
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 8,3 13-324 (1990)

Hierarchical Gate-Array Routing on a Hypercube Multiprocessor *

0. A. OLUKOTUN AND T. N. MUDGE

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109

Gate-arrays are the most common design style for semicus-
tom VLSI integrated circuits. An important part of the gate-
array design process is the routing of wires between the logic
elements, which is an extremely compute-intensive operation.
This paper presents an algorithm for routing gate-arrays that
uses a hypercube connected parallel processor to provide the
necessary computation power. In order to make optimal use of
the hypercube, the routing algorithm is organized so that inter-
processor communication is kept to a minimum. It occurs only
during the global routing and crossing placement phases of the
algorithm, which constitute less than 15% of the total running
time of the algorithm. On the basis of the results of executing
the algorithm on two gate-array benchmarks the case is made for
using hypercuhe multiprocessors as accelerators for compute-
intensive CAD operations. 0 1990Academic press, inc.

1. INTRODUCTION

The use of gate-arrays in the design of semicustom VLSI
integrated circuits is common in the semiconductor indus-
try today. At present, gate-arrays outsell standard cell de-
signs, the other major semicustom design methodology, by
a margin of over 4 to 1 [13] ; moreover, they are available
in a variety of technologies that span the design space of
speed, power, and integration density.

Gate-arrays are designed using a predefined library of
well-characterized cells which have been supplied by a ven-
dor. After the cells and their interconnections have been
specified the gate-array design is ready for automatic layout.
Automatic layout maps a structural description of a circuit
into a physical description consisting of geometric coordi-
nates for all the circuit elements and interconnection wiring
[301. Automatic layout consists of placement, or position-
ing the circuit cells on the layout surface, and routing, or
interconnecting the cells. A good placement is essential for
high-quality routing. In this paper we will assume that
placement has been performed and focus on the routing
phase of gate-array design.

*This work was supported in part by the NSF under Grant MIP-
8802771.

As the density and size of gate-arrays increase, routing
becomes less tractable and consumes larger amounts of
computer time. Parallel computers, particularly those with
large numbers of processors, have the potential to provide
the necessary computational power with which to acceler-
ate gate-array layout and thus facilitate the design of larger
chips than it is possible to do at present. However, in order
to realize this potential, it is necessary to develop efficient
parallel algorithms for these computers. In this paper we
describe an algorithm for a particular type of parallel ma-
chine, the hypercube multiprocessor.

Parallel processors can be separated into two major types
on the basis of their memory architecture: shared-memory
machines or distributed-memory machines. A variety of
terms have been coined for these two types of multiproces-
sors, including “tightly coupled” for shared-memory and
“loosely coupled, ” “message-based,” or “disjoint-mem-
ory” for distributed-memory. In shared-memory multipro-
cessors, the processors can access a common memory
which they use for interprocessor communications, as well
as the usual function of storing the program and data. In
contrast, distributed-memory multiprocessors normally
comprise a set of processors, each with its own private mem-
ory, that communicate among themselves over a fixed in-
terconnection network. Recently, a wide selection of com-
mercial parallel processors of both types has become avail-
able. The shared-memory type has been the most widely
accepted because it represents a natural evolution from the
conventional uniprocessor. However, the congestion that
can occur at the shared-memory limits the number of pro-
cessors to a few dozen [371. By comparison, the distributed-
memory machines appear to offer a greater potential for
increased performance because they can readily scale to
thousands of processors [8 1. Indeed, in [18] supercomputer
performance levels were reported for Monte Carlo simula-
tions of particle transport using the 64-processor commer-
cial hypercube NCUBE/ten, and in widely publicized ex-
periments a 1024-processor version of the NCUBE / ten was
used by researchers at Sandia National Laboratories to ob-
tain a fixed-size speedup of 500-fold on problems in beam
stress, baffled wave simulation, and unstable fluid flow [71.

Although distributed-memory machines allow greater
numbers of processors to be usefully connected, they pre-

313 0743-73 15/90 $3.00
Copyright 0 1990 by Academic Press, Inc.

All rights of reproduction in any form reserved.

314 OLUKOTUN AND MUDGE

sent a greater challenge to the programmer and algorithm
designer. Given the current immature state of parallel pro-
gramming and parallel algorithm design, it is only cost
effective to employ massively parallel distributed-memory
machines when the considerable effort required to develop
an efficient parallel algorithm can be amortized over a long
period of time through repeated use. Many applications as-
sociated with physical CAD, in particular routing, fall into
this category. It follows that massively parallel distributed-
memory machines are candidates for hardware accelerators
for compute-intensive physical CAD applications. This no-
tion was the point of departure for the work described here.

Gate-array routing is usually implemented in two steps:
global routing followed by detailed routing. The purpose of
global routing is to determine which of the routing channels
that lie between the cells of the gate-array will be used for
each connection. A number of global routers [3 1, 17, 23,
351 which are variations of the Lee-Moore or the Dijkstra
algorithm [16,20,6] have been proposed. In detailed rout-
ing wires are assigned to their final tracks according to a set
of design rules. Detailed routing is usually performed with
some type of channel router [38] or Lee-Moore router [16,
201 and the routing region is constrained by the channels
and feed-throughs specified for the net in the global routing
step. Two aspects of gate-array routing make it amenable
to parallelization on a distributed-memory multiprocessor.
First, global routing partitions the routing region into inde-
pendent subregions which can be distributed among the
processors for detailed routing. Second, much more time is
spent in the detailed routing step than in the global routing
step. Since the detailed routing step requires no interproces-
sor communication, the overall parallel routing algorithm
can be made very efficient.

In this paper, we present a hierarchical routing algorithm
designed for implementation on a massively parallel distrib-
uted-memory multiprocessor. This two-step algorithm is
intended for routing multitetminal nets of a gate-array that
exhibits near-uniform wiring density. It is based on our ear-
lier work described in [22] but uses the pattern routing
ideas presented in [31 for the global step. Global routing,
since it involves global information spread over the proces-
sors, can produce excessive amounts of interprocessor com-
munication. The use of a modified version of the first algo-
rithm in [3] keeps this interprocessor communication to a
minimum. Multiterminal nets are connected as a Steiner
tree using a heuristic algorithm implemented during the
global step. Detailed routing is performed by a modified
Lee-Moore router. In our experiment two layers of inter-
connect are used for routing with vias serving as connec-
tions between the layers. This is not a limitation and, in
principle, the algorithm could be extended to routing prob-
lems that have any number of layers. The parallel routing
algorithm maps directly onto a hypercube topology and, as
we will show, achieves good speedup.

