
Con~purers them. Engng, Vol. 14, No. 2. pp. 161-177, 1990
Printed an Great Britain. All rights reserved

0098-I 354/90 %3.00 + 0.00
Copyright 6 1990 Pergamon Press plc

THE SEQUENTIAL-CLUSTERED METHOD FOR
DYNAMIC CHEMICAL PLANT SIMULATION

J. C. FAGLEY’ and B. CARNAHAN*

‘B. P. America Research and Development Co., Cleveland, OH 44128, U.S.A.
‘Department of Chemical Engineering, The University of Michigan, Ann Arbor, Ml 48109, U.S.A.

(Rrreiwd 28 May 1987; final revision received 26 June 1989; received for publicarion 11 July 1989)

Abstract-We describe the design, development and testing of a prototype simulator to study problems
associated with robust and efficient solution of dynamic process problems, particularly for systems with
models containing moderately to very stiff ordinary differential equations and associated algebraic
equations.

A new predictor-corrector integration strategy and modular dynamic simulator architecture allow for
simultaneous treatment of equations arising from individual modules (equipment units), clusters of
modules, or in the limit, all modules associated with a process. This “sequential-clustered” method allows
for sequential and simultaneous modular integration as extreme cases.

Testing of the simulator using simple but nontrivial plant models indicates that the clustered integration
strategy is often the best choice, with good accuracy, reasonable execution time and moderate storage
requirements.

INTRODUCTION

Two major stumbling blocks in the development
of robust dynamic chemical process simulators are:
(1) mathematical models for many important equip-
ment types give rise to quite large systems of ordinary
differential equations (ODES); and (2) these ODE
systems tend to be moderately to very stiff. The
development of robust stiff numerical integrators and
introduction of more powerful computers (larger
memories, faster processors, new architectures)
during the past few years now make the dynamic
simulation of many plant operations a solvable prob-
lem. We need reliable, accurate dynamic chemical
plant simulators that make efficient use of these new
computational tools and hardware. Special attention
must be given to the treatment of the large Jacobian
matrices required by stiff-system algorithms, even for
processes with only a few units.

This paper describes study into efficient treatment
of the dynamic chemical plant simulation task. The
work involved design and construction of a prototype
simulator capable of handling chemical processes
giving rise to large stiff ODE systems. This research
simulator employs test models for controllers, distil-
lation equipment and a double-pipe heat exchanger,
and makes extensive use of plex data structures for
storing numerical integrator, process and physical
property system variables and constants.

We implement a novel approach in modular
dynamic simulation, viz. a single simulator architec-
ture that allows for simultaneous treatment of
equations arising from individual modules (equip-
ment units), clusters of modules, or in the limit, all
modules associated with a process. This paper de-
scribes the most important features of the prototype

simulator and includes results of tests on simulator
performance. Direct numerical comparisons of
alternative integration strategies are given for some
relatively simple test plants. Conclusions and recom-
mendations drawn from our experiences should be
of interest to other workers developing dynamic
simulation software.

BACKGROUND

The mathematical modeling of transient chemical
process operations gives rise to differential/algebraic
equation systems (principally from mass and energy
conservation laws) that must subsequently be solved
during execution of a dynamic process simulator.
In some cases, the well-mixed assumption applies,
and the system boundary may be taken around an
equipment subunit, or even an entire unit. Examples
of such lumped parameter systems are stirred tank
reactors, mixers and individual stages in a distillation
column.

If spatial gradients within an equipment unit are
important, distributed parameter systems of equa-
tions arise. The unsteady-state modeling equations
are partial differential equations (PDEs), typically
parabolic or hyperbolic, that depend on the nature
and level of detail of the model. Examples of dis-
tributed parameter systems are plug flow reactors,
packed separation columns and heat exchangers.

Transient distributed parameter models can
usually be treated using the “method of lines” (Byrne
and Hindmarsh, 1977; Haydweiller et al., 1977;

Carver, 1979) in which spatial derivatives are approxi-
mated by finite-differences. As a result, a single PDE
will be represented as a system of ODES, with time
as the independent variable. By using the method of

161

162 .l. C. FAGLEY and B. CARNAHAN

lines, the dynamic model equation system for a
chemical plant consists primarily of ODES that can
be solved with a single numerical integrator.

The overall equation system will also contain
algebraic equations that are linked to the ODE-
dependent variables. Many of these associated
algebraic equations are required for physical or trans-
port property evaluation (e.g. equations of state
might be used to determine densities).

