it appears that the slip
velocity model, along with an empirically determined
boundary condition, describes the interfacial phenom-
enon more satisfactorily. A model based on the ensem-
ble average of flow through some interfacial conduits
has been proposed by Moaveni-Sabet [6].

Beavers and Joseph [7] obtained a semi-empirical
relationship for the interfacial velocity of the flow
through a channel bounded on one side by a porous
layer; an imposed pressure gradient induces flow
through both layers. They observed that the bulk
permeability and bulk porosity are inadequate par-

ameters for the description of the interfacial velocity.
However, with an adjustable constant (that varies
over an order of magnitude) they found a relationship
for the interfacial velocity. Neale and Nader [8], and
by a similar approach Vafai and Thiyagaraja [9},
applied the Brinkman extended analysis and showed
that this constant is equivalent to an effective viscosity
that is used for the presumed continuity of the shear
stress at the interface. Nield [10-12] applied the
boundary condition developed by Beavers and
Joseph. Saffman [13], through dimensional, scaling
and boundary-layer (inner and outer solutions) argu-
ments, showed that the constant in the Beavers—
Joseph correlation depends on where the interface is
taken. He shows that within the uncertainty of the
order of 10K (associated with surface roughness) in
the location of the interface, this constant can change
several fold.

This study considers the steady-state flow of vapor,
which is emitted from the surface of an evaporating
droplet, through the vapor film and the permeable
solid (which provides the heat for evaporation).
Figure 1 gives a schematic of the problem. The axi-
symmetric flow equations are solved numerically.
The Beavers—-Joseph boundary condition, which was
obtained for one-dimensional flow, is applied to this
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F1G. 1. A schematic of the system and the computational domain.

axisymmetric problem; this extension is assumed to
be possible provided the additional component of the
plain layer shear stress along the interface is included.
(Presently, no experimental or theoretical validation
of this assumption is available.) The flow through
the porous layer is described by Darcy’s law (zero
vorticity), and the reduction of the gap size is exam-
ined along with the flow through the vapor film and
the porous layer. In addition, the effect of flow
through the lower boundary of the porous layer into
another plain layer is also studied. The heat transfer
between the upper surface of the porous layer and
the droplet is nearly dominated by conduction be-
cause the Peclet number § Vy/a is rather small (for the
examples given here about 0.30). Note that only a
fraction of the flow enters the porous layer; there-
fore, the effective Peclet number is even smaller. For
the case of a porous layer sandwiched between
two plain layers, the heat supply can be through volu-
metric heat generation in the porous layer.

2. ANALYSIS

Since only idealized analytical treatment of levi-
tated droplet evaporation is possible, the following
assumptions [1] are made : (i) the evaporation is quasi-
steady and takes place in the film boiling regime; (ii)
the droplet is hemispherical (for a methanol droplet
with a radius of 5 mm the Bond number is less than
one); (iii) the droplet is at rest and isothermal at

saturation ; (iv) the surface temperature of the porous
medium remains constant and exceeds the Leidenfrost
temperature of the liquid ; (v) the vapor film thickness
is uniform and very small, heat transfer is dominated
by conduction, and radiation is negligible ; (vi) mass
transfer from the upper surface of the droplet is
neglected ; and (vii) the vapor flow in the film is lami-
nar and viscous (Re = 14).

The continuity and momentum equations (for
axisymmetric, quasi-steady flow) in the vapor film are

vV-U=0 ()]
(CV)U = —p~'Vp+yW3U 2)
and for the porous medium we have
V-Up=0 3
0= —p~'Vp—K 'WUp. 4)

Defining the vorticity as

eUu aov
=% R ©)
and introducing
1 0¥
U=-%3x ©
1 0¥
V= RR N
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we can write equation (2) in the dimensionless form
as

‘o Juw) o(ww) 1 )4 0w
wt e e E{ér[rcr( )] ‘2}

@®

where R,, V,, and pV} are used to scale the length,
velocity, and pressure for the dimensionless Reynolds
number

VoRo
m—

Re =

The stream function is related to the vorticity by

19% 1 oy
tor or (r or) ©

r ox?
The vapor velocity at the base of the droplet, V,, is
found from the balance of energy at the liquid/vapor
interface

- =

KT~ T.)
Vo = =Bps=t, (10)

This equation remains valid for rather small vapor
flows into the porous layer, although for large flows
(not attempted here) the contribution of convection
(Peclet number) must be included. It is assumed that
T, remains the same despite the suction.