To date, Lee-Moore routing has dominated the ap-
proaches taken for application of special-purpose parallel
hardware to accelerate routing [34, 2, 321. These single in-
struction multiple data (SIMD) array processor architec-
tures are designed specifically to accelerate grid-search
based algorithms. One of the first uses of a multiple instruc-
tion multiple data (MIMD) computer for routing was the
Wire Routing Machine developed by Hong et al. [141. This
special-purpose architecture has 64 microprocessors con-
figured as an 8 X 8 mesh on which a two-phase algorithm
(global routing followed by detailed routing) is imple-
mented. The global routing phase is based on Lee-Moore
routing and uses an exponential channel density metric to
avoid overflows. The speedup due to parallelism is reported
as modest. This is due in part to the low power of the proces-
sor nodes and to the fact that the global routing phase does
not make efficient use of the processors because only one
net is globally routed at a time. Other approaches intended
for general-purpose parallel computers make use of algo-
rithms (e.g., simulated annealing and channel routing) that
are best suited to a few tightly connected processors, be-
cause they require large amounts of interprocessor commu-
nication to keep a global data structure up to date in order
to achieve good routing quality [28,4,39,26]. In contrast,
our approach, which is intended for many loosely coupled
processors, reduces expensive communication traffic by
keeping the global information local to each processor
throughout the hierarchical decomposition of the global
routing step. While this approach results in a low efficiency
for the global routing step, the overall algorithm achieves
high efficiency and produces good-quality routing. We have
not seen any other routing algorithms that both have high
efficiency and produce good-quality routing running on
large distributed-memory multiprocessors.

The paper is organized as follows. In the next section our
gate-array routing algorithm is presented in two parts: the
global routing phase and the detailed routing phase. In Sec-
tion 3 we describe how the router can be implemented on a
hypercube multiprocessor. Section 4 contains experimental
results obtained by using the gate-array router to route two
gate-array benchmarks with a 64-processor version of the
NCUBE/ ten. Section 5 contains some concluding remarks.

2. HIERARCHICAL ROUTING

2.1. Global Routing

We assume a uniform gate-cell array in which each gate-
cell is surrounded by four boundaries that form a rectangle
(see Fig. 1) . Each boundary has a channel capacity, which is
the number of detailed wiring tracks that can cross it. These
detailed wiring tracks may be feed-throughs that run be-
tween gate-cells in a row or routing channels adjacent to the
boundary. The terminals of each gate are located on the top

GATE-ARRAY ROUTING ON A HYPERCUBE 315

I \I
wlrlng channels gate-cells

FIG. 1. Gate-cell array

and bottom boundaries of a gate-cell. A net consists of a list
of gate-cell terminals to be interconnected. There are two
interconnection layers for routing, one for vertical and an-
other for horizontal wire segments. Vias are introduced to
make connections between the layers and jogs (wrong way
wires) are allowed. The global routing of a single net is a set
of gate-cells that contains all terminals of the net such that
there is a path through adjacent gates-cells between all pairs
of net terminals. At each gate-cell boundary that the path
crosses, a wiring track is consumed, and the number of gate-
cell boundaries the path crosses is taken as the global wire
length. A feasible global routing for all nets is a global rout-
ing for each net that does not exceed the channel capacity
at any boundary.

In the case of routing in a 2 X 2 grid it is possible to enu-
merate all the types of nets that may occur. The net types,
Ti, for two, three, and four terminal nets are shown in Fig.
3. Each net is assigned a type on the basis of the position of
its terminals within the 2 X 2 grid. There are a small number
of ways in which each net type may be routed within the
grid. These routing possibilities for each net type are also
shown in Fig. 3, to the right of their corresponding types.
We use Pi,j to denote possibilityj of net type T,. Thus the
original problem of routing a 2 X 2 grid is now a problem
of partitioning the nets of each type among the type’s possi-
bilities, or determining the values Of Xi,j, where Xi,j denote
the number of nets routed using Pi, j. The values of variables
Xi,, can be found by solving the following integer program-
ming problem.

To formulate the problem we start with a set of linear
restrictions. If ti is the number of nets of type Ti, then a valid
solution to the routing problem should route all nets of each
type. This can be expressed as

Hierarchical global routing begins by dividing the routing
region, which consists of an m X n array of gate-cells, into
four “macro’‘-gate-cells (see Fig. 2). Each macrocell con-
tains a quarter of the m X n gate-cells. If a global routing
between these macrocells is performed, then the quadrants
can be separated into independent routing problems. After
further subdividing each of the new routing problems into
four subregions another global routing creates 16 indepen-
dent routing problems. This process of quadrisection fol-
lowed by global routing continues until there are as many
subregions as there are processors (see Fig. 2). The detailed
routing is performed by each processor on its subregion in
parallel. This hierarchical approach reduces a problem of
routing in an m X n array of cells to the problem of routing
in a 2 X 2 grid at each level of the hierarchy. Our solution
to this problem uses a modified form of the first approach
described in [31 and is explained in the next section. Unlike
[31 we do not restrict a wire route from crossing a vertical

CXI,, =ti for lGi<ll. (1)
.i

Leuel2

or horizontal boundary twice; i.e., all the routing possibili- FIG. 2. Macrocell hierarchv

ties that can occur in a 2 X 2 grid are allowed. This modifi-
cation introduces an extra step called boundary crossing
placement (explained in Section 2.1.1) into the global rout-
ing phase but allows a clean parallel decomposition of the
routing problem into four separate routing problems at
each step in the hierarchy. In the following section we ex-
plain further 2 X 2 routing among macrocells, and in Sec-
tion 2.1.2 we give the details of extending the 2 X 2 solution
to the m X n case using the hierarchical approach sketched
above.

2.1.1. Routingina2X2Grid

OLUKOTUN AND MUDGE 316

0 ll q 0
0

12 a 0

T3 83 00

l4 q 00

0 15 a 0
l6 I33 0 0

00
17 q 0

T6 q 0 00
00 lg q 0

T1o a 0 0.
l11 a 00 0.

