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Gate-arrays are the most common design style for semicus- 
tom VLSI integrated circuits. An important part of the gate- 
array design process is the routing of wires between the logic 
elements, which is an extremely compute-intensive operation. 
This paper presents an algorithm for routing gate-arrays that 
uses a hypercube connected parallel processor to provide the 
necessary computation power. In order to make optimal use of 
the hypercube, the routing algorithm is organized so that inter- 
processor communication is kept to a minimum. It occurs only 
during the global routing and crossing placement phases of the 
algorithm, which constitute less than 15% of the total running 
time of the algorithm. On the basis of the results of executing 
the algorithm on two gate-array benchmarks the case is made for 
using hypercuhe multiprocessors as accelerators for compute- 
intensive CAD operations. 0 1990Academic press, inc. 

1. INTRODUCTION 

The use of gate-arrays in the design of semicustom VLSI 
integrated circuits is common in the semiconductor indus- 
try today. At present, gate-arrays outsell standard cell de- 
signs, the other major semicustom design methodology, by 
a margin of over 4 to 1 [ 13 ] ; moreover, they are available 
in a variety of technologies that span the design space of 
speed, power, and integration density. 

Gate-arrays are designed using a predefined library of 
well-characterized cells which have been supplied by a ven- 
dor. After the cells and their interconnections have been 
specified the gate-array design is ready for automatic layout. 
Automatic layout maps a structural description of a circuit 
into a physical description consisting of geometric coordi- 
nates for all the circuit elements and interconnection wiring 
[ 301. Automatic layout consists of placement, or position- 
ing the circuit cells on the layout surface, and routing, or 
interconnecting the cells. A good placement is essential for 
high-quality routing. In this paper we will assume that 
placement has been performed and focus on the routing 
phase of gate-array design. 

*This work was supported in part by the NSF under Grant MIP- 
8802771. 

As the density and size of gate-arrays increase, routing 
becomes less tractable and consumes larger amounts of 
computer time. Parallel computers, particularly those with 
large numbers of processors, have the potential to provide 
the necessary computational power with which to acceler- 
ate gate-array layout and thus facilitate the design of larger 
chips than it is possible to do at present. However, in order 
to realize this potential, it is necessary to develop efficient 
parallel algorithms for these computers. In this paper we 
describe an algorithm for a particular type of parallel ma- 
chine, the hypercube multiprocessor. 

Parallel processors can be separated into two major types 
on the basis of their memory architecture: shared-memory 
machines or distributed-memory machines. A variety of 
terms have been coined for these two types of multiproces- 
sors, including “tightly coupled” for shared-memory and 
“loosely coupled, ” “message-based,” or “disjoint-mem- 
ory” for distributed-memory. In shared-memory multipro- 
cessors, the processors can access a common memory 
which they use for interprocessor communications, as well 
as the usual function of storing the program and data. In 
contrast, distributed-memory multiprocessors normally 
comprise a set of processors, each with its own private mem- 
ory, that communicate among themselves over a fixed in- 
terconnection network. Recently, a wide selection of com- 
mercial parallel processors of both types has become avail- 
able. The shared-memory type has been the most widely 
accepted because it represents a natural evolution from the 
conventional uniprocessor. However, the congestion that 
can occur at the shared-memory limits the number of pro- 
cessors to a few dozen [ 371. By comparison, the distributed- 
memory machines appear to offer a greater potential for 
increased performance because they can readily scale to 
thousands of processors [ 8 1. Indeed, in [ 18 ] supercomputer 
performance levels were reported for Monte Carlo simula- 
tions of particle transport using the 64-processor commer- 
cial hypercube NCUBE/ten, and in widely publicized ex- 
periments a 1024-processor version of the NCUBE / ten was 
used by researchers at Sandia National Laboratories to ob- 
tain a fixed-size speedup of 500-fold on problems in beam 
stress, baffled wave simulation, and unstable fluid flow [ 71. 

Although distributed-memory machines allow greater 
numbers of processors to be usefully connected, they pre- 
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sent a greater challenge to the programmer and algorithm 
designer. Given the current immature state of parallel pro- 
gramming and parallel algorithm design, it is only cost 
effective to employ massively parallel distributed-memory 
machines when the considerable effort required to develop 
an efficient parallel algorithm can be amortized over a long 
period of time through repeated use. Many applications as- 
sociated with physical CAD, in particular routing, fall into 
this category. It follows that massively parallel distributed- 
memory machines are candidates for hardware accelerators 
for compute-intensive physical CAD applications. This no- 
tion was the point of departure for the work described here. 

Gate-array routing is usually implemented in two steps: 
global routing followed by detailed routing. The purpose of 
global routing is to determine which of the routing channels 
that lie between the cells of the gate-array will be used for 
each connection. A number of global routers [ 3 1, 17, 23, 
351 which are variations of the Lee-Moore or the Dijkstra 
algorithm [ 16,20,6] have been proposed. In detailed rout- 
ing wires are assigned to their final tracks according to a set 
of design rules. Detailed routing is usually performed with 
some type of channel router [ 38 ] or Lee-Moore router [ 16, 
201 and the routing region is constrained by the channels 
and feed-throughs specified for the net in the global routing 
step. Two aspects of gate-array routing make it amenable 
to parallelization on a distributed-memory multiprocessor. 
First, global routing partitions the routing region into inde- 
pendent subregions which can be distributed among the 
processors for detailed routing. Second, much more time is 
spent in the detailed routing step than in the global routing 
step. Since the detailed routing step requires no interproces- 
sor communication, the overall parallel routing algorithm 
can be made very efficient. 