Darcy’s law governing the flow in a porous medium
(equation (4)) written in the stream function—vorticity
formulation reduces to

(I

while equations (6), (7), and (9) stiil hold (zero vor-
ticity in the porous medium indicates that the Rey-
nolds number is less than one). The initial conditions
used are .

(I)D=0

V=w=0 12)
and the boundary conditions are (also given in Fig. 1)
0srshx=0, u=0,v=1
1
0= -V ¥= i’

1

r=0,0<x<dé+h, +h,, u=0,v=;¢,
o=y=0
i
r=1,-I1<x<0, u=0,u=;|/1,

1 1
= — -—— =1
w rz'/Ir r'#rn'l’ 2

1
l<r<2,x= -/, u=—-;|/1,,v=0

1
= —-——- = 1
@ rw.v.nlp 2
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1
r=2-l<x<d+h, +h,, u=—;l//_,,v=0
I
= ——wx.\'
r
r<2,x=0+h+h,, u=v=y=0
|
o= —;wxx'

The maximum value of the stream function is equal
to 1 at the edge of the droplet (where both R/R, and
V|V, are equal to 1) and remains constant around and
above the droplet. /is the height of the computational
domain above the droplet base to model the vapor
flow around the droplet as it emerges through the
vapor layer underneath the droplet. The boundary
condition adopted at the interface of the vapor film
and the porous surface is the one-dimensional empiri-
cal model proposed by Beavers and Joseph [7]

dUu

1 r
a‘l“,=—K(Ua—L‘D) (13)

where 2 is a dimensionless parameter that is a charac-
teristic of the porous layer and is determined exper-
imentally. U; the radial vapor velocity in the film
adjacent to the porous surface, and U, the Darcean
velocity given by

A general form of equation (13) is proposed by Nield
[t1] as

ou v a

5(+6_R=—K(L.}—L‘.,). 4

It should be noted that the convective Darcean
velocity, Lp. in the Beavers-Joseph interfacial model
(equation (13)) is due to an applied pressure gradient
along the porous layer as well as the plain layer. Since
flow through the porous layer is caused by the influx
through the interface in the problem here, we modified
equation (13) by setting Uy equal to zero in order
to produce realistic results (see the Appendix for a
detailed explanation). The term ¢}’ ¢R, which was
added to the original Beavers—Joseph model because
of the extra velocity component, is found to be rather
small in magnitude compared to ¢U ¢ X.

The pressure distribution at the base of the droplet,
p(R), can be determined for values of d*U/dX? and @
evaluated at the base of the droplet by the numerical
integration of equation (15):

P RdZU *R
= Vo .
J;d dp #J‘ i dR—p 1, wdR (15)
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When the weight of the droplet is balanced by the
surface integral of pressure forces, we have

Rl)
L (P—pPo)2rRAR = g(p—p)Vy = W. (16)

3. SOLUTION AND VALIDATION

The governing equations (6)-(12) subject to the
boundary conditions shown in Fig. 1 are solved
numerically using the explicit, two-step finite differ-
ence scheme and the successive over-relaxation tech-
nique described by Jaluria and Torrance [14]. Steady-
state solutions are obtained for ¥, w, u, and v in the
vapor film and porous matrix and around the droplet.

Proper mixing of forward and backward finite-
differencing of the interfacial condition is needed in
order to properly couple the rotational flow in the
plain layer with the irrotational flow in the porous
layer. The normalized interfacial condition of equa-
tion (14) for Up = 0 is combined with the continuity
of the velocity in the x- and r-directions at the interface
and then written in the following second order, finite-
difference approximation for each grid point (i, j)
along the interface :

AWi.j = BnWi.j—J'*'Bz'/’i.j—z +Bld’i‘j+2
+BWi 1+ B+ BeWin; (17)

where i and j denote the indices in the r- and x-
directions, respectively. The coefficients of the stream
function in equation (17) are given by

1 1

Ar?
1

$ T 2rAr  ArY

Note that for two-dimensional flows, the parallel
component of the velocity does not jump over the
interface (as is expected when equation (13) is applied
to one-dimensional flows) even if Up (which is an
average value over the porous layer, in the direction
perpendicular to surface) is not zero.