P1.1

I3
P2.1

IFI

El
P

6.1

I3
P7.1

Ei

p6.l

lieI
PP.1

El
P

10.1

IB
P

11.1

EE
P

2.2

l!B

‘3.2

•il

P4.2

Ed

‘5.2

El

‘6.2

ia

‘7.2

Ia

Pa.2

i@l
P

9.2

ISI

P10.2

IEli

Pll.2

FIG. 3. Routing types and possibilities of a 2 X 2 grid from [31.

The channel capacity limitations imply another set of re-
strictions. Referring to Fig. 4, let

‘V 1 k { Pi, j 1 Pi, j crosses the upper vertical boundary ~1) .

Y, is a set of possibilities that can be enumerated by exam-
ining Fig. 3. Then to satisfy capacity limitations we have the
restriction

c Xi.1 G cul 9 (2)
(WEP,,,EYI

where C,, is the crossing capacity of the vertical boundary
o, , and the domain of the summation is all pairs of indices
(i,j) such that possibility Pi, j is an element of the set Y, .
Let Y2, z, and %* be sets, defined in a way similar to that

in which Y, is defined, for the other three crossing bound-
aries; then we also have the following restrictions due to ca-
pacity limitations,

c Xi, j G CIQ (3)
(Lj)3Pj,,rY2

c xi. j G ch, (4)
(i,iPP,,,EXj

c xi. j G ch2’ (5)

(i,jDPi,,E%

where C,, , Ch, , and Ch, are the crossing capacities of the
remaining boundaries. The objective is to minimize total
wire length W, which is equivalent to minimizing the num-
ber of boundary crossings, i.e.,

minimize W= 2 Xl,J + C xi.J
(bjDP,,,E~I (bj)3p,,,tV2

+ c xi,, + c xi,,. (6)
(L~BP,,,tT (i,i)3Pi,,~3

The size of this integer programming problem is 28 vari-
ables (Xi, j) and 15 constraint equations, (1) - (5) . A satis-
factory approach for solving this integer programming
problem is to pose it as a linear programming problem, use
the Simplex method [251 to find a solution, and then round
the results. This approach is possible because the xi,j are
typically large integers. They are large integers because there
are many terminals in each quadrant [111.

The solution of this fixed-size integer programming prob-
lem yields values of Xi, j. However, to complete the global
routing problem, we must decide (1) which nets of each net
type will be routed in each net type possibility and (2) ex-
actly where on each boundary each net will cross. These
issues are addressed next.

Assigning possibilities to net types. Once the above inte-
ger programming problem has been solved, there may be
more than one nonzero Xi, j for each net type T, . Since each
of the nets of T, can be routed in only one of the type’s
routing possibilities, we must assign each net to a particular
possibility Pj,j. To guide this assignment, we make a heuris-
tic attempt to minimize overall net wire length and reduce

A

1 h’I
c

“2Y

B Y”’

II
D !2

FIG. 4. Quadrants and boundary crossings of a 2 X 2 grid.

GATE-ARRAY ROUTING ON A HYPERCUBE 317

congestion at the crossing boundary. For example, if we
have tl nets of type T, , and xl,1 and x1,2 are both nonzero,
we must assign x1,1 of the nets to Pi,, and xl,2 to Pi,,; i.e.,
xI.I of the nets must be routed straight across the hi bound-
ary, and x,,~ nets must be detoured via the h2 boundary (see
Fig. 3). To determine the assignment, we sort the nets by
the sum of the distance of each net’s terminals from the
vertical boundary. The first xl.1 nets which have terminals
that are farthest from the vertical boundary are routed in
fashion PI,, , and the rest of the nets (x,,~) are routed in fash-
ion P,,2. Ties between nets that arise using this heuristic are
broken by considering distance from the horizontal bound-
ary. If we consider a net type with more than two routing
possibilities, such as T,, the situation becomes more com-
plicated. Here, we may have to partition nets among possi-
bilities P,, , , P7,2, and P7,3 (see Fig. 3). Using the same heu-
ristics, we sort the nets by the sum of the distance of the
nets’ terminals from the v1 and h2 boundaries. The x7,, nets
with the greatest total distance are assigned route P7,, . This
heuristic ensures that those nets which span the greatest dis-
tance are routed in the most direct way so as to minimize
overall wire length. To determine the assignments to P7,2

and P7,3, we note that both possibilities have quadrant C in
common. If the nets are sorted by their terminal’s distance
from the h2 boundary the x7,2 nets with least distance would
be routed in fashion P7,2, and the rest of the x,,~ nets would
be assigned route P7,3. Here, we attempt to minimize both
the length of wire running parallel to the crossing boundary
and the total wire length.

Boundary crossing placement. Finally, in order to fully
decompose the routing at each level of hierarchy into four
independent routing problems at the next level down in the
hierarchy we must decide where to route each net that
crosses a boundary. Our goal is to place the crossing points
of a net so that the resulting route is a rectilinear Steiner tree
interconnecting the net’s terminals [11. In general this is an
NP-complete problem and we must again rely on heuristics
to obtain an approximate solution. At each level of the
global hierarchy the solution of the 2 X 2 routing problem
creates four subproblems. These subproblems are intended
for solution on different processors; therefore we must fix
the crossings and introduce new terminals into the routing
region so that at any level lower down in the hierarchy no
interprocessor communication will be necessary for a pro-
cessor to obtain terminal position information. In essence,
we require that a crossing be placed to an accuracy that is
within the smallest subregion created at the lowest level of
the global hierarchy. Our heuristic uses the positions ofter-
minals to place crossings at gate-cell resolution.

The bounding line segment of a net is formed by connect-
ing the projections of all terminal points onto a quadrant
boundary. Examples of bounding line segments for a five-
terminal net are shown in Fig. 5. If a quadrant contains a
single terminal the bounding line segment will be the point

l

FIG. 5. Bounding line segments of a net. Each bounding line is labeled
by quadrant name and boundary crossing name.

projection of this terminal. For each net for which a crossing
must be placed there will be at least one bounding line seg-
ment and at most two bounding line segments. If there are
two line segments we take their intersection and place the
crossing point at a location on the boundary opposite the
terminal that is closest to the boundary. If there is no inter-
section of the line segments the crossing is placed opposite
the terminal which is nearest to both the boundary and the
other line segment. If one line segment is a single point, the
crossing is placed opposite this point. If both line segments
are points, the crossing is placed opposite the point closest
to the boundary. Figure 6 shows three scenarios and the
crossing placements that would result from using these heu-
ristics.