Until fairly recently most simulator research efforts
have focused on the modeling of steady-state process
operations. Historically, early steady-state simulators
(see reviews by Hlavacek, 1977; Motard et al., 1975),
and the most popular commercial ones, employ a
sequential-modular structure in which the procedure
for solving the model equations for an individual
equipment unit is incorporated into an individual
subroutine associated with that unit and assigned to
a unit program library. An executive routine calls
upon the module subroutines in sequence (in an order
specified by the user or determined by a flowsheet
analyzer), usually following material flow through
the process from feed to product streams. Typically
the module routines (and occasionally the executive
program) call upon a physical property package to
generate essential property values.

If recycle streams are present, one or more
streams are “torn” to render the system acyclic, and
the sequential-modular solution strategy involves a
multitiered iterative structure on calculation: (I) an
outermost iteration involving solution of nonlinear
equations associated with variables in the tom
streams; (2) sequential calls upon the unit module
routines; (3) possibly iterative solution of the mode1
equations within a module; and (4) evaluation of
physical properties needed by the modules during
solution of the model equations (the property
evaluations may again involve iterative numerical
methods). Many strategies have been developed for
optimal or near-optimal mod&e calculation ordering
(e.g. Duczak, 1986).

“Design” problems (in which a sufficient number
of input stream, output stream and equipment
parameters are specified to render the equation sys-
tem solvable for the remaining process variables)
are not solved in a “natural” way by modular-
sequential simulators. Multiple versions of the same
model equations (involving different “known” and
“unknown” variables) may be needed, increasing the
complexity of the modules. Or substantial low-level
repetition of “simulation” unit module calculations
may be required to satisfy internal stream specifi-
cations. Some design specifications (e.g. for process
product streams) may even lead to iteration loops
outside those required for converging the recycle
calculations. Thus the overall computational scheme
for design problems may involve nested iteration of
a fairly high order. Process optimization may add
yet another level of iteration to the calculations,
although Biegler and Hughes (1983), Biegler and

Cuthrell (1985) and Biegler (1988) show that recycle
convergence and optimization calculations can be
performed simultaneously using successive quadratic
programming algorithms.

Principal alternative steady-state simulator struc-
tures are those incorporated into simultaneous simu-
lators, which come in several generic forms variously
called equation-based, simultaneous, simultaneous-
modular and modular-simultaneous (Perkins, 1983;
Biegler, 1983, Shacham et al., 1982; Stadtherr
and Vegeais, 1986; Morton and Smith, 1989). In
these simulators, all (or almost all) of the equations
or simplified (frequently linearized) forms of the
equations (including model equations, physical
property equations, stream connection equations,
process specification equations, etc.) are solved
simultaneously.

The simultaneous simulators have the prime virtue
that “simulation” and “design” problems can be
solved in essentially the same way, provided that the
appropriate number (and combination) of variables
have been assigned values to render the equations
solvable. The highly nested iterative structure needed
to solve “design” problems with sequential-modular
simulators is eliminated and optimization calcu-
lations can be performed using infeasible path
algorithms (Hutchison et ai., 1986).

However, the simultaneous simulators have
their own problems, principally resulting from the
numerical solution of the very large system of simul-
taneous nonlinear equations generated. Usually
Newton or quasi-Newton algorithms are used to
solve these nonlinear equations. This requires
repeated evaluation of the (partial derivative) ele-
ments in the Jacobian matrices for the equation
system (see later), and subsequent soIution of high-
order sparse linear equation systems. Initial guesses
must be provided by the user or generated by the
simulator for all (possibly thousands for large plants)
of the unknown process variables.

Although most attention has been focused on
steady-state simulation and design, a few general-
purpose dynamic process simulators (Ingels and
Motard, 1970; Ham, 1971; Franks, 1972; Lopez,
1974; Barney, 1975; Patterson and Rozsa, 1980) have
been developed during the past 20 yr. The structures
of most of these simulators are parallel to those for
the steady-state simulators, i.e. modular-sequential
and simultaneous.

Virtually all modular dynamic simulators consist
of four principal parts: (1) unit model subroutines
that incorporate the model equations for the associ-
ated equipment types; (2) a physical property subsys-
tem that provides estimates of densities, enthalpies,
vapor-liquid distribution coefficients, etc.; (3) a
numerical integrator; and (4) a supervisory routine
that performs input/output operations and oversees
execution of the simulation calculations.

These simulators are called “modular” because
each piece of equipment in the physical plant has its

Sequential-clustered method for plant simulation 163

dynamic behavior represented by a set of differential
and algebraic equations incorporated into a unit
model subroutine. The simulator framework is a
general one, i.e. once the unit model subroutines for
“standard” unit types have been constructed, they are
available in a unit model subroutine library, and may
be drawn together in different ways depending on the
layout of the plant being simulated and the particular
integration strategy used.