A non-uniform grid net with a higher concentration
of nodal points near the interface of the vapor film
and the permeable surface covers the computational

T 33:5-0

987

Table 1. Influence of grid size on the overall levitation pres-
sure force F/F

Ar
Ax 0.01 0.02 0.004 0.10
0.001 1.02 1.01 1.00 0.98
0.002 1.01 1.00 0.99 1097
0.004 0.99 0.98 0.98 0.96
0.008 0.93 0.93 0.92 0.91

Kla®>=10"°m2 6 = 1.564x [0~*m, Fo=1.983x 103
N determined with Ar = 0.02 and Ax = 0.002.

domain. A typical net has 101 x 151 (N, x N,) nodal
points. The standard convergence test (using pro-
gressively smaller grid sizes) is performed, with the
conventional compromise between computational
economy and accuracy. For example, the variation of
the overall pressure force at the base of the droplet for
evaporation over an impermeable surface (K = 10-2°
m?), shown in Table 1, is within 1% when the grid
spacings change from 0.01 to 0.02 and from 0.002 to
0.004 in the r- and x-directions, respectively. The
length of the computational domain, L, is chosen to
be equal to 2R, and / is the height of the domain
above the base of the droplet (as shown in Fig. 1).
For longer values of L and /, no changes are found.
The computations were performed on an IBM 3090
mainframe utilizing the vector facilities.

The solution for the stream function converges
when the difference between the normalized value of
¥ between any two successive iterations is less than
1073, The convergence criterion adopted for the vor-
ticity is such that the value for the normalized differ-
ence between any two successive computations of the
maximum o in the computational domain is less than
103,

The algorithm is validated by computing the flow
in the gap for the case where K — 0, i.e. imposing the
no-slip condition, and for K= 10"2° m? using the
Beavers-Joseph boundary condition. In each case the
results are identical to the analytical results for imper-
meable surfaces.

4. RESULTS AND DISCUSSION

For evaporation over a permeable surface, it is
expected that some of the vapor will penetrate the
porous layer, reducing the vapor film thickness and
increasing the heat transfer and evaporation rates. A
new quasi-steady film thickness will then be reached
where the upward pressure force exerted at the base
of the droplet balances the weight. For the results
presented below, the fluid is methanol and the physical
propertiesare p = 0.74kgm~>,p, = 773kgm 3, u =
204x10""kgm~'s™ ", k=333x10"2Wm 'K,
h, = 1107.7 kJ kg~', T, =337.7 K, T,=650 K,
and Rg=5x10"*m.

Figures 2 and 3 show the radial and vertical velocity
profiles (at R = 4 mm from the center line) for three
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F1G. 2. Radial velocity profiles in the vapor film and the porous layer (at R = 4 mm from the center line)

for:@Kal=10""m b, =10 mh=0,b)K/z’ =

10-""'m% A, = 10~ *m, h, = 0; (c) K/a* = 10~ 1

mhy = 47x 10" m, b, = 107> m.

cases: (a) K/l = 10" m% h, = 1073 m, h, = 0; (b)
Kt =10""", A, =107 h,=0; and (¢) K/a*=
10°' h,=47%x10"% h,=10"> m, where the
parameter K/a® is the permeability divided by the
second power of the proportionality constant in the
Beavers-Joseph interfacial model. The vapor film
thickness, J, in all cases is determined from the balance
of the pressure forces underneath the droplet with the
weight of the droplet (equations (15) and (16)). Case
(a) simulates evaporation over a nearly impermeable
surface. Case (b) corresponds to a permeable upper
surface (K/a? = 107" m?) and an impermeable Jower
surface (h, = 0). Case (c) allows for vapor penetration
into the upper and lower surfaces of the porous layer
(i.e hy #0).