2.1.2. Routing in an n X m Grid

We now describe a hierarchical router for the n X m
global routing problem based on 2 X 2 solutions. We begin
at each level of the hierarchy by dividing the routing area
into quadrants defined in terms of gate-cells. If possible, the
horizontal and vertical divisions are made so that there are
an equal number of gate-cells in each quadrant. Next we
perform net classification. Net classification determines the
values ti for each net type Ti from the net list. Nets are classi-
fied by checking the location of each terminal of the net
with the quadrant boundaries. Nets for which all terminals
lie within a single quadrant are not considered for global
routing. The values of t, are used to set up the 2 X 2 grid
routing integer programming problem, as discussed in Sec-
tion 2.1.1. After the solution to the integer programming
problem has been found, we assign possibilities to net types
and then perform boundary crossing placement. The
boundary crossing placement introduces new terminal cells
into what are now four independent routing subproblems.
These four subproblems can now be solved, in the same
manner, simultaneously in parallel. The hierarchy stops
when there are as many independent routing problems as
there are processors. As we will see in the next section this

318 OLUKOTUN AND MUDGE

0

a
t 1 - Boundary

(a>

0

(b)
0

0

Boundary

0

(cl
FIG. 6. Bounding lines, intersections, and crossing placements. (a)

The crossing point is placed at the intersection point. (b) The crossing is
placed at a point on the intersection closest to a terminal. (c) Because there
is no intersection, the crossing is placed at a point opposite the closest ter-
minal that is also closest to an end-point on the opposite bounding line
segment.

final level of routing problems is handled using a high-qual-
ity Lee-Moore router.

We note that in our formulation of global routing we do
not reuse boundaries at any time during global routing and
so do not need the restrictive 2 X 2 routing of [3] that would
eliminate the use of possibilities P1,2, P2,*, P7,3, P8,3, P9,3,
P IO,3 2 PI I ,3, and PII ,4 as well as reduce the number of routing
subproblems created at each level to two. Figure 7 shows an

example of hierarchical global routing on a 4 X 4 array of
macro-gate-cells. Each terminal cell may represent several
actual terminals; however, we may assume we have only 16
processors and so we are only interested in following the
hierarchy to a level at which 16 independent routing prob-
lems have been created. Figure 7a shows the terminal cells
of the net as they would appear at the lowest level of the
global hierarchy. In Fig. 7b we solve the initial 2 X 2 prob-
lem and place the crossings, which are represented by boxes,
on the quadrant boundary using the techniques of Section
2.1.1. The introduction of new terminal cells at the next
level down in the hierarchy produces the four 2 X 2 sub-
problems shown in Fig. 7c. Once these four subproblems
have been solved the global routing is complete, as shown
in Fig. 7d.

2.2. Detailed Routing

Once global routing is complete each processor contains
an independent routing problem. However, before detailed
routing can commence each processor must agree with its
four neighboring processors on where, in terms of the de-
tailed grid, nets that cross their common boundaries will
be placed. The method of detailed crossing placement is a
modified version of a technique described in [221 and in-
volves communication among neighboring processors. The
goals of detailed crossing placement are to evenly distribute
the crossings along the boundary in order to reduce conges-
tion, and to place the crossings so that jogs in the wiring
paths will not be necessary. Each processor is responsible

0 l q 0

0

(a) (b)

Cd)

FIG. 7. 4 X 4 hierarchical global routing. (a) Terminal gate-cells. (b)
A solution to the initial 2 X 2 problem with crossing placements. (c) Solu-
tions to the four 2 X 2 subproblems. (d) Final global routing.

GATE-ARRAY ROUTING ON A HYPERCUBE 319

for the crossings on the southern and eastern borders of the
routing region that it works on.

The crossing placement technique uses an iterative re-
finement method, in which each processor calculates the
preferred position of a crossing, on either its southern or
eastern border, on the basis of a weighted average of the
current position of the crossing, if it has been established,
and the positions of the other crossings and terminals of the
net as projected onto the crossing boundary. The closer a
crossing or terminal is to the one being placed the more
weight it is given. Once a preferred crossing position for all
nets on both boundaries has been calculated the crossings
are evenly distributed along the crossing boundary. Figure
8 shows an example of detailed crossing placement. In this
example crossing C, which is to be placed, will be connected
to terminals X and Yin the detailed routing step. X’ is the
projection of X on the crossing border of C, and Y’ is the
projection of Y. A new position for crossing C is computed
as a weighted average ofthe positions ofX’, Y’, and C. Posi-
tion X’ is given more weight than Y’ because X is closer
to the boundary. Each iteration of the crossing placement
algorithm consists of two steps. First, place all the eastern
crossings and second, place all the southern crossings. The
first step starts from the processors on the western border of
the mesh and proceeds toward the east, while the second
step begins with processors on the northern border and pro-
ceeds toward the south. At each step after crossings have
been determined, a message is sent to the appropriate neigh-
bor processor with the updated crossing positions. The
number of iterations the crossing placement algorithm exe-
cutes is predetermined by the user. In practice, convergence
occurs quickly, and the relative weights given to terminals
opposite the crossings being placed tend to cause the wiring
paths to form straight lines as one would like (see ahead
to Fig. 12). More complex heuristics for detailed crossing
placement are employed if one or both of the terminals are
also crossings on another boundary.

The technique used for detailed routing incrementally
routes the nets in the routing region. In this discussion a

routing region or
macro-cell contained
by a processor

FIG. 8. An example of detailed crossing placement.

subnet refers to some subset of the terminals of a net and a
connected subnet is a subset of net terminals that have been
connected by a marked-path within the detailed grid. De-
tailed routing begins by repeatedly starting a two-layer vari-
able cost Lee-Moore router from each terminal or crossing
of each net in the routing region. For each net the routing
grid is assumed to be empty, so that any routes that are
found are independent of all other net connections in the
routing region. The Lee-Moore router is implemented us-
ing some ideas from [10,121. The cost metrics used to guide
the search include the use of a preferred layer for horizontal
and vertical wires. Expansions on a layer that are in the non-
preferred direction are penalized with a cost higher than
that of expansion in the preferred direction. Expansions
that change layers to produce vias are also penalized with a
higher cost. Only the minimum cost connected subnet of
each net is placed on a list of subnets ordered by cost. Once
all nets have an entry in the list, the minimum cost con-
nected subnet is selected and is kept by permanently mark-
ing its path in the routing grid. This process of finding the
minimum cost subnet as a starting point for the detailed
routing process minimizes a problem associated with Lee-
Moore routers, namely, that the quality of routing is highly
dependent on the order in which nets are routed, and, in
particular, on which net is chosen for routing first.