The unit model routines use input (material
and information) stream and equipment parameter
values, call upon the physical property system rou-
tines as needed, and compute estimates of the deriva-
tives for the ODE-dependent variables associated
with the unit. The numerical integrator uses these
derivative estimates to generate updated values
for the ODE-dependent variables at discrete times,
which are then used by the unit module routines
to calculate output stream parameter values. Unit-
related algebraic equations are also solved during
each module call using appropriate, robust numerical
methods.

The steady-state equation-based (simultaneous)
simulators can also be used to solve ordinary differ-
ential equations in addition to nonlinear algebraic
equations. The ODES are typically integrated using
predictor--corrector algorithms, which require, at
each time step, the iterative solution of the corrector
equations. Since the corrector equations are non-
linear algebraic equations, they can be solved by the
same (typically Newton or quasi-Newton) algorithm
that is used to solve the other nonlinear algebraic
equations for the process.

From an aesthetic viewpoint, the generality of the
simultaneous equation-based approach to solving
process problems is very attractive. Both steady-state
and dynamic results can be produced, and because
all equations are being solved simultaneously, math-
ematical rigor is assured.

Unfortunately, the addition of a potentially large
number of corrector equations (one for each ODE) to
an already large set of associated nonlinear algebraic
equations leads to nonlinear equation systems of
large order, for which our current methods are very
heavily taxed and may not be sufficiently robust to
guarantee reliable performance. It is not clear from
the literature that large dynamic process plant models
involving thousands of mixed algebraic and differ-
ential equations have been solved successfully and
consistently using this approach.

In recent years, several new approaches (Palu-
sinski, 1985; Hillestad and Hertzberg, 1986; Liu and
Brosilow, 1987) have been suggested to accomplish
dynamic simulation in a modular framework. First,
there is the technique of partitioning the flowsheet
and identifying streams that interconnect units or
subsets of the plant units. Each unit or subset is
integrated using a separate numerical algorithm, with
values of interconnecting stream parameters being
interpolated/extrapolated in time. This technique

requires a supervisory program that keeps all units
or subsets at roughly the same time level, oversees
extrapolation and interpolation of essential stream
parameter values and provides a strategy for retrac-
ing integration time steps when extrapolated values
later prove to be inaccurate.

This approach is probably of greatest utility in
cases where individual units display a weak inter-
dependence. When there is heavy coupling of plant
units, and the units show a strong degree of inter-
dependence through either material or information
(control signal) stream connections, extrapolation in
time is often inaccurate, leading to retracing of
integration time steps.

Other novel approaches, developed in recent years,
include: (1) partitioning of plant structure, with tear-
stream values guessed and iterated upon (Ponton,
1983); (2) use of a two-tiered approach with separ-
ation of flow-pressure equations from composition-
dependent equations (Ponton and Vasek, 1986); and
(3) a technique that takes advantage of “latency”, the
property that only a few units in a process are usually
dynamically “active” at any given time (Kuru and
Westerberg, 1985).

In each case, the structure of the simulator and the
way in which the executive interacts with the unit
modules is dictated by the adopted algorithm and its
implementation. In turn, the best application of each
depends on the type of plant being simulated. The
techniques which use stream tearing, extrapolation/
interpolation in time and iteration around recycle
loops are best suited to plants with minimal inte-
gration of material, information (control) and energy
flow. Conversely, the more rigorous approaches with
global treatment of the ODE set tend to be better
suited for treating plants with a high degree of recycle
(material, energy and control signal) and which incor-
porate advanced, integrated control algorithms, i.e.
feedforward and decoupling loops. In these highly
integrated systems, accurate description of flow
between the units is paramount in describing the
interdependence of the units.

In this paper, another novel algorithm will be
introduced which incorporates the most global and
mathematically rigorous technique, total simul-
taneous integration, in the flexible sequential modu-
lar simulation framework. The simulator structure
that allows implementation of the simultaneous
algorithm will also be described.

STIFFNESS

One of the more serious problems associated with
dynamic simulation of complex processing plants is
that the ODE system models for a wide variety of
chemical and chemical engineering problems are
moderate to very stiff (Barney, 1975; Johnson and
Barney, 1976; Weimer and Clough, 1979).

Stiff problems are frequently encountered in
modeling reactive systems, when kinetic rate con-

stants differ by more than one or two orders of
magnitude (DeGrout and Abbott, 1965; Enright and
Hull, 1976; Guertin ef al., 1977). Stiff ODE systems
also arise in simulating separation units, where trace
components on trays of a distillation column may
have response times several orders of magnitude
smaller than reboiler/condenser response times
(Barney, 1975; Franks, 1972; Distefano, 1968; Mah
et al., 1962).