In this paper, we present a hierarchical routing algorithm 
designed for implementation on a massively parallel distrib- 
uted-memory multiprocessor. This two-step algorithm is 
intended for routing multitetminal nets of a gate-array that 
exhibits near-uniform wiring density. It is based on our ear- 
lier work described in [22] but uses the pattern routing 
ideas presented in [ 31 for the global step. Global routing, 
since it involves global information spread over the proces- 
sors, can produce excessive amounts of interprocessor com- 
munication. The use of a modified version of the first algo- 
rithm in [ 3 ] keeps this interprocessor communication to a 
minimum. Multiterminal nets are connected as a Steiner 
tree using a heuristic algorithm implemented during the 
global step. Detailed routing is performed by a modified 
Lee-Moore router. In our experiment two layers of inter- 
connect are used for routing with vias serving as connec- 
tions between the layers. This is not a limitation and, in 
principle, the algorithm could be extended to routing prob- 
lems that have any number of layers. The parallel routing 
algorithm maps directly onto a hypercube topology and, as 
we will show, achieves good speedup. 

To date, Lee-Moore routing has dominated the ap- 
proaches taken for application of special-purpose parallel 
hardware to accelerate routing [ 34, 2, 321. These single in- 
struction multiple data (SIMD) array processor architec- 
tures are designed specifically to accelerate grid-search 
based algorithms. One of the first uses of a multiple instruc- 
tion multiple data (MIMD) computer for routing was the 
Wire Routing Machine developed by Hong et al. [ 141. This 
special-purpose architecture has 64 microprocessors con- 
figured as an 8 X 8 mesh on which a two-phase algorithm 
(global routing followed by detailed routing) is imple- 
mented. The global routing phase is based on Lee-Moore 
routing and uses an exponential channel density metric to 
avoid overflows. The speedup due to parallelism is reported 
as modest. This is due in part to the low power of the proces- 
sor nodes and to the fact that the global routing phase does 
not make efficient use of the processors because only one 
net is globally routed at a time. Other approaches intended 
for general-purpose parallel computers make use of algo- 
rithms (e.g., simulated annealing and channel routing) that 
are best suited to a few tightly connected processors, be- 
cause they require large amounts of interprocessor commu- 
nication to keep a global data structure up to date in order 
to achieve good routing quality [ 28,4,39,26]. In contrast, 
our approach, which is intended for many loosely coupled 
processors, reduces expensive communication traffic by 
keeping the global information local to each processor 
throughout the hierarchical decomposition of the global 
routing step. While this approach results in a low efficiency 
for the global routing step, the overall algorithm achieves 
high efficiency and produces good-quality routing. We have 
not seen any other routing algorithms that both have high 
efficiency and produce good-quality routing running on 
large distributed-memory multiprocessors. 

The paper is organized as follows. In the next section our 
gate-array routing algorithm is presented in two parts: the 
global routing phase and the detailed routing phase. In Sec- 
tion 3 we describe how the router can be implemented on a 
hypercube multiprocessor. Section 4 contains experimental 
results obtained by using the gate-array router to route two 
gate-array benchmarks with a 64-processor version of the 
NCUBE/ ten. Section 5 contains some concluding remarks. 

2. HIERARCHICAL ROUTING 

2.1. Global Routing 

We assume a uniform gate-cell array in which each gate- 
cell is surrounded by four boundaries that form a rectangle 
(see Fig. 1) . Each boundary has a channel capacity, which is 
the number of detailed wiring tracks that can cross it. These 
detailed wiring tracks may be feed-throughs that run be- 
tween gate-cells in a row or routing channels adjacent to the 
boundary. The terminals of each gate are located on the top 
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FIG. 1. Gate-cell array 

and bottom boundaries of a gate-cell. A net consists of a list 
of gate-cell terminals to be interconnected. There are two 
interconnection layers for routing, one for vertical and an- 
other for horizontal wire segments. Vias are introduced to 
make connections between the layers and jogs (wrong way 
wires) are allowed. The global routing of a single net is a set 
of gate-cells that contains all terminals of the net such that 
there is a path through adjacent gates-cells between all pairs 
of net terminals. At each gate-cell boundary that the path 
crosses, a wiring track is consumed, and the number of gate- 
cell boundaries the path crosses is taken as the global wire 
length. A feasible global routing for all nets is a global rout- 
ing for each net that does not exceed the channel capacity 
at any boundary. 

In the case of routing in a 2 X 2 grid it is possible to enu- 
merate all the types of nets that may occur. The net types, 
Ti, for two, three, and four terminal nets are shown in Fig. 
3. Each net is assigned a type on the basis of the position of 
its terminals within the 2 X 2 grid. There are a small number 
of ways in which each net type may be routed within the 
grid. These routing possibilities for each net type are also 
shown in Fig. 3, to the right of their corresponding types. 
We use Pi,j to denote possibilityj of net type T,. Thus the 
original problem of routing a 2 X 2 grid is now a problem 
of partitioning the nets of each type among the type’s possi- 
bilities, or determining the values Of Xi,j, where Xi,j denote 
the number of nets routed using Pi, j. The values of variables 
Xi,, can be found by solving the following integer program- 
ming problem. 