It is apparent from the velocity profiles in Figs. 2(a)
and 3(a) that for the low permeability, K/a® = 10~"%
m?, the vapor encounters a high resistance at the
porous surface and consequently does not penetrate
it. The radial velocity profile resembles that of the
fully developed laminar flow between paraliel plates.
For the higher permeability in Figs. 2(b) and 3(b),
Kja? =10""" m? it is evident that the vapor pene-
trates into the porous layer. It is perhaps worth men-
tioning that the maximum radial velocity in the vapor
film diminishes as the permeability of the porous sur-
face increases. This is expected since a higher degree
of vapor penetration results in a reduction of the flow
rate in the vapor film, as well as the loss of momen-
tum in the porous matrix. The reduction in the mag-
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__________________________ o.osh ]
005 4 oos} y
0.10r 1
o104 h, 1 owf h, o.15¢ .
hg
oz20l i
oss} i1 ot :
02 1
020 1 o20f 1 o3 1
. b - 1 . " IS S
0.00 0.50 100 0.00 0.50 100 0.00 0.50 100
VIVy Vivy ViV,
{a) {b) (c)

FiG. 3. Vertical velocity profiles, same conditions as in Fig. 2.
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FiG. 4. Plots of streamlines for the three cases in Figs. 2 and 3.

nitude of
and (b).

Figures 2(c) and 3(c) show the penetration of the
vapor through the top and bottom surfaces of the
porous layer. This is illustrated in Fig. 2(c) by the
two parabolic velocity profiles in the upper and lower
vapor layers in contrast to the linear profile in the
middle porous layer.

The effect of the permeability on the extent of vapor
penetration in the porous matrix can also be inferred
from the lines of constant stream function (Fig. 4).
The streamlines are plotted for the values 0, 0.01,
0.05, 0.10, 0.20, 0.35, 0.45, and 0.50, from left to right
respectively, for the three indicated cases of evapor-
ation. For K/a? = 10""* m?, the streamlines all lie
in the vapor film (Fig. 4(a)). For K/2>=10""' m?
the streamlines with values higher than 0.35 lie in the
vapor film, while the lower values of § penetrate the
porous layer. However, the vapor tends to change

T The one-dimensional momentum equations for flow in
the vapor film and porous layer, given as d*U/dX*=
(1/#)(dp/dR) and d*Up/dX? = (&/un)(dp/dR) +(¢/K) Uy, are
solved for the boundary conditions U(0) =0, U(S) =
Up(6), p{dU{6)/dX) = pldUp(6)/dX) and Up(6+h,) =0.
It is assumed that « = ,/(j.q/p) = 1. Note that the assump-

tion of uniform pressure across both the plain and porous
lavers results in a flow that remaing within the porous layer

$ resufis in 1ain e porous L

mstead of returning to the plain layer.

amd O mm kot
uuc&uuu ana fow ot Ul HIC pUI'Qle matrix UUC io mc

high resistance it encounters. In fact, almost all of the
vapor flows out of the porous medium through the
upper surface, as can be seen in Fig. 4(b), while a
small portion (i = 0.01) exits through the side of the
porous matrix. When the lower surface is permeable
and the porous layer is thin (case (c)), some of the
penetrated vapor will escape through the bottom sur-
face of the mairix (Fig. 4(c)).

Figure 5(a) shows the variation of initial film thick-
ness, normalized by the radius of the droplet, with the
parameter, K/x2. Initial film thickness, 6, is deter-
mined iteratively from the balance of the surface inte-

ac e tard at tha hae Ftha A
gral of pressure forces exerted at the base of the drop-

let with the weight of the droplet (equation (16)). As
expected and obtained by numerical integrations, no
pressure gradient exists beyond the radius of the drop-
let. For comparison, the initial levitation heights
obtained from the one-dimensional analysist given by
Avedisian and Koplik {1] are also presented. The lines
through the data are curves of best fit. It is apparent
from these results that the two models pr\‘.'uCt 1o
major vapor penetration through the surface for
values of K/a? (x = 1 for the one-dimensional model)
less than 10~'* m’. Unlike the one-dimensional
model, the axisymmetric analysis does not predict the
coliapse of the droplet (as evidenced by the asymptotic
behavior of 8/R, for high permeabilities). Similar
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and the interface velocity for 4, = 10~ m and A, = 0 (one-
dimensional and axisymmetric).