Stiff equations almost always arise in dynamic
chemical plant simulation involving solution of PDEs
by the method of lines. As the spatial mesh size for
method-of-lines treatment of PDEs is decreased, the
approximation of the spatial derivatives becomes
more exact, but the resulting ODE set becomes
more stiff. For example, for 1-D thermal diffusion
with homogeneous Dirichlet boundary conditions,
theoretical analysis shows that the stiffness ratio
increases as the square of the number of spatial
sections (Byrne and Hindmarsh, 1987). These types
of stiff problems have been encountered, for example,
in modeling gas absorption columns and tubular
reactors (Haydweiller er al., 1977).

Several stiff numerical integration techniques have
been developed in the past 20 yr or so: semi- and
fully-implicit Runge-Kutta techniques, exponential-
fitting methods, spline fitting approaches, higher-
order derivative methods and linear multistep
algorithms employing backward differences (Byrne
and Hindmarsh, 1977). All of these stiff techniques
remain stable for integration step sizes much larger
than for classical Runge-Kutta and multistep algor-
ithms, so that even severely stiff stable problems
may be treated in a reasonable number of time steps.
Of course small time steps must be used when
rapid transients are significant, if these are to
be computed accurately and observed. One feature
common to stiff numerical integrators is that the
system Jacobian matrix plays a central role in the
solution algorithm.

Currently, the most popular stiff integrators
are those developed by Gear (1968, 1971). Gear’s
methods have been found by many workers to out-
perform other types of stiff integrators on a wide
variety of chemistry and chemical engineering prob-
lems. The Gear algorithms are linear, multistep
predictor-corrector techniques, based on backward
difference formulae. Gear integration, as imple-
mented in the most popular stiff-system codes, has
many desirable features, including automatic startup,
automatic step-size and method-order adjustment
capability and built-in error control (Hindmarsh,
1974a,b, 1977, 1979; Byrne and Hindmarsh, 1977,
1987). It is a variable-step, variable-order algorithm.

Consider the initial-value ODE problem:

164 J. C. FAGLEY and B. CARNAHAN

with the system Jacobian matrix:

[J,jl = %/a~, . (5)

Here y is a column vector of n ODE-dependent
variables, f is a column vector of n functional re-
lationships for the dependent variable derivatives and
t is the independent variable, time.

The system Jacobian J is an n x n matrix of partial
derivatives; its n eigenvalues Li which ma contain
both real and imaginary parts, [k = ti (- 111:

I,= -l/s,+kw,. (6)

For a stable system, all values of ~~ will be greater
than zero. The imaginary parts o, represent local
oscillations in components of the solution of the
ODE system. The stiffness ratio S is a standard
measure of the stiffness of the ODE system:

S = =man /rmm (7)

Here, rmax and rmln are the maximum and minimum
values of the r,. For S in the range l-10, the problem
set is nonstiff, and may be treated effectively with a
conventional nonstiff integration technique such as
an Adams-Moulton predictor-corrector or explicit
Runge-Kutta method. For S in the range 100-1000,
the equation set is moderately stiff. For larger S,
conventional techniques either cannot be used at all
or are very inefficient; numerical stability consider-
ations dictate a very large number of very small
integration time steps to complete the integration to
a useful maximum time T. (Note: for nonlinear ODE
sets, the values of r, and therefore of S vary with
time.)

The term r,,, represents a slowly changing com-
ponent in the solution, while T,,, represents a
rapidly changing component. For conventional non-
stiff integrators (e.g. classical explicit Runge-Kutta
or Adams-Moulton predictor-corrector methods of
orders 4-6), the time step of integration must always
remain small (of the order of T,,,~” to maintain numeri-
cal stability). However, integration must take place
over a relatively long time in order to determine the
nature of the slowly varying components.

The predictor equations are used to generate initial
estimates of y at each new time level ti + , :

and the corrector equations are iterated to conver-
gence using a Newton-Raphson or quasi-Newton
technique:

yj;+,” = yl”;, + (I - hc,J*)-’

x [~co~(Yl’:,)-Yyl”:,+ 2 d,Y,,I-, 1 (9)
,= I

dy - = f(y, t>, dt
Here, 6,, c,, and the (1s and ds are method constants,
h is the time step of integration (ti+, - ti). q is the
method order and s is the Newton iteration counter.
J* is the Jacobian matrix evaluated at the current YW = Yo 7 (4) _ ~_ ~___

Sequential-clustered method for plant simulation 16.5

or some previous values of y and r. The method
is referred to as a quasi-Newton technique because
a single Jacobian matrix may be used for several
corrector iterations at more than one integration time
step.

INTEGRATION STRATEGIES

Dynamic simulators can be structured in either a
modular or equation-oriented fashion. Both have
advantages and disadvantages. For the process en-
gineer, the modular approach is certainly easier to
visualize, because processes are normally viewed as
networks of individual processing units and most of
the steady-state simulators in current industrial use
are structured this way internally. In the remainder
of this paper, we address the problem of effective
dynamic simulation using a modular approach.