To formulate the problem we start with a set of linear 
restrictions. If ti is the number of nets of type Ti, then a valid 
solution to the routing problem should route all nets of each 
type. This can be expressed as 

Hierarchical global routing begins by dividing the routing 
region, which consists of an m X n array of gate-cells, into 
four “macro’‘-gate-cells (see Fig. 2). Each macrocell con- 
tains a quarter of the m X n gate-cells. If a global routing 
between these macrocells is performed, then the quadrants 
can be separated into independent routing problems. After 
further subdividing each of the new routing problems into 
four subregions another global routing creates 16 indepen- 
dent routing problems. This process of quadrisection fol- 
lowed by global routing continues until there are as many 
subregions as there are processors (see Fig. 2). The detailed 
routing is performed by each processor on its subregion in 
parallel. This hierarchical approach reduces a problem of 
routing in an m X n array of cells to the problem of routing 
in a 2 X 2 grid at each level of the hierarchy. Our solution 
to this problem uses a modified form of the first approach 
described in [ 31 and is explained in the next section. Unlike 
[ 31 we do not restrict a wire route from crossing a vertical 

CXI,, =ti for lGi<ll. (1) 
.i 

Leuel2 

or horizontal boundary twice; i.e., all the routing possibili- FIG. 2. Macrocell hierarchv 

ties that can occur in a 2 X 2 grid are allowed. This modifi- 
cation introduces an extra step called boundary crossing 
placement (explained in Section 2.1.1) into the global rout- 
ing phase but allows a clean parallel decomposition of the 
routing problem into four separate routing problems at 
each step in the hierarchy. In the following section we ex- 
plain further 2 X 2 routing among macrocells, and in Sec- 
tion 2.1.2 we give the details of extending the 2 X 2 solution 
to the m X n case using the hierarchical approach sketched 
above. 

2.1.1. Routingina2X2Grid 
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FIG. 3. Routing types and possibilities of a 2 X 2 grid from [ 31. 

The channel capacity limitations imply another set of re- 
strictions. Referring to Fig. 4, let 

‘V 1 k { Pi, j 1 Pi, j crosses the upper vertical boundary ~1) . 

Y, is a set of possibilities that can be enumerated by exam- 
ining Fig. 3. Then to satisfy capacity limitations we have the 
restriction 

c Xi.1 G cul 9 (2) 
(WEP,,,EYI 

where C,, is the crossing capacity of the vertical boundary 
o, , and the domain of the summation is all pairs of indices 
(i,j) such that possibility Pi, j is an element of the set Y, . 
Let Y2, z, and %* be sets, defined in a way similar to that 

in which Y, is defined, for the other three crossing bound- 
aries; then we also have the following restrictions due to ca- 
pacity limitations, 

c Xi, j G CIQ (3) 
(Lj)3Pj,,rY2 

c xi. j G ch, (4) 
(i,iPP,,,EXj 

c xi. j G ch2’ (5) 

(i,jDPi,,E% 

where C,, , Ch, , and Ch, are the crossing capacities of the 
remaining boundaries. The objective is to minimize total 
wire length W, which is equivalent to minimizing the num- 
ber of boundary crossings, i.e., 

minimize W= 2 Xl,J + C xi.J 
(bjDP,,,E~I (bj)3p,,,tV2 

+ c xi,, + c xi,,. (6) 
(L~BP,,,tT (i,i)3Pi,,~3 

The size of this integer programming problem is 28 vari- 
ables (Xi, j) and 15 constraint equations, ( 1) - ( 5 ) . A satis- 
factory approach for solving this integer programming 
problem is to pose it as a linear programming problem, use 
the Simplex method [ 251 to find a solution, and then round 
the results. This approach is possible because the xi,j are 
typically large integers. They are large integers because there 
are many terminals in each quadrant [ 111. 

The solution of this fixed-size integer programming prob- 
lem yields values of Xi, j. However, to complete the global 
routing problem, we must decide ( 1) which nets of each net 
type will be routed in each net type possibility and (2) ex- 
actly where on each boundary each net will cross. These 
issues are addressed next. 

Assigning possibilities to net types. Once the above inte- 
ger programming problem has been solved, there may be 
more than one nonzero Xi, j for each net type T, . Since each 
of the nets of T, can be routed in only one of the type’s 
routing possibilities, we must assign each net to a particular 
possibility Pj,j. To guide this assignment, we make a heuris- 
tic attempt to minimize overall net wire length and reduce 

A 

1 h’I 
c 

“2Y 

B Y”’ 