After the initial subnet is picked, the remaining subnets
are examined in order and kept if their path does not con-
flict with the path of a previously kept subnet. If the path
does conflict, the Lee-Moore router is invoked again and a
new connected subnet is sought that avoids the conflict.
This new connected subnet is placed on the ordered list of
subnets in the appropriate place. If no connected subnet is
found its associated net is marked as “unroutable.” For ev-
ery connected subnet that is kept the Lee-Moore router is
invoked on the net containing it to find a new connected
subnet to add to the ordered list. Minimum cost subnets are
taken from the list and processed until the list is empty, in
which case, all nets have been completely routed, or no
more connected subnets can be found. Separate detailed
routing problems are executed in parallel on all processors
and require no interprocessor communication.

3. IMPLEMENTING HIERARCHICAL ROUTING

The hierarchical global routing algorithm described in
the previous section can be mapped in an obvious way onto
a pyramid computer. A pyramid computer of size P is a
distributed-memory parallel machine having P1’* X P”’
mesh connected processors at its base, and log, P levels of
mesh connected processors above [191. Each processor at
level k is connected to four neighbors at level k, four chil-
dren at level k - 1, and a parent at level k + 1 (see Fig. 9).
Execution of the global routing algorithm would begin in
the processor at the apex of the pyramid. This processor

320 OLUKOTUN AND MUDGE

level 2

level 1

level 0

FIG. 9. A pyramid of size 16.

would solve the 2 X 2 routing problem over the entire rout-
ing area and then pass each of its four children at level
(lo&P) - 1 the data for one of the independent routing
problems. Each child then solves its own 2 X 2 routing prob-
lem and passes on four smaller routing problems to its chil-
dren. This process continues until the base of the pyramid
is reached. We note, in the execution of this algorithm on a
pyramid computer, that all processors work independently
and in parallel, except when data are being passed from one
level to the next. However, only processors from one level
are in use at any point in time; therefore, although a pyra-
mid computer may execute the global routing algorithm in
a natural way, it does not do it very efficiently. In particular,
the detailed routing which would be performed in the base
mesh of the pyramid would not use

k=O
3

processors, which is more than 25% of the total available
(-4P/3). Furthermore, the detailed phase takes much
longer than the global phase, and it is trivially parallelizable;
therefore, it is important to use all available processors for
this phase. Nevertheless, the pyramid paradigm is useful for
understanding how hierarchical routing maps onto hyper-
cube computers.

3.1. Hypercube Computers

Hypercube computers have 2d processors connected in
the topology of a d-dimensional binary hypercube. Figure
10 shows the familiar example of a four-dimensional hyper-

cube. Each processor of a d-dimensional hypercube is la-
beled with a unique d-bit address, such that each bit posi-
tion corresponds to a coordinate along one of d-dimen-
sions. Because the pyramid algorithm discussed above is the
most natural one for our hierarchical global routing algo-
rithm, we would like to map it onto a hypercube computer
so that neighboring processors in the pyramid algorithm are
also neighbors in the hypercube, i.e., so that the mapping
has a dilation of one. Unfortunately, pyramids cannot be
embedded in hypercubes with a dilation of one [331. How-
ever, hypercube computers can still efficiently execute the
hierarchical routing algorithm using a less than optimal
mapping, because, among other things, the mesh used for
the detailed routing phase, the dominant phase of the algo-
rithm, can be embedded with a unit dilation.

The steps of the pyramid algorithm make use of two-di-
mensional meshes that trace out the levels of a pyramid.
Two-dimensional meshes may be embedded in hypercubes
so that mesh neighbors are also hypercube neighbors. In
such an embedding each processor is uniquely labeled by a
d-bit binary address denoted xy (x and y concatenated),
where x and y are two d/ 2 bit gray codes, one for each of the
two dimensions of the mesh. An example of this mapping is
shown in Fig. 11 for a hypercube of dimension d = 6 and a
8 X 8 mesh [2 I]. The gray code of a mesh cell corresponds
to its hypercube address. If we take this two-dimensional
mesh to be the base of a pyramid of size P = 2 ‘, we can also
map the rest of the meshes used in the pyramid as follows.
Take the processor whose address is all zeros to be the apex
of the pyramid. To find the processor addresses of the apex’s
four children (co, cl, c2, c3) we use the expressions

co = xy

Cl = (x0 2’)y

c2 = x(y0 2’)

c3 = (x 0 2’)(yO 29,

d=4

FIG. 10. A hypercube of dimension d = 4.

GATE-ARRAY ROUTING ON A HYPERCUBE 321

FIG. Il. The mapping of an 8 X 8 mesh onto a hypercube combined
with the mapping of the pyramid algorithm onto a hypercube. The apex
processor at level 3 is labeled by a filled circle enclosed within a square; its
four children at level 2, including itself, are labeled with a filled circle. The
processorsat level I are labeled with a filled or unfilled circle. The complete
mesh is the base level 0 of the pyramid.

where 1 is the pyramid level. For the apex processor 1= d/2
- 1 andxy= 00. . .O. Each child processor calculates the
address of its children in the same way using an 1 value
which is reduced by one. This process continues until the
base mesh is reached and 1 = 0. In this mapping every parent
processor has one child which is a nonneighbor processor.
Each nonneighbor parent-child pair is at most two inter-
connection links away. This mapping ensures that at each
level, adjacent processors in the pyramid mesh at that level
are also adjacent in the hypercube. Furthermore, it allows
hypercube processors to be reused at each level of the pyra-
mid; therefore the mapping scheme is also suitable for the
global routing algorithm, because only the processors on
one pyramid level are used at a time and it allows the map-
ping of a pyramid of size equal to the number of processors
in the hypercube.