Once a modular simulation framework and numeri-
cal integrator have been selected, a strategy for
incorporating the integrator into the simulator struc-
ture must be adopted. In the past, two general
strategies have been used. The first general technique
involves treating the ODE system arising from each
individual unit model subroutine separately with the
numerical integrator (Hlavacek, 1977) (possibly with
different integrators for different units). Each piece of
equipment gives rise to an individual ODE system
which is a subset of the overall ODE system for the
plant.

The integration of the ODE subsets is sequenced
such that each subset is solved individually over a
time horizon using a local time step. If the input
variables for the units are fixed at their levels at the
beginning of the time horizon interval, this approach
is equivalent to decoupling the units completely dur-
ing the time interval, a mathematically nonrigorous
approximation.

In a modification of this approach, the time
behavior of stream variables, both information
(e.g. for control) and material, can be treated
using interpolation in time (Liu and Brosilow, 1987).
When materia1 recycle or information feedback
(e.g. from a controller) occurs, the simulator must
extrapolate in time to estimate at least some missing
ODE-dependent variables, so that each ODE sub-
set can be solved over a given time horizon with
different time steps (and possibly different integra-
tors). Algorithms must be developed for ODE subset
sequencing, interpolation and extrapolation, for
checking the accuracy of extrapolated values and for
retracing of the integration calculations when ex-
trapolated values are later found to be insufficiently
accurate. This approach is certainly sounder math-
ematically than the completely decoupled one, but is
still less rigorous than simultaneous solution of all
equations.

The second general strategy for employing a nu-
merical integrator in a modular, dynamic simulation
framework involves using the same time step to

numerically integrate each ODE subset in sequence,
usually in an order determined by the flow of material
(the path likely to be followed by a process disturb-
ance). In this way, all ODE subsets are kept at the
same time level, and problems with interpolation/
extrapolation over more than one time step are
avoided. The presence of recycle (either material or
information, e.g. a control signal) can complicate this
approach, since it may be necessary to iteratively
reprocess the entire module calculation sequence to
achieve required accuracy. This problem can be
minimized by ordering the subsystem integration
sequence based on the “tearing” of the cycle (in the
sense of modular-sequential simulation) following the
unit in the cycle having the longest time constant
(Dudczak, 1986).

Each of these techniques has merits. The first
approach tends to be favored in situations where
some ODE subsets are difficult to integrate (i.e.
require relatively small time steps) while other, large
subsets are relatively easy to integrate. However, this
approach tends to be unfavorable when the plant
to be simulated has equipment units that show a high
degree of interdependence and are sensitive to the
dynamic behavior of one another. The work de-
scribed here is concerned with the second approach,
in which the solutions of the ODE subsets arising
from each piece of equipment are kept at the same
simulation time level.

Traditional modular integration

One of the criticisms of the modular dynamic
simulation structure is that due to the modular
structure, where each type of equipment unit in the
physical plant has its behavior represented by a
procedure implemented as an individual subroutine,
simultaneous treatment of the overall equation sys-
tem is precluded. In other words, because the
equation subsystems for computing the derivatives
and solving any associated algebraic equations for
each plant unit lie in separate subroutines, they
cannot be treated collectively.

The structure of most of the early modular
dynamic simulators reflects this approach. The simu-
lators are constructed such that the unit model
subroutines make calls on the (one or more) numeri-
cal integrator. In this sense, the unit model routines
“drive” the numerical integrator, and this traditional
modular (sequential) structure does preclude simul-
taneous treatment of the overall equation set.

Consider, for example, a traditional modular simu-
lation of the simple, generic plant shown in Fig. 1.

At each time step, the following procedure would
be used:

The subroutine modeling the behavior of unit A
makes a call to the numerical integrator, provid-
ing derivative estimates [fin equation (2)] to the
integrator. The numerical integrator then calcu-
lates estimates of the ODE-dependent variables

166 J. C. FAGLEY and B. CARNAHAN

Fig. I. Schematic of a plant with three units and nine
streams. The system Jacobian matrix J is shown on the
right: M is a submatrix of J; M? results from recycle

stream 9. _

2.

3.

in equation (2) and control returns to the unit
model subroutine for unit A.
Same as Step I with the subroutine associated
with unit B making a call to the numerical
integrator.
Same as Step I with the subroutine associated
with unit C making a call to the numerical
integrator.

Ne H modular integration approach

Instead of having the unit model subroutines
drive the numerical integrator, it is possible to use
the numerical integrator to drive the unit model
subroutines. The only known application of this
approach in the dynamic simulation context is
described by Patterson and Rozsa (1980). In one
version of their DYNSYL simulator, the integrator
calls directly on single modules corresponding to
individual process units in a modular-sequential
fashion, gathers system derivatives for all units and
then implements simultaneous integration for the full
ODE equation set.