II 
D !2 

FIG. 4. Quadrants and boundary crossings of a 2 X 2 grid. 
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congestion at the crossing boundary. For example, if we 
have tl nets of type T, , and xl,1 and x1,2 are both nonzero, 
we must assign x1,1 of the nets to Pi,, and xl,2 to Pi,,; i.e., 
xI.I of the nets must be routed straight across the hi bound- 
ary, and x,,~ nets must be detoured via the h2 boundary (see 
Fig. 3). To determine the assignment, we sort the nets by 
the sum of the distance of each net’s terminals from the 
vertical boundary. The first xl.1 nets which have terminals 
that are farthest from the vertical boundary are routed in 
fashion PI,, , and the rest of the nets (x,,~) are routed in fash- 
ion P,,2. Ties between nets that arise using this heuristic are 
broken by considering distance from the horizontal bound- 
ary. If we consider a net type with more than two routing 
possibilities, such as T,, the situation becomes more com- 
plicated. Here, we may have to partition nets among possi- 
bilities P,, , , P7,2, and P7,3 (see Fig. 3). Using the same heu- 
ristics, we sort the nets by the sum of the distance of the 
nets’ terminals from the v1 and h2 boundaries. The x7,, nets 
with the greatest total distance are assigned route P7,, . This 
heuristic ensures that those nets which span the greatest dis- 
tance are routed in the most direct way so as to minimize 
overall wire length. To determine the assignments to P7,2 

and P7,3, we note that both possibilities have quadrant C in 
common. If the nets are sorted by their terminal’s distance 
from the h2 boundary the x7,2 nets with least distance would 
be routed in fashion P7,2, and the rest of the x,,~ nets would 
be assigned route P7,3. Here, we attempt to minimize both 
the length of wire running parallel to the crossing boundary 
and the total wire length. 

Boundary crossing placement. Finally, in order to fully 
decompose the routing at each level of hierarchy into four 
independent routing problems at the next level down in the 
hierarchy we must decide where to route each net that 
crosses a boundary. Our goal is to place the crossing points 
of a net so that the resulting route is a rectilinear Steiner tree 
interconnecting the net’s terminals [ 11. In general this is an 
NP-complete problem and we must again rely on heuristics 
to obtain an approximate solution. At each level of the 
global hierarchy the solution of the 2 X 2 routing problem 
creates four subproblems. These subproblems are intended 
for solution on different processors; therefore we must fix 
the crossings and introduce new terminals into the routing 
region so that at any level lower down in the hierarchy no 
interprocessor communication will be necessary for a pro- 
cessor to obtain terminal position information. In essence, 
we require that a crossing be placed to an accuracy that is 
within the smallest subregion created at the lowest level of 
the global hierarchy. Our heuristic uses the positions ofter- 
minals to place crossings at gate-cell resolution. 

The bounding line segment of a net is formed by connect- 
ing the projections of all terminal points onto a quadrant 
boundary. Examples of bounding line segments for a five- 
terminal net are shown in Fig. 5. If a quadrant contains a 
single terminal the bounding line segment will be the point 

l 

FIG. 5. Bounding line segments of a net. Each bounding line is labeled 
by quadrant name and boundary crossing name. 

projection of this terminal. For each net for which a crossing 
must be placed there will be at least one bounding line seg- 
ment and at most two bounding line segments. If there are 
two line segments we take their intersection and place the 
crossing point at a location on the boundary opposite the 
terminal that is closest to the boundary. If there is no inter- 
section of the line segments the crossing is placed opposite 
the terminal which is nearest to both the boundary and the 
other line segment. If one line segment is a single point, the 
crossing is placed opposite this point. If both line segments 
are points, the crossing is placed opposite the point closest 
to the boundary. Figure 6 shows three scenarios and the 
crossing placements that would result from using these heu- 
ristics. 

2.1.2. Routing in an n X m Grid 

We now describe a hierarchical router for the n X m 
global routing problem based on 2 X 2 solutions. We begin 
at each level of the hierarchy by dividing the routing area 
into quadrants defined in terms of gate-cells. If possible, the 
horizontal and vertical divisions are made so that there are 
an equal number of gate-cells in each quadrant. Next we 
perform net classification. Net classification determines the 
values ti for each net type Ti from the net list. Nets are classi- 
fied by checking the location of each terminal of the net 
with the quadrant boundaries. Nets for which all terminals 
lie within a single quadrant are not considered for global 
routing. The values of t, are used to set up the 2 X 2 grid 
routing integer programming problem, as discussed in Sec- 
tion 2.1.1. After the solution to the integer programming 
problem has been found, we assign possibilities to net types 
and then perform boundary crossing placement. The 
boundary crossing placement introduces new terminal cells 
into what are now four independent routing subproblems. 
These four subproblems can now be solved, in the same 
manner, simultaneously in parallel. The hierarchy stops 
when there are as many independent routing problems as 
there are processors. As we will see in the next section this 
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FIG. 6. Bounding lines, intersections, and crossing placements. (a) 

The crossing point is placed at the intersection point. (b) The crossing is 
placed at a point on the intersection closest to a terminal. (c) Because there 
is no intersection, the crossing is placed at a point opposite the closest ter- 
minal that is also closest to an end-point on the opposite bounding line 
segment. 

final level of routing problems is handled using a high-qual- 
ity Lee-Moore router. 

We note that in our formulation of global routing we do 
not reuse boundaries at any time during global routing and 
so do not need the restrictive 2 X 2 routing of [ 3 ] that would 
eliminate the use of possibilities P1,2, P2,*, P7,3, P8,3, P9,3, 
P IO,3 2 PI I ,3, and PII ,4 as well as reduce the number of routing 
subproblems created at each level to two. Figure 7 shows an 

example of hierarchical global routing on a 4 X 4 array of 
macro-gate-cells. Each terminal cell may represent several 
actual terminals; however, we may assume we have only 16 
processors and so we are only interested in following the 
hierarchy to a level at which 16 independent routing prob- 
lems have been created. Figure 7a shows the terminal cells 
of the net as they would appear at the lowest level of the 
global hierarchy. In Fig. 7b we solve the initial 2 X 2 prob- 
lem and place the crossings, which are represented by boxes, 
on the quadrant boundary using the techniques of Section 
2.1.1. The introduction of new terminal cells at the next 
level down in the hierarchy produces the four 2 X 2 sub- 
problems shown in Fig. 7c. Once these four subproblems 
have been solved the global routing is complete, as shown 
in Fig. 7d. 