asymptotic behavior is observed for the interface
velocity predicted by the axisymmetric model; this
behavior contrasts with that of the one-dimensional
model, which predicts a sharp drop in the radial vel-
ocity for permeabilities higher than 10~ '° m? (Fig.
5(b)). An explanation of this behavior can be offered
based on the limitations of the Beavers—Joseph inter-
facial condition. For values of K/a® equal to or greater
than 10~ '® m?, the average size of the individual pores
within the porous matrix exceeds the thickness of the
vapor layer, thus the assumption of rectilinear flow
(for the one-dimensional model of Beavers and
Joseph) in the film breaks down. No general relation-
ship between the permeability and particle or pore
size exists [15]. The porous media which may be used
in practice, for the problem considered, will be con-

Table 2. Ratio of the vapor gap size
to the particle size (using equation

(18))
K/a? d, 8/d,
102 12x107° 132
102 38x10°% 42
10" 12x107* 13
10-'°  38x10°* 04
10-°  119x107* 01

6=1564x10"*m.

solidated and ‘particles’ or pore size will not be
uniform. However, the Carman-Kozeny equation,
which is valid for non-consolidated spheres of uni-
form size, i.e.

_ dze’
T 180(1 —¢)?

is used to illustrate the relation between the average
particle size and K/a? for & = 0.4. It is evident from
Table 2 that for K/a? = 10~ '® or 10~° m? the thickness
of the vapor layer, 4, is less than the average particle
size, d,. This suggests that the levitation height is less
than the size of the individual pores.

A similar argument can be made against the validity
of the one-dimensional model for values of
K/x* > 10~ '°m?. In the one-dimensional analysis, the
vapor flow in the porous matrix is assumed to be
governed by

K (18)

dZ U D _ dp[)
dx? ~ dR
where Up denotes the local mean velocity within the
porous matrix and p is an effective viscosity, which
may differ from the viscosity in the plain vapor film.
The assumed boundary conditions at the interface are

U(0) = Up(0) (20)
dU©)  dUp(0)

H dx Hesr dx

_E

KUD'H‘err

(19

@n

Brinkman’s model (equation (19)) extends the shear
stress, which is present in the plain layer, into the
saturated solid matrix. This can be seen as an exten-
sion to Darcy’s model, which does not include vari-
ations of shear stress in the porous matrix. Brinkman’s
model thus predicts the formation of a very thin
boundary layer within the porous matrix, which
allows for the transition of the velocity from that of
the fluid (U, at the interface) to the Darcean velocity
(Up) below the interface (Fig. 6(a)). Figures 6(b) and
(c) illustrate the velocity profiles predicted by the
Beavers-Joseph interfacial model for the two con-
ditions of Up, = 0 and Uy, # 0in equation (14), respec-
tively. Darcean velocity, Up, in Fig. 6(c) is determined
by taking the average of the radial component of
velocity along the x-direction in the porous layer.
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Fi1G. 6. Radial boundary layer velocity profiles for
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: (a) interface velocity with no slip (Brinkman): (b)

interface velocity with slip (Beavers~Joseph with Uy, = 0) ; (c) interface velocity with slip (Beavers-Joseph
with Up # 0).

Setting U, not equal to zero in equation (14) will force
the flow to go through the porous layer.
The thickness of the boundary layer for one-dimen-
sional flow can be evaluated as [8]
V (el 1)
] (22

50(6%—2)
A=JKIn|———="_
VKin [l +0/(perr/ 1)