The simulator structure developed in this work is
organized such that the integrator makes indirect
calls on the unit model routines which are individu-
ally responsible for evaluating derivatives and solving
any associated algebraic equations for that unit. The
ODES and algebraic equations associated with an
individual process unit can be solved simultaneously;
in addition, ODES and algebraic equations associated
with any “cluster” of units (where a cluster consists
of as few as one unit and as many as all units in
the plant) can also be solved simultaneously by the
integrator.

This strategy is implemented by: (1) creating an
interface routine between the integrator and unit
routines that is responsible for calling on units within
a cluster collectively (a) first to solve all algebraic
equations associated with the cluster, and (b) subse-
quently to evaluate all derivatives associated with
ODE dependent variables within the cluster; and
(2) modifying a standard integrator (we used a Gear
integrator from Lawrence Livermore Laboratory) so
that it can perform rigorous simultaneous integration
within each cluster, for as many as n individual
equation clusters, where n is the number of units
in the plant.

As a result, it is possible to accomplish the inte-
gration using the traditional sequential approach
(one unit assigned to each cluster) or using a simul-
taneous approach (all units assigned to a single
cluster) or a hybrid of these two approaches, which
we call the “sequential-clustered” approach. In the
sequential-clustered approach, the equation sub-
systems in each cluster (containing one or more
equipment units) are treated simultaneously, with
integration remaining sequential in nature from
cluster to cluster.

Several strategies for sequencing the integrator
itself (for different kinds of integrator/interface calls)
within the general structure described in the previous
paragraph were postulated and tested as described
later.

As an example of how this new modular simulator
structure is used, consider simultaneous treatment of
the generic plant shown in Fig. 1. On each integration
time step (here, assume that there are no algebraic
equations containing variables associated with more
than one unit) the following procedure would be used:

The numerical integrator makes a derivative
evaluation request by calling the unit model
subroutine interface program.
The interface routine calls the unit model rou-
tine for unit A and the first n, derivatives are
evaluated. Similar calls are made to the routine
for unit B and then for unit C, and the next nb
and last nE derivatives are evaluated.
Once all the derivative calculations have been
made, control returns from the interface routine
to the numerical integrator.

In this way, all the derivative evaluations are
available to the numerical integrator at once, and the
overall equation set may be treated simultaneously.
A similar procedure is carried out when new esti-
mates of y are generated by the numerical integrator.
The routine interface program is used to transmit
the new y-values to each individual unit model sub-
routine.

Comparison of sequential and simultaneous integration

For sequential integration of the plant shown in
Fig. 1, each of the three units are treated in sequence
on each time step; the first n, ODES are numerically
integrated for the time step, then the next nb and
finally the last n,. During the corrector iterations for
each piece of equipment, three Jacobian submatrices
are used, denoted M, , M., and MS in Fig. 1.

For simultaneous integration of the same plant, n,

is equal to n, plus nb plus n,. Also, the overall n, x n,
Jacobian matrix shown in Fig. 1 is used.

The principal advantage of sequential integration
is that smaller Jacobian submatrices are used. The
number of individual derivative evaluations needed
to generate full submatrices by finite-differencing
(perturbation) is equal to ni + nt +nf. By com-
parison, generation of a full Jacobian matrix

Sequential-clustered method for plant simulation 167

employed during simultaneous treatment requires
(n, + nb + n,)* individual derivative evaluations.

In addition to the evaluation of the Jacobians,
inversion calculations (usually by LU decompo-
sition) are also required. For a full Jacobian, the
number of such calculations is proportional to the
cube of the matrix order. Thus, the inversion of
three small Jacobians will require far less work than
for one large one. (This advantage for sequential
integration is diminished somewhat for real systems,
however, since actual plant Jacobians tend to be
sparse, and sparse matrix methods can be used to
reduce the number of operations from the theoretical
maximum.)

The advantage of simultaneous integration is
that by treating the equation set as a whole, no
inaccuracies are introduced by recycle streams. For
example, for sequential integration of the example
plant, when the first n, ODES are integrated on each
time step, old values for streams S, must be used
because final corrected values will not be available
until unit C is integrated on the time step. By
comparison, for simultaneous integration, recycle
streams pose no special problem because all
equations are predicted and corrected as a group.

In summary, the sequential approach is a shortcut
technique which requires fewer calculations per time
step, but may require small time steps (for a reinte-
gration over the time step to generate “matching”
recycle stream parameters) for accurate treatment of
recycle. The simultaneous approach is a more rigor-
ous technique, requiring more calculations per time
step, but remaining accurate for larger time steps,
even when extensive recycle is present. Note that
recycle may be either recycle of material or feed-
back of information (e.g. a controller signal). Direct
comparison of simultaneous, sequential-clustered
and sequential integration in terms of execution
times, storage requirements and accuracy on two test
plants is described later on.