4. EXPERIMENTAL RESULTS

The NCUBE/ ten is an example of a general-purpose par-
allel computer with a hypercube interconnection topology
which can accommodate up to 1024 nodes in a lo-dimen-
sional hypercube. In our experiments we used an early ver-
sion of the NCUBE/ ten in which each node is a custom
32-bit microprocessor with 128 kbytes of memory and the
ability to perform floating point arithmetic [91. The nodes
are capable of a peak performance of 2 MIPS and 0.5
MFLOPS. The connection between the nodes is by dedi-
cated point-to-point bit-serial DMA channels. The hyper-
cube is managed by a host processor (an Intel 80286). Our
experiments were performed using a 64-node version of the
NCUBE/ ten.

To measure the performance of our parallel routing algo-
rithm we executed two gate-array benchmarks. The first
gate-array benchmark involves routing a 735~gate circuit in
a 900-gate gate-array organized as 25 X 18 circuit blocks
[271. As a measure of performance we use fixed-size
speedup [5 1. This is the ratio of the time it takes to solve a
problem in serial on a single processor to the time it takes
to solve the same problem in parallel using P processors.
The term fixed-size refers to the fact that the size of the
problem does not scale with the number of processors. The
scaled speedup is normally a much higher figure. A more
accurate measure of the benefits obtained from parallel pro-
cessing would be to compare the running time of the paral-
lel version with the time taken by the best serial algorithm
on one node. However, because many of the subproblems
needed to perform a routing are NP-complete [15] and heu-
ristics are used to solve them, there is no good basis on
which to compare different routers and thus to identify the
“best” serial algorithm. Therefore, we will use the serial
time of our algorithm to determine speedup, while recog-
nizing this limitation in the interpretation of our results.

Due to memory constraints on the NCUBE processor it
was possible to route this benchmark only on a hypercube
with 64 nodes-smaller cubes lacked the aggregate mem-
ory. To estimate the fixed-size speedup of our algorithm we
ran a serial version of our parallel algorithm on an Apollo
DN 570 computer which had sufficient memory. We then
normalized the resulting execution time by multiplying it
by the ratio of the execution time for the Dhrystone on a
single NCUBE node to that on the DN 570 [361. Table I
shows the comparison in terms of execution time for the
gate-array benchmark. In comparing Dhrystone bench-
mark results, it was found that the DN 570 has an execution
rate which is 6.9 times that of an NCUBE processor. From
this figure we derive an overall fixed-size speedup of 35.2
for the parallel routing algorithm over the serial version; see
Table I. Our algorithm was able to fully route 97% of the
nets using 10 tracks per vertical channel and 12 tracks per
horizontal channel. This percentage of nets routed is higher
than that of the approach taken in [271, where only 94% of

TABLE I
Comparison of Gate-Array Benchmark Routing Times

Routing time(s)

Global Crossing Detailed
Computer routing placement routing Overall

(1) DN 570 15.2 24.7 1,899.l 1,939.o
(2) DN 570 (normalized) 104.9 170.4 13,103.S 13,379.l
(3) NCUBE (64 processors) 18.0 35.7 327.5 380.2

Speedup (3) vs (2) 5.8 4.8 40.0 35.2

the nets were routed. For the next benchmark, as we shall
see, we were able to route all the nets.

For the parallel global routing the speedup Sofa pyramid
computer of size P = 4' is given by

if we assume the time taken at each level of the pyramid is
approximately constant. Thus for a pyramid of size 64, such
as the one we are simulating with the hypercube, the maxi-
mum speedup for parallel global routing is 7. This speedup
neglects the time it takes for a processor at each level to
send data to its four children at the level below it. We have
achieved a speedup of 5.8 (Table I), with the inclusion of
communication time, which gives an efficiency exceeding
80% of the available parallelism for the global routing step
executed on a hypercube. Detailed crossing placement ex-
hibits a speedup of 4.8 using all 64 processors. This low
value is due to the limited inherent parallelism and the com-
munication-intensive nature of the crossing placement
step. Detailed routing is completely parallel; however, even
this step does not achieve a perfect speedup of 64 due to the
uneven load distribution among processors. Uneven load
distribution is inevitable, because gate-arrays rarely parti-
tion evenly and net connection density is not uniform
across all gate-cells.

The second benchmark we used to evaluate the perfor-
mance of our parallel router is the Primary1 circuit from
the benchmark suite of the International Workshop on
Placement and Routing 1988 [241. This circuit is intended
for either a standard cell or a gate-array layout style. It con-
sists of 904 nets and 752 cells. The cells are organized as 26,
6000~pm rows with 13-track horizontal routing channels
between rows. The internal utilization of the array is 86%.
The vertical routing channels were composed of the built-
in feed-troughs and the gaps between cells. The placement
was obtained by simulated annealing using the Timber-
Wolf 3.2 standard-cell placement and global routing pack-

TABLE II

A Comparison of Primary 1 Gate-Array Benchmark
Routing Times on 16 Processors

Routing time (s)

Computer

(1) DN4000
(2) DN 4000 (normalized)
(3) NCUBE (16 processors)

Speedup (3) vs (2)

Global Detailed
routing routing

5.0 4,892.0
25.5 24,949.2

5.0 2,116.O

5.1 11.8

Overall

4,897.0
24,974.7

2,121.o

11.8

TABLE III

A Comparison of Primary1 Gate-Array Benchmark
Routing Times on 64 Processors

Routing time (s)

Computer
Global
routing

Detailed
routing Overall

(I) DN4000 12.0 1897.0 1909.0
(2) DN 4000 (normalized) 61.2 9674.7 9735.9
(3) NCUBE (64 processors) 7.0 219.0 226.0

Speedup (3) vs (2) 8.7 44.2 43.1

age [29]. Interestingly, the global routing produced by
TimberWolf for this benchmark exceeded the number of
tracks available (13) for some channels in the gate-array. In
contrast, using the placement information from Timber-
Wolf, we were able to completely route the gate-array using
no more than 13 tracks per channel.

This second experiment was performed on an upgraded
NCUBE/ten with 5 12 kbytes of memory per node. The al-
gorithm was optimized for speed instead of space to take
advantage of the increase in memory. We also eliminated
the detailed crossing placement step by fixing the crossings
on the detailed grid during global crossing placement. Ta-
bles II and III show the results for 16 and 64 processors,
respectively. Furthermore, we were still not able to fit the
whole routing problem in one node of the NCUBE, so a DN
4000 was used to estimate speedup.