2.2. Detailed Routing 

Once global routing is complete each processor contains 
an independent routing problem. However, before detailed 
routing can commence each processor must agree with its 
four neighboring processors on where, in terms of the de- 
tailed grid, nets that cross their common boundaries will 
be placed. The method of detailed crossing placement is a 
modified version of a technique described in [ 221 and in- 
volves communication among neighboring processors. The 
goals of detailed crossing placement are to evenly distribute 
the crossings along the boundary in order to reduce conges- 
tion, and to place the crossings so that jogs in the wiring 
paths will not be necessary. Each processor is responsible 

0 l q 0 

0 

(a) (b) 

Cd) 

FIG. 7. 4 X 4 hierarchical global routing. (a) Terminal gate-cells. (b) 
A solution to the initial 2 X 2 problem with crossing placements. (c) Solu- 
tions to the four 2 X 2 subproblems. (d) Final global routing. 
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for the crossings on the southern and eastern borders of the 
routing region that it works on. 

The crossing placement technique uses an iterative re- 
finement method, in which each processor calculates the 
preferred position of a crossing, on either its southern or 
eastern border, on the basis of a weighted average of the 
current position of the crossing, if it has been established, 
and the positions of the other crossings and terminals of the 
net as projected onto the crossing boundary. The closer a 
crossing or terminal is to the one being placed the more 
weight it is given. Once a preferred crossing position for all 
nets on both boundaries has been calculated the crossings 
are evenly distributed along the crossing boundary. Figure 
8 shows an example of detailed crossing placement. In this 
example crossing C, which is to be placed, will be connected 
to terminals X and Yin the detailed routing step. X’ is the 
projection of X on the crossing border of C, and Y’ is the 
projection of Y. A new position for crossing C is computed 
as a weighted average ofthe positions ofX’, Y’, and C. Posi- 
tion X’ is given more weight than Y’ because X is closer 
to the boundary. Each iteration of the crossing placement 
algorithm consists of two steps. First, place all the eastern 
crossings and second, place all the southern crossings. The 
first step starts from the processors on the western border of 
the mesh and proceeds toward the east, while the second 
step begins with processors on the northern border and pro- 
ceeds toward the south. At each step after crossings have 
been determined, a message is sent to the appropriate neigh- 
bor processor with the updated crossing positions. The 
number of iterations the crossing placement algorithm exe- 
cutes is predetermined by the user. In practice, convergence 
occurs quickly, and the relative weights given to terminals 
opposite the crossings being placed tend to cause the wiring 
paths to form straight lines as one would like (see ahead 
to Fig. 12). More complex heuristics for detailed crossing 
placement are employed if one or both of the terminals are 
also crossings on another boundary. 

The technique used for detailed routing incrementally 
routes the nets in the routing region. In this discussion a 

routing region or 
macro-cell contained 
by a processor 

FIG. 8. An example of detailed crossing placement. 

subnet refers to some subset of the terminals of a net and a 
connected subnet is a subset of net terminals that have been 
connected by a marked-path within the detailed grid. De- 
tailed routing begins by repeatedly starting a two-layer vari- 
able cost Lee-Moore router from each terminal or crossing 
of each net in the routing region. For each net the routing 
grid is assumed to be empty, so that any routes that are 
found are independent of all other net connections in the 
routing region. The Lee-Moore router is implemented us- 
ing some ideas from [ 10,121. The cost metrics used to guide 
the search include the use of a preferred layer for horizontal 
and vertical wires. Expansions on a layer that are in the non- 
preferred direction are penalized with a cost higher than 
that of expansion in the preferred direction. Expansions 
that change layers to produce vias are also penalized with a 
higher cost. Only the minimum cost connected subnet of 
each net is placed on a list of subnets ordered by cost. Once 
all nets have an entry in the list, the minimum cost con- 
nected subnet is selected and is kept by permanently mark- 
ing its path in the routing grid. This process of finding the 
minimum cost subnet as a starting point for the detailed 
routing process minimizes a problem associated with Lee- 
Moore routers, namely, that the quality of routing is highly 
dependent on the order in which nets are routed, and, in 
particular, on which net is chosen for routing first. 

After the initial subnet is picked, the remaining subnets 
are examined in order and kept if their path does not con- 
flict with the path of a previously kept subnet. If the path 
does conflict, the Lee-Moore router is invoked again and a 
new connected subnet is sought that avoids the conflict. 
This new connected subnet is placed on the ordered list of 
subnets in the appropriate place. If no connected subnet is 
found its associated net is marked as “unroutable.” For ev- 
ery connected subnet that is kept the Lee-Moore router is 
invoked on the net containing it to find a new connected 
subnet to add to the ordered list. Minimum cost subnets are 
taken from the list and processed until the list is empty, in 
which case, all nets have been completely routed, or no 
more connected subnets can be found. Separate detailed 
routing problems are executed in parallel on all processors 
and require no interprocessor communication. 