OTHER CONSIDERATIONS

In designing a modular dynamic plant simu-
lator, two other considerations should be taken into
account. First, if simultaneous or sequential-clustered
integration is used, the resulting Jacobian (sub)-
matrices that arise can become quite large and there-
fore computationally expensive to invert. However,
as plants are simulated that give rise to larger
equation systems, the resulting Jacobian matrices
tend to be more and more sparse. This is because
each ODE-dependent variable typically only appears
in a few of the many ODES in the overall ODE
system.

As larger and larger plants are simulated, it
becomes more important to use sparse matrix tech-
niques for solving the corrector equations at each
time step. These sparse inversion techniques can take
advantage of the high fraction of zero elements in

both generating and inverting the Jacobian matrices.
Using sparse matrix techniques, the equations and
variables are re-ordered in a way that tends to
minimize the number of calculations needed to
effectively invert the Jacobian matrix.

Most sparse-matrix inversion techniques are
based on the Markowitz criterion (Duff, 1981). which
selects the pivots for Gaussian elimination primarily
on the criterion of reducing the number of fill
elements (nonzero elements generated where zero
elements occur in the starting matrix).

Sparse matrix generation techniques (for finite-
difference determination of system Jacobian matrix
elements) are also very useful and involve a two-step
process: (1) the full matrix is initially generated,
column by column, and relationships between vari-
ables and functions (which variables affect which
functions) are noted; this information is used to
determine groupings of variables that do not affect
the same functions so that several variables may
be perturbed together; and (2) on subsequent
evaluations of the matrix, the variable-groupings
are employed.

As a simple example of this technique, note that for
a (tridiagonal system of equations, where variable i
affects only functions (derivatives) i - 1, i and i + 1,
full Jacobian matrix generation by finite-differencing
(perturbation) requires evaluation of each of the n
functions n times, for a total of n* t 1 evaluations.
If a sparse generation technique is used, only four
evaluations of the n functions would be needed. The
three groupings would be: variables (1,4, 7, _ _ .),
(2, 5, 8, . . .) and (3, 6,9,. . _).

Another important consideration is the possibility
of using shortcut techniques to reduce the amount of
execution time spent estimating physical properties.
For plant simulations of this type, we have found that
these estimation calculations may consume 8&90%
of the total execution time. Obviously, there is great
incentive to try to reduce this percentage.

Use of shortcut techniques may be regarded as a
direct method of reducing physical property costs.
Indirect techniques, such as employing efficient
numerical algorithms that complete the integration
with as few time steps (and therefore as few physical
property evaluations) as possible may prove to be just
as effective. With the indirect approaches, the fraction
of the total execution time spent estimating physical
properties is not altered appreciably, but the total
execution time is reduced.

SOLUTION STRATEGIES FOR ODES

We selected Gear’s BDF (backward difference
formula) methods as the most suitable integrators
for the various stiff systems encountered in many
chemical processes. Having chosen the integrator,
we next attempted to find a suitable algorithm
for incorporating these linear, multistep predictor-
corrector algorithms into a simulator structure that

168 J. C. FAGLEY and B. CARNAHAN

Fig. 2. Four well-mixed tanks in series with recycle.

would allow for sequential, sequential-clustered or
simultaneous integration strategies.

The objective of our preliminary testing was to
determine a single robust and accurate sequential
integration strategy for Gear’s methods (since se-
quential integration will place the greatest strain on
method accuracy for systems containing recycle) and
then to incorporate this strategy into a prototype
chemica1 plant simulator. From the accuracy stand-
point (particularly for processes containing material
recycle or information feedback), it is clearly prefer-
able to implement the predictor equations for all
clusters before implementing the corrector equations
for any clusters, and this strategy was used in all our
tests.

For preliminary screening of algorithms, the sim-
plified plant shown in Fig. 2 was chosen; it consists
of four well-mixed tanks in series with an internal
recycle stream. The tank sizes were chosen such
that the governing ODE set had a stiffness ratio of
5 x 106.

The simplified plant was broken into two inte-
gration blocks or “clusters”: the first two tanks were
assigned to the first cluster, and the remaining two
tanks to the second cluster. Also, the composition
of the feed stream to the plant was perturbed at a
specified time with a step change (discrete jump), to
determine the suitability of the Gear integrator for
handling discontinuities.

In all, five sequential integration schemes were
tested. In each case, the integration of equations in
cluster 1 preceded those in cluster 2 for a given time
step; the predicted values of the recycle stream
(stream 6) from the second cluster back to the first
were used in the first block’s corrector equations
(implementing the predictor and corrector equations
over both clusters as described above).