where ¢ = (/K. The thickness of the boundary layer
as predicted by equation (22) is of the order of 10~*
m for a gap size of the order of 10~* m (vapor film
thickness) and a permeability of 10~'° m2 This
implies that the thickness of the boundary layer may
be less than the average particle size (depending on the
relationship between the permeability and the particle
size) in the porous matrix, so the application of a
continuum analysis such as Brinkman’s in the bound-
ary layer produces physically unrealistic results. It
should be noted that properties such as the effective
viscosity, gy, or the Darcean velocity, Up, are the
volume-averaged properties, i.e. averaged over a
length scale larger than the individual particle or pore
size. Hence, the one-dimensional model of vapor flow
in the porous medium, governed by Brinkman’s equa-
tion, would not be valid for the cases in which K2
(the order of the boundary layer thickness) is smaller
than the average pore size of the porous matrix. It is
also worth noting that for high permeabilities, the
magnitude of the surface nonuniformities will be of
the order of the vapor film thickness. It is possible
that the higher rate of evaporation of the droplets on
ceramic surfaces, as reported by Avedisian and Koplik
[1], is primarily due to surface nonuniformities pro-
truding into the vapor film and not to the reduction
of the film thickness resulting from the penetration of
vapor into the porous layer.

The axisymmetric and one-dimensional models are

further compared in Fig. 7. The variation of the sur-
face integral of pressure forces is shown with respect
to the permeability for three porous layers, 107*,
1073, and 10~ 2 m (the vapor film thickness is constant
at §=1560x10"* m, corresponding to K/z’=
10~'* m?, which is the maximum film thickness
over an impermeable surface). For K/22 < 10~ '* m?,
both models predict that no major penetration of
vapor into the porous layer takes place, as evidenced
by the balance of the pressure forces, F, with the
weight of the droplet, W (F= W = 1.98x 10> N).
For 10~ ' < K/a? < 10~ '"m?, the two models predict
that the vapor penetrates through the surface and
that the degree of penetration increases with higher
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FiG. 7. Variation of F with respect to k, and K/x>. forh, =0
(one-dimensional and axisymmetric).
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hy = 107* m (axisymmetric).

permeabilities. The axisymmetric model predicts a
higher degree of vapor penetration than the one-
dimensional model for this range of permeabilities.
For K/a* > 10~ '® m? the two models deviate from
each other in their prediction of the pressure forces.
This is due to the indicated limitations that the two
models have at high permeabilities.

The effect of the thickness of the porous layer on
the pressure forces can also be inferred from Fig.
7. For higher values of k,, the extent of the vapor
penetration into the porous medium increases, as indi-
cated by the lower values of F. Increasing 4, beyond
10~? m seems to cause no significant change in the
values of F, indicating that the extent of vapor pene-
tration into the porous layer will not be greater than
0.0l m.

The variation of the pressure forces with respect to
K/a? and A, for a fixed value of 4, = 10~* m (i.c. the
lower surface is permeable) is illustrated in Fig. 8 (A,
is given as a factor of 4 in order to present the relative
magnitude of the porous layer thickness with respect
to the vapor layer thickness). Values of Kja? < 10-'?
m? are not shown since no major vapor penetration
occurs through the surface and F remains. constant
independent of , and A,. It is apparent from Fig. 8
that for values of 4, > 154 (2.3 mm), F does not vary
significantly. This implies that the extent of vapor
penetration is approximately 2.3 mm {consistent with
the results shown in Fig. 7). The effect of 4, on the
pressure forces is illustrated in Fig. 9. The results
are plotted for a constant porous layer thickness of
approximately 106 (1.56 mm) and &, of 10-4, 1073,
10-2, and 10~ ' m. Increasing A, beyond 10~ m does
not cause any changes in F. It can be inferred from Fig.
9 that as /, increases, more vapor escapes through the
bottom surface, allowing for larger reductions in F.
This implies that the thickness of the vapor film dimin-
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ishes with increasing #.. The upper limit of 4, is deter-
mined to be 10 mm, beyond which 4. has no significant
effect on the size of the gap.

5. SUMMARY

Assuming that it remains valid, the Beavers-Joseph
boundary condition is applied to the axisymmetric
flow associated with droplet levitation. The Brinkman
extension, used in a previous study, is also examined.
The results indicate the following.

(a) The Brinkman extension results in boundary
layer thicknesses in the porous layer that are of the
order of the square root of permeability ; in some cases
these boundary layers are smaller than the length scale
associated with the elementary representative volume.

{b) Because of the small gap sizes (for most common
fluids) the surface roughness, which is also of the order
of the square root of the permeability, plays a signi-
ficant role and tends to reduce the average gap size.