3. IMPLEMENTING HIERARCHICAL ROUTING 

The hierarchical global routing algorithm described in 
the previous section can be mapped in an obvious way onto 
a pyramid computer. A pyramid computer of size P is a 
distributed-memory parallel machine having P1’* X P”’ 
mesh connected processors at its base, and log, P levels of 
mesh connected processors above [ 191. Each processor at 
level k is connected to four neighbors at level k, four chil- 
dren at level k - 1, and a parent at level k + 1 (see Fig. 9). 
Execution of the global routing algorithm would begin in 
the processor at the apex of the pyramid. This processor 
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level 2 

level 1 

level 0 

FIG. 9. A pyramid of size 16. 

would solve the 2 X 2 routing problem over the entire rout- 
ing area and then pass each of its four children at level 
(lo&P) - 1 the data for one of the independent routing 
problems. Each child then solves its own 2 X 2 routing prob- 
lem and passes on four smaller routing problems to its chil- 
dren. This process continues until the base of the pyramid 
is reached. We note, in the execution of this algorithm on a 
pyramid computer, that all processors work independently 
and in parallel, except when data are being passed from one 
level to the next. However, only processors from one level 
are in use at any point in time; therefore, although a pyra- 
mid computer may execute the global routing algorithm in 
a natural way, it does not do it very efficiently. In particular, 
the detailed routing which would be performed in the base 
mesh of the pyramid would not use 

k=O 
3 

processors, which is more than 25% of the total available 
(-4P/3). Furthermore, the detailed phase takes much 
longer than the global phase, and it is trivially parallelizable; 
therefore, it is important to use all available processors for 
this phase. Nevertheless, the pyramid paradigm is useful for 
understanding how hierarchical routing maps onto hyper- 
cube computers. 

3.1. Hypercube Computers 

Hypercube computers have 2d processors connected in 
the topology of a d-dimensional binary hypercube. Figure 
10 shows the familiar example of a four-dimensional hyper- 

cube. Each processor of a d-dimensional hypercube is la- 
beled with a unique d-bit address, such that each bit posi- 
tion corresponds to a coordinate along one of d-dimen- 
sions. Because the pyramid algorithm discussed above is the 
most natural one for our hierarchical global routing algo- 
rithm, we would like to map it onto a hypercube computer 
so that neighboring processors in the pyramid algorithm are 
also neighbors in the hypercube, i.e., so that the mapping 
has a dilation of one. Unfortunately, pyramids cannot be 
embedded in hypercubes with a dilation of one [ 331. How- 
ever, hypercube computers can still efficiently execute the 
hierarchical routing algorithm using a less than optimal 
mapping, because, among other things, the mesh used for 
the detailed routing phase, the dominant phase of the algo- 
rithm, can be embedded with a unit dilation. 

The steps of the pyramid algorithm make use of two-di- 
mensional meshes that trace out the levels of a pyramid. 
Two-dimensional meshes may be embedded in hypercubes 
so that mesh neighbors are also hypercube neighbors. In 
such an embedding each processor is uniquely labeled by a 
d-bit binary address denoted xy (x and y concatenated), 
where x and y are two d/ 2 bit gray codes, one for each of the 
two dimensions of the mesh. An example of this mapping is 
shown in Fig. 11 for a hypercube of dimension d = 6 and a 
8 X 8 mesh [ 2 I]. The gray code of a mesh cell corresponds 
to its hypercube address. If we take this two-dimensional 
mesh to be the base of a pyramid of size P = 2 ‘, we can also 
map the rest of the meshes used in the pyramid as follows. 
Take the processor whose address is all zeros to be the apex 
of the pyramid. To find the processor addresses of the apex’s 
four children ( co, cl, c2, c3) we use the expressions 

co = xy 

Cl = (x0 2’)y 

c2 = x(y0 2’) 

c3 = (x 0 2’)(yO 29, 

d=4 

FIG. 10. A hypercube of dimension d = 4. 
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FIG. Il. The mapping of an 8 X 8 mesh onto a hypercube combined 
with the mapping of the pyramid algorithm onto a hypercube. The apex 
processor at level 3 is labeled by a filled circle enclosed within a square; its 
four children at level 2, including itself, are labeled with a filled circle. The 
processorsat level I are labeled with a filled or unfilled circle. The complete 
mesh is the base level 0 of the pyramid. 

where 1 is the pyramid level. For the apex processor 1= d/2 
- 1 andxy= 00. . .O. Each child processor calculates the 
address of its children in the same way using an 1 value 
which is reduced by one. This process continues until the 
base mesh is reached and 1 = 0. In this mapping every parent 
processor has one child which is a nonneighbor processor. 
Each nonneighbor parent-child pair is at most two inter- 
connection links away. This mapping ensures that at each 
level, adjacent processors in the pyramid mesh at that level 
are also adjacent in the hypercube. Furthermore, it allows 
hypercube processors to be reused at each level of the pyra- 
mid; therefore the mapping scheme is also suitable for the 
global routing algorithm, because only the processors on 
one pyramid level are used at a time and it allows the map- 
ping of a pyramid of size equal to the number of processors 
in the hypercube. 