It is not possible to compute an optimum routing for cir-
cuits as complex as the ones we have used, so absolute fig-
ures of routing quality cannot be obtained. Instead, we
compare our results with those of other routers. Unfortu-
nately, we were not able to obtain the results of other routers
for this gate-array benchmark because all participants at the
International Workshop on Placement and Routing 1988
chose to lay out the benchmark as a standard cell. However,
we were able to compare the relative quality of routing be-
tween the 16- and 64-processor cases and the estimated wire
length found by the TimberWolf global router. We have
done significantly better than the TimberWolf estimations
(Table IV). As one would expect the quality of the 64-pro-

TABLE IV

Quality of Primary1 Gate-Array Benchmark Routing

16 64 Timberwolf
Measure Processors Processors A% (estim.)

Horizontal wire length (pm) 608,860 625,710 2.7 647,469
Vertical wire length (pm) 7 12,970 717,080 0.5 883,753
Total wire length (pm) 1,321,830 1,342,790 1.5 1,531,222
Number of vias 4,52 1 5,028 11.2 NA

322 OLUKOTUN AND MUDGE

I

GATE-ARRAY ROUTING ON A HYPERCUBE 323

cessor routing is degraded compared to the 16-processor
case because global information is lost. However, the
amount of degradation in routing quality is relatively small
(Table IV), but the reduction in routing time is almost a
factor of 10 (Tables II and III) .

cessor routing is degraded compared to the 16-processor
case because global information is lost. However, the
amount of degradation in routing quality is relatively small
(Table IV), but the reduction in routing time is almost a
factor of 10 (Tables II and III) .

The completed Primary1 circuit without the pad cells is
shown in Fig. 12. From this figure it is clear that the density
of wires is not uniform. The nonuniform distribution den-
sity of wires means that some processors have more work
to do than others. The uneven distribution of work may be
severe; in the 64-processor case the ratio between the finish-
ing times of the last and first processor is 5. The resulting
efficiency of the detailed routing step is 70% instead of close
to 100% as one would predict for a parallel computation
that does not involve communication (Table III). How-
ever, correcting this load imbalance would involve extra
computation to estimate wire density or extra communica-
tion to distribute the work. Exploring the trade-offs between
the execution time reduction that can be achieved by good
load balancing and the extra computation and communica-
tion time necessary to achieve it is a subject of further re-
search.

The completed Primary1 circuit without the pad cells is
shown in Fig. 12. From this figure it is clear that the density
of wires is not uniform. The nonuniform distribution den-
sity of wires means that some processors have more work
to do than others. The uneven distribution of work may be
severe; in the 64-processor case the ratio between the finish-
ing times of the last and first processor is 5. The resulting
efficiency of the detailed routing step is 70% instead of close
to 100% as one would predict for a parallel computation
that does not involve communication (Table III). How-
ever, correcting this load imbalance would involve extra
computation to estimate wire density or extra communica-
tion to distribute the work. Exploring the trade-offs between
the execution time reduction that can be achieved by good
load balancing and the extra computation and communica-
tion time necessary to achieve it is a subject of further re-
search.

We have presented a parallel hierarchical routing algo-
rithm for routing gate-arrays and have mapped it onto a
hypercube multiprocessor to route two modestly sized gate-
arrays. The results show that the hypercube computer can
be used to obtain high-quality routing and to achieve a rea-
sonable speedup. In fact, this fairly simple machine-one

5. CONCLUSIONS 5. CONCLUSIONS

We have presented a parallel hierarchical routing algo-
rithm for routing gate-arrays and have mapped it onto a
hypercube multiprocessor to route two modestly sized gate-
arrays. The results show that the hypercube computer can
be used to obtain high-quality routing and to achieve a rea-
sonable speedup. In fact, this fairly simple machine-one

FIG. 12. FIG. 12. Core of the Primary I gate-array benchmark. Core of the Primary I gate-array benchmark.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

REFERENCES

Aho, A., Carey, M. R., and Hwang, F. K. Rectilinear Steiner trees:
Efficient special case algorithms. Networks 7 (1977), 37-58.
Breuer, M. A., and Shamsa, K. A hardware router. J. Digital Syst. IV,
4(1981).392-408.

Burstein, M., and Pelavin, R. Hierarchical wire routing. IEEE Trans.
Computer-Aided Design ICSyst. CAD-Z, 4 (Oct. 1983), 223-234.

Chung, M. J., and Rao, K. K. Parallel simulated annealing for parti-
tioning and routing. Proc. IEEE International Conference on Com-
puter Design, 1986, pp. 238-242.

Denning, P. J. Speeding up parallel processing. Amer. Sci. 76 (Jul.-
Aug. 1988), 347-349.

Dijkstra. E. A note on two problems in connection with graphs.
Numer. Math. 1 (1959), 269-27 1.

Gustafson, J. L., Montry, G. R., and Benner, R. E. Development of
parallel methods for a 1024-processor hypercube. SIAM J. Sci. Statist.
Comput.9,4(July 1988), l-32.

Hayes, J. P., Mudge, T. N., Stout, Q. F., Colley, S., and Palmer, J.
Architecture of a hypercube supercomputer. Proc. International Con-
fkrence on Parallel Processing, Aug. 1986, pp. 653-660.
Hayes, J. P., Mudge, T. N., Stout, Q. F., Colley, S., and Palmer, J. A
microprocessor-based hypercube supercomputer. IEEE MICRO
(Oct. 1986). 6-17.
Hightower, D. The Lee router revisited. Proc. ACM/IEEE Corz@ence
on Computer-Aided Design, 1983, pp. I36- 139.

Hiller, F. S., and Lieberman, G. J. Operations Research. Holden-Day,
San Francisco, 1974.

Hoel, J. H. Some variations of Lee’s algorithm. IEEE Trans. Comput.
C-25, 1 (Jan. 1976), 19-24.

Hollis, E. E. Design of‘ VLSI Gate Array ICs. Prentice-Hall, Engle-
wood Cliffs, NJ, 1987.

Hong, S. J., and Nair, R. Wire routing machines-New tools for VLSI
physical design. Proc. IEEE. 71, 1 (Jan. 1983), 57-65.