{¢) The Beavers-Joseph boundary condition ap-
pears to give physically reasonable results for the
range in which it is valid.

(d) A significant increase in the evaporation is pos-
sible by using a relatively thick porous layer (com-
pared to the gap size) or by using a thin porous
layer bounded below by a plain layer.
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APPENDIX

As was indicated. inclusion of Up in the interfacial bound-
ary condition (equation (14)) implies the presence of a pres-
sure gradient in the porous layer, which is the force driving
Up. This is illustrated in Fig. A1, which presents the flow
(streamlines) for the case previously shown in Fig. 4(c),
except that U, is not set to zero. Note that the flow continues
through the porous layer, even at large distances from the
edge of the droplet. This flow is not realistic because the flow
is expected to favor a return to the gap rather than continuing
in the porous layer where the resistance is significantly
larger. Based on this, Darcy’s velocity was not included in
the boundary condition.

K101 (m?), §-1.564x1074m), hy=38, hy=1073(m), Uy#0

FIG. Al. Same conditions as in Fig. 4(c) except Up # 0.

ANALYSE DE LA LEVITATION DES GOUTTELETTES DE LIQUIDE SATURE SUR
DES SURFACES PERMEABLES

Résumé—L’évaporation d’une gouttelette de liquide saturé et la lévitation sur une surface solide due 4 la
pression induite par la quantité de mouvement dans le film de vapeur sont étudiées en résolvant numérique-
ment I'équation axisymétrique. Une analyse monodimensionnelle antérieure montre que la distance entre
la surface solide et la gouttelette décroit quand la vapeur peut pénétrer dans le solide. Pour les couches
poreuses, une analyse monodimensionnelle qui est basée sur ’extension selon Brinkman de la loi de Darcy
prédit des épaisseurs de quantité de mouvement, pour la couche limite, de I'ordre de la racine carrée de la
perméabilité. Dans des solides poreux typiques, cette épaisseur est plus petite que le pore ou la taille de
la particule. Dans la présente étude la condition limite semi-empirique de Beavers-Joseph est utilisée a la
place du modéle monodimensionnel. La réduction de la séparation par variation de 1a perméabilité et de
'épaisseur de la couche poreuse est déterminée dans des domaines ou cette condition limite est valable. La
faiblesse du modéle pour prédire le collapsus de la gouttelette est due & la défaillance de la condition
interfaciale de Beavers—Joseph pour les fortes perméabilités. Ce modéle monodimensionnel, 'extension de
Brinkman prédisent une croissance exagérément rapide de la distance quand la perméabilité est accrue
jusqu’a une certaine valeur, i cause de I'hypothése de gradients de pression égaux dans les couches poreuses.
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UNTERSUCHUNG DER SCHWEBUNG VON GESATI'IGT‘EN FLUSSIGKEITSTROPFEN
AUF DURCHLASSIGEN OBERFLACHEN

Zusammenfassung—Es wird die stationdre Verdampfung eines gesittigten Fliissigkeitstropfens und dessen
Schwebung iber einer festen Oberfliche aufgrund des vom Impuls induzierten Druckes im Dampffilm
untersucht. Dazu werden die Erhaltungsgleichungen in achsensymmetrischer Darstellung numerisch geldst.
Eine frithere eindimensionale Analyse zeigt, daB der Abstand (Spalt) zwischen der festen Oberfliche und
dem Tropfen abnimmt, wenn der Dampf den Festkdrper durchdringen kann. Fiir pordse Schichten werden
mit der Erweiterung nach Brinkman im Darcy-Gesetz Impulsgrenzschichtdicken in der GroBenordnung
der Wurzel der Permeabilitat berechnet. 1n dieser Untersuchung wird die halb-empirische Randbedingung
von Beavers-Joseph fiir die Grenzfliche der glatten und der durchlissigen Schicht verwendet. Die Spaltver-
minderung wurde in Abhiingigkeit von der Permeabilitit und der Dicke der porésen Schicht sowie der
Dampfabstrémung durch die pordse Schicht bestimmt. Fiir die Schlupfgeschwindigkeit und die SpaligréBe
wird ein asymptotischer Wert berechnet, wenn die Permeabilitat {iber einen bestimmten Wert ansteigt. Das
Versagen des Modells zur Berechnung des Tropfenzusammenbruchs ist mit der Ungililtigkeit der
Randbedingung von Beavers-Joseph fiir groBe Permeabilititen verbunden. Fiir praktische Anwendungen
jedoch wird erwartet, daB die Oberflichenrauhigkeit iiberwiegt, wenn die Spaltgro8e den Wert Null erreicht.