4. EXPERIMENTAL RESULTS 

The NCUBE/ ten is an example of a general-purpose par- 
allel computer with a hypercube interconnection topology 
which can accommodate up to 1024 nodes in a lo-dimen- 
sional hypercube. In our experiments we used an early ver- 
sion of the NCUBE/ ten in which each node is a custom 
32-bit microprocessor with 128 kbytes of memory and the 
ability to perform floating point arithmetic [ 91. The nodes 
are capable of a peak performance of 2 MIPS and 0.5 
MFLOPS. The connection between the nodes is by dedi- 
cated point-to-point bit-serial DMA channels. The hyper- 
cube is managed by a host processor (an Intel 80286). Our 
experiments were performed using a 64-node version of the 
NCUBE/ ten. 

To measure the performance of our parallel routing algo- 
rithm we executed two gate-array benchmarks. The first 
gate-array benchmark involves routing a 735~gate circuit in 
a 900-gate gate-array organized as 25 X 18 circuit blocks 
[ 271. As a measure of performance we use fixed-size 
speedup [ 5 1. This is the ratio of the time it takes to solve a 
problem in serial on a single processor to the time it takes 
to solve the same problem in parallel using P processors. 
The term fixed-size refers to the fact that the size of the 
problem does not scale with the number of processors. The 
scaled speedup is normally a much higher figure. A more 
accurate measure of the benefits obtained from parallel pro- 
cessing would be to compare the running time of the paral- 
lel version with the time taken by the best serial algorithm 
on one node. However, because many of the subproblems 
needed to perform a routing are NP-complete [ 15 ] and heu- 
ristics are used to solve them, there is no good basis on 
which to compare different routers and thus to identify the 
“best” serial algorithm. Therefore, we will use the serial 
time of our algorithm to determine speedup, while recog- 
nizing this limitation in the interpretation of our results. 

Due to memory constraints on the NCUBE processor it 
was possible to route this benchmark only on a hypercube 
with 64 nodes-smaller cubes lacked the aggregate mem- 
ory. To estimate the fixed-size speedup of our algorithm we 
ran a serial version of our parallel algorithm on an Apollo 
DN 570 computer which had sufficient memory. We then 
normalized the resulting execution time by multiplying it 
by the ratio of the execution time for the Dhrystone on a 
single NCUBE node to that on the DN 570 [ 361. Table I 
shows the comparison in terms of execution time for the 
gate-array benchmark. In comparing Dhrystone bench- 
mark results, it was found that the DN 570 has an execution 
rate which is 6.9 times that of an NCUBE processor. From 
this figure we derive an overall fixed-size speedup of 35.2 
for the parallel routing algorithm over the serial version; see 
Table I. Our algorithm was able to fully route 97% of the 
nets using 10 tracks per vertical channel and 12 tracks per 
horizontal channel. This percentage of nets routed is higher 
than that of the approach taken in [ 271, where only 94% of 

TABLE I 
Comparison of Gate-Array Benchmark Routing Times 

Routing time(s) 

Global Crossing Detailed 
Computer routing placement routing Overall 

(1) DN 570 15.2 24.7 1,899.l 1,939.o 
(2) DN 570 (normalized) 104.9 170.4 13,103.S 13,379.l 
(3) NCUBE (64 processors) 18.0 35.7 327.5 380.2 

Speedup (3) vs (2) 5.8 4.8 40.0 35.2 



the nets were routed. For the next benchmark, as we shall 
see, we were able to route all the nets. 

For the parallel global routing the speedup Sofa pyramid 
computer of size P = 4' is given by 

if we assume the time taken at each level of the pyramid is 
approximately constant. Thus for a pyramid of size 64, such 
as the one we are simulating with the hypercube, the maxi- 
mum speedup for parallel global routing is 7. This speedup 
neglects the time it takes for a processor at each level to 
send data to its four children at the level below it. We have 
achieved a speedup of 5.8 (Table I), with the inclusion of 
communication time, which gives an efficiency exceeding 
80% of the available parallelism for the global routing step 
executed on a hypercube. Detailed crossing placement ex- 
hibits a speedup of 4.8 using all 64 processors. This low 
value is due to the limited inherent parallelism and the com- 
munication-intensive nature of the crossing placement 
step. Detailed routing is completely parallel; however, even 
this step does not achieve a perfect speedup of 64 due to the 
uneven load distribution among processors. Uneven load 
distribution is inevitable, because gate-arrays rarely parti- 
tion evenly and net connection density is not uniform 
across all gate-cells. 

The second benchmark we used to evaluate the perfor- 
mance of our parallel router is the Primary1 circuit from 
the benchmark suite of the International Workshop on 
Placement and Routing 1988 [ 241. This circuit is intended 
for either a standard cell or a gate-array layout style. It con- 
sists of 904 nets and 752 cells. The cells are organized as 26, 
6000~pm rows with 13-track horizontal routing channels 
between rows. The internal utilization of the array is 86%. 
The vertical routing channels were composed of the built- 
in feed-troughs and the gaps between cells. The placement 
was obtained by simulated annealing using the Timber- 
Wolf 3.2 standard-cell placement and global routing pack- 

TABLE II 

A Comparison of Primary 1 Gate-Array Benchmark 
Routing Times on 16 Processors 

Routing time (s) 

Computer 

(1) DN4000 
(2) DN 4000 (normalized) 
(3) NCUBE ( 16 processors) 