Johnson, D. S. The NP-completeness column: An ongoing guide. J.
Aigorithms3(1983), 381-395.
Lee, C. Y. An algorithm for path connections and its applications. IRE
Trans. Electron. Comput. EC-10 (Sept. 196 I), 346-358.

large board of components-was over eight times faster, in
absolute terms, than a high-performance workstation com-
posed of many more parts (Table III). If other compute-
intensive CAD tasks could be ported to hypercubes and
achieve similar levels of performance, then an argument
could be made for using them as CAD compute servers.
However, the modest benchmarks (less than 1 kgate)
stretched the memory capacity of our version of the
NCUBE/ten to its limit. Therefore, it is clear, that for these
computers to be effective on large gate-arrays (20 kgates and
larger) much more memory per processor node is neces-
sary. We close by noting that recent developments in com-
mercial hypercube machines-nodes with many megabytes
of memory, and processors that are much faster than our
machine-have more than satisfied this requirement, and
it should now be possible to use hypercubes to significantly
reduce the computation time of critical CAD operations
such as routing even for the largest circuits.

324 OLUKOTUN AND MUDGE

17. Marek-Sadowska, M. Global router for gate-array. Proc. IEEE Znter-
national Conference on Computer Design, 1984, pp. 332-337.

18. Martin, W., Wan, T.-C., Poland, D., Mudge, T., and Abdel-Rahman,
T. Monte Carlo photon transport on the NCUBE. In Heath, M. (Ed.).
Proc. I986 Conference on Hypercube Multiprocessors. Society for In-
dustrial and Applied Mathematics, 1987, pp. 454-463.

19. Miller, R., and Stout, Q. F. Data movement techniques for the pyra-
mid computer. SIAM J. Comput. 16, 1 (Feb. 1987), 38-60.

20. Moore, E. Shortest path through a maze. Ann. Comput. Lab. Harvard
Univ. 30 (1959), 282-292.

2 1. Mudge, T. N., and Abdel-Rahman, T. S. Vision algorithms for hyper-
cube machines. J Parallel Distrib. Comput. 4 (1987), 79-94.

22. Olukotun, 0. A., and Mudge, T. N. A preliminary investigation into
parallel routing on a hypercube computer. Proc. 24th ACM/ZEEE De-
sign Automation Conference, 1987, pp. 8 14-820.

23. Preas, B., and VanCleemput, W. Routing algorithms for hierarchical

24.

25.

26

27.

Preas, B. T. Benchmarks for cell-based layout systems. Proc. 24th
ACM/IEEE Design Automation Conference, 1987, pp. 3 19-320.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling,
W. T. Numerical Recipes-The Art of Scientific Computing. Cam-
bridge Univ. Press, London/New York, 1986.
Rose, J. LocusRoute: A parallel global router for standard cells. Proc.
25th ACM/IEEE Design Automation Conference, 1988, pp. 189- 195.
Rutenbar, R. A. A class of cellular computer architectures to support
design automation. Ph.D. thesis, Department of CICE, University of
Michigan, 1984.

28.

29.

30.
31.

Rutenbar, R. A. Simulated annealing algorithms: An overview. IEEE
Circuit Devices Mag. 1 (1989)) 19-26.
Sechen, C., and Sangiovanni-Vincentelli, A. TimberWolf3.2: A new
standard cell placement and global routing package. Proc. 1986 Design
Automation Conference, June 1986, pp. 432-439.
Soukup, J. Circuit layout. Proc. IEEE. 69, lO(Oct. 198 1), 1281-1304.
Soukup, J., and Royle, J. C. On hierarchical routing. J. Digital Syst.
5,3(Mar. 1981).

32. Spiers, T. D., and Edwards, D. A. A high performance routing engine.
Proc. 24th ACM/IEEE Design Automation Conference, 1987, pp.
793-799.

33. Stout, Q. F. Hypercubes and pyramids. In Cantoni, V., and Levialdi,

IC layout. Proc. International Symposium on Circuits and Systems,
1979, pp. 482-485.

S. (Eds.) . Pyramidal Systems for Image Processing, NATO ASZ Series
AR W. Springer-Verlag, Berlin/New York, 1986.

34. Blank, T., Stefik, M., and van Cleemput, W. A parallel bit map proces-
sor architecture for DA algorithms. Proc. 18th ACM/IEEE Design
Automation Conference, 198 1, pp. 837-845.

35. Ting, B., and Tien, B. Routing techniques for gate arrays. IEEE Trans.
Computer-Aided Design ZCSyst. CAD-3 (Oct. 1983), 301-312.

36. Weicker, R. P. Dhrystone: A synthetic systems programming bench-
mark. Comm. ACM27, lO(Oct. 1984), 1013-1016.

37. Winsor, D. C., and Mudge, T. N. Analysis ofbus hierarchies for multi-
processors. Proc. IEEE 15th Annual International Symp. Computer
Architecture, May 1988.

38. Yoshimura, T., and Kuh, E. S. Efficient algorithms for channel rout-
ing. IEEE Trans. Computer-Aided Design ZC Syst. CAD-l, 1 (Jan.
1982), 25-35.

39. Zargham, M. R. Parallel channel routing. Proc. 25th ACM/IEEE De-
sign Automation Conference, 1988, pp. 123- 132.

OYEKUNLE OLUKOTUN received the B.S. degree in electrical engi-
neering in 1985 and the M.S. degree in computer engineering in 1987 from
the University of Michigan. Currently, he is pursuing a Ph.D. also at the
University of Michigan. His research interests include parallel algorithms
for computer aided design of integrated circuits and tools for the analysis,
design, and verification of high-speed digital systems.

TREVOR MUDGE received the B.Sc. degree in cybernetics from the
University of Reading, England, in 1969, and the M.S. and Ph.D. degrees
in computer science from the University of Illinois, Urbana, in 1973 and
1977, respectively. While at the University of Illinois he participated in the
design of several special purpose computers and did research in computer
architecture. Since 1977, he has been on the faculty of the University of
Michigan, Ann Arbor, where he has taught classes on logic design, CAD,
computer architecture, and programming languages. He is currently an
associate professor of electrical engineering and computer science and di-
rector of the Advanced Computer Architecture Lab. He is author of more
than 80 papers on computer architecture, programming languages, VLSI
design, and computer vision, and he holds a patent in computer aided de-
sign of VLSI circuits. In addition to his position as a faculty member, he is
a consultant for several computer companies in the areas of architecture
and languages. Trevor Mudge is a senior member of the IEEE, a member
of the ACM, and a member of the British Computer Society.

Received February 15, 1989; revised October 16, 1989