AHAJIHU3 JIEBHTALIHH HACBIMEHHBIX KAITEJIb XXHAKOCTH HA INMPOHHIIAEMBIX
NMOBEPXHOCTAX

AmoTauns—HHCACHHO HCCACAYCTCE YCTOAYEBOCTE HCNAPCHHA HACMUICHHON KAl XHAXOCTH H €¢
JICBHTALUHMA HaQ Teephol nosepxuocThio. Ilposescunnit pasee ORROMCPHbIE AHANH3 NOKA3MBACLT, YTO
paccTosHHe (MPOMEXYTOK) MEXIy TBEPAOH NOBEPXHOCTDLIO H KalUlch YMEHBIIACTCR IIPH NPOHEKHOBEHHA
napa B TBepaoe Teno. [lis NOPHCTHIX C/ioeB OAHOMCEpHbIR ananu3 3axoHa JlapcH Ha OCHOBe moaxoaa
BpHHEMAHA NO3BOMACT ONPEACAHTL TOMIHMHY NOTEPH HMIIYJILCA KakK BEIHYMHY HOPAIXA KBAIPARTHOIO
KOPHA H3 3HaYCHHA NPOHHUACMOCTH. B THNMYHEIX MOPHCTHIX TBEPALIX TEaX 3Ta TOMUIMHA MeHbIUC
pa3Mepa DOp HIH Ya8CTHIL B HaCTOMIEM HCCNCNOBRHHH BMECTO OZHOMEDHOR MONENH HCHOIBIYETCH
HoJy3MImHpHYeckoe rpaHEYHOC ycnosue Banepa-/ixoseda Ha rpanmne pasnena oSuxHOBeHHOFO (T.C.
riap HaXOZMTCH MOA KaiUiell) H NPOHHIAEMOro CJIOeB, [N OHANAa3oHOB, B KOTOPMX BHNOJHSETCS yKa-
3aHHOE MPAHHYHOE YCJIOBHE, ONPCAC/CHO YMCHBILICHHC Pa3MEPa IIPOMEXYTKOB ¢ H3MCHCHHEM NPOHHIIAC-
MOCTH H TOMIUEHM OOpHCTOro citof. Maywaerca Ttaxmke 3¢dexT yTeuxnm napa wepes HHXHIOO
TIOBEPXHOCTH NOPHCTOrO Ctox. JlaHHAS MOJCNTh NO3BOJAET PACCYHTATL ACHMITTOTHIECKOC 3HAYCHAE CKO-
POCTH CKOJILXCHHR B DasMep NPOMEXYTKA NPH YBEHYCHHM NPOHHIACMOCTH CBbIliC ONPEJeNcHHOK
BeHYHHB. Mozens HE HO3BOJINET ONPEACAHTL PACNAR KAIUIH BBHAY HAPYIICHHS I'PAHKYHOTO YCIOBHA
Busepa—/ixo3eda npu sricoxoit npormmaemoctd. OHaKo HaJO UMETH B BHAY, YTO HA MPAKTHKE LIEpo-
XOBATOCTH NOBEPXHOCTH Gyner mpeobnanath B ciryvae npubaxenus pasmepa npomexyTxa x mymo. C
ApYrofi CTOPOHBL, OAHOMEPHAS MOZe/b, paipaborannas BpHHKMAaHOM, aeT HepealbHO GHICTPOE yMEHb-
UWICHHE NMPOMCAXYTXa NPH YBEIHYCHHH MPOHHIACMOCTH CBHINC ONPEACICHHOR BEIRYHHL B NPEIIONONKE-
HHH PaBCHCTBA 'PRAHEHTOB NARJICHHA B NOPACTOM H OGHKHOBEHHOM CIIORX.