Speedup (3) vs (2) 

Global Detailed 
routing routing 

5.0 4,892.0 
25.5 24,949.2 

5.0 2,116.O 

5.1 11.8 

Overall 

4,897.0 
24,974.7 

2,121.o 

11.8 

TABLE III 

A Comparison of Primary1 Gate-Array Benchmark 
Routing Times on 64 Processors 

Routing time (s) 

Computer 
Global 
routing 

Detailed 
routing Overall 

(I) DN4000 12.0 1897.0 1909.0 
(2) DN 4000 (normalized) 61.2 9674.7 9735.9 
(3) NCUBE (64 processors) 7.0 219.0 226.0 

Speedup (3) vs (2) 8.7 44.2 43.1 

age [29]. Interestingly, the global routing produced by 
TimberWolf for this benchmark exceeded the number of 
tracks available ( 13) for some channels in the gate-array. In 
contrast, using the placement information from Timber- 
Wolf, we were able to completely route the gate-array using 
no more than 13 tracks per channel. 

This second experiment was performed on an upgraded 
NCUBE/ten with 5 12 kbytes of memory per node. The al- 
gorithm was optimized for speed instead of space to take 
advantage of the increase in memory. We also eliminated 
the detailed crossing placement step by fixing the crossings 
on the detailed grid during global crossing placement. Ta- 
bles II and III show the results for 16 and 64 processors, 
respectively. Furthermore, we were still not able to fit the 
whole routing problem in one node of the NCUBE, so a DN 
4000 was used to estimate speedup. 

It is not possible to compute an optimum routing for cir- 
cuits as complex as the ones we have used, so absolute fig- 
ures of routing quality cannot be obtained. Instead, we 
compare our results with those of other routers. Unfortu- 
nately, we were not able to obtain the results of other routers 
for this gate-array benchmark because all participants at the 
International Workshop on Placement and Routing 1988 
chose to lay out the benchmark as a standard cell. However, 
we were able to compare the relative quality of routing be- 
tween the 16- and 64-processor cases and the estimated wire 
length found by the TimberWolf global router. We have 
done significantly better than the TimberWolf estimations 
(Table IV). As one would expect the quality of the 64-pro- 

TABLE IV 

Quality of Primary1 Gate-Array Benchmark Routing 

16 64 Timberwolf 
Measure Processors Processors A% (estim.) 

Horizontal wire length (pm) 608,860 625,710 2.7 647,469 
Vertical wire length (pm) 7 12,970 717,080 0.5 883,753 
Total wire length (pm) 1,321,830 1,342,790 1.5 1,531,222 
Number of vias 4,52 1 5,028 11.2 NA 
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cessor routing is degraded compared to the 16-processor 
case because global information is lost. However, the 
amount of degradation in routing quality is relatively small 
(Table IV), but the reduction in routing time is almost a 
factor of 10 (Tables II and III ) . 

cessor routing is degraded compared to the 16-processor 
case because global information is lost. However, the 
amount of degradation in routing quality is relatively small 
(Table IV), but the reduction in routing time is almost a 
factor of 10 (Tables II and III ) . 

The completed Primary1 circuit without the pad cells is 
shown in Fig. 12. From this figure it is clear that the density 
of wires is not uniform. The nonuniform distribution den- 
sity of wires means that some processors have more work 
to do than others. The uneven distribution of work may be 
severe; in the 64-processor case the ratio between the finish- 
ing times of the last and first processor is 5. The resulting 
efficiency of the detailed routing step is 70% instead of close 
to 100% as one would predict for a parallel computation 
that does not involve communication (Table III). How- 
ever, correcting this load imbalance would involve extra 
computation to estimate wire density or extra communica- 
tion to distribute the work. Exploring the trade-offs between 
the execution time reduction that can be achieved by good 
load balancing and the extra computation and communica- 
tion time necessary to achieve it is a subject of further re- 
search. 

The completed Primary1 circuit without the pad cells is 
shown in Fig. 12. From this figure it is clear that the density 
of wires is not uniform. The nonuniform distribution den- 
sity of wires means that some processors have more work 
to do than others. The uneven distribution of work may be 
severe; in the 64-processor case the ratio between the finish- 
ing times of the last and first processor is 5. The resulting 
efficiency of the detailed routing step is 70% instead of close 
to 100% as one would predict for a parallel computation 
that does not involve communication (Table III). How- 
ever, correcting this load imbalance would involve extra 
computation to estimate wire density or extra communica- 
tion to distribute the work. Exploring the trade-offs between 
the execution time reduction that can be achieved by good 
load balancing and the extra computation and communica- 
tion time necessary to achieve it is a subject of further re- 
search. 

We have presented a parallel hierarchical routing algo- 
rithm for routing gate-arrays and have mapped it onto a 
hypercube multiprocessor to route two modestly sized gate- 
arrays. The results show that the hypercube computer can 
be used to obtain high-quality routing and to achieve a rea- 
sonable speedup. In fact, this fairly simple machine-one 
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rithm for routing gate-arrays and have mapped it onto a 
hypercube multiprocessor to route two modestly sized gate- 
arrays. The results show that the hypercube computer can 
be used to obtain high-quality routing and to achieve a rea- 
sonable speedup. In fact, this fairly simple machine-one 
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