Other features of five sequential schemes are:

1.

2.

3.

4.

Predicted values of stream 3 are used in the
second cluster’s corrector equations.
Predicted values of stream 3 from the first
cluster are used in the second cluster’s corrector
equations on the first corrector iteration and
corrected values are used thereafter.
Corrected values of stream 3 from the first
cluster are used in the corrector equations for
the second cluster.
Same as Scheme 2 except that a final corrector
iteration is forced for all equations in each
cluster after the corrector cycle for each time
step is completed.

Table 1. Results for four-tank problem of Fig. 2. for integration
to time 200 h. e =normalized r.m.s. truncation error tolerance,
sim = simultaneous. seq = sequential, n, - number of time steps,
DE = number of derivative evaluations, % increase = % increase
in derivative evaluations beyond requirement for simultaneous

integration

e Method % DE Increase (%)

0.001 sim 151 6754
0.00 1 seq- I 977 35,988 432.8
0.00 1 seq-2 359 11,263 66.8
0.001 seq-3 231 7532 11.5
0.001 scq-4 207 869 1 28.7
0.001 seq-5 172 7185 6.4

0.01 sim 98 4884
0.01 seq.4 128 5305 8.6
0.0 I seq-s 112 5085 4.1

0.1 sim 63 3861
0.1 seq.4 87 3873 0.3
0.1 seq-5 66 3873 0.3

5. Same as Scheme 3 except that a final corrector
iteration is forced for all equations in each
cluster after the corrector cycle for each time
step is completed.

These five strategies are referred to as “seq-1” to
“seq-5” in Table 1. Simultaneous (single-cluster) inte-
gration of this plant was also carried out. The results
of these various tests are summarized in Table 1 for
various values of e, the user-specified r.m.s. trun-
cation error tolerance used by the Gear integrator.

From Table 1, we see that in each case the simul-
taneous scheme requires the fewest number of time
steps to complete the integration. This is expected
since it is the most rigorous approach. Also, note that
sequential Scheme 5 fares the best of the sequential
schemes tested. This scheme was subsequently
adopted as the single sequential algorithm used in the
prototype MUNCHEPS (Modular Unsteady-State
Chemical Engineering Process Simulator) described
in the rest of the paper.

To review the principal features of the simulator
integrator:

I. Predictors are used for all equipment units or
clusters of equipment units prior to initiating
corrector iterations.

2. Corrected values are used as soon as they are
available.

3. One extra corrector iteration is forced at the end
of each time step.

While this third feature results in more derivative
evaluations per time step (an extra number equal to
the total number of ODES in the process), the
integration is completed in fewer (larger) time steps,
with net computational savings. Forcing this extra
corrector iteration and performing all predictor steps
prior to beginning the iterative corrector steps helps
very significantly to overcome the major weakness of
sequential integration, inaccurate treatment of infor-
mation and material recycle streams for large time

steps.

Sequential-clustered method for plant simulation 169

Other conclusions drawn from this initial testing
are:

1. The Gear integrator has little trouble in
dealing with step change forcing functions. The
algorithm automatically reduces the step size
and resorts to a method order of one in the
neighborhood of the step change, making it a
single-step (backward Euler) method at the
discontinuity.

2. As expected, introduction of recycle and stricter
error tolerances tends to favor use of the
more rigorous simultaneous approach over the
sequential-clustered approach.

3. A sequential approach, with predicted values
generated before beginning any corrector iter-
ations, and an extra forced corrector iteration
results in an 80% savings in execution time
compared with a less sophisticated straight-
forward sequential integration approach (for
comparable accuracy).

Comparison of simultaneous integration and
sequential integration Scheme 5 on other plant units
will be described later.

SOLUTION OF PDEs

When temperature or concentration gradients
within an equipment unit are important and the
well-mixed assumption does not apply, PDEs govern.
It is possible, using the method of lines, to reduce the
governing PDE set to a larger ODE set, a process
involving discretization of the space variable with a
finite-difference grid. Partial derivatives with respect
to spatial coordinates are then replaced with finite
difference approximations, and partial derivatives
with respect to time become ordinary derivatives with
respect to time at each grid point.

As an example, consider the method-of-lines
treatment of a double pipe heat exchanger model,
with n finite-difference grid points in the axial
direction (and radial variations neglected) (Fagley,
1984). Originally, in the PDE representation, the
temperature of fluid a is a single function of time
and distance along the exchanger. After method-of-
lines treatment, the temperature of fluid a becomes
n functions of time only. Similarly, the partial
derivative of enthalpy with respect to axial distance
becomes n finite-difference approximations. The
correspondence between the original PDE quantities
and the method-of-lines quantities is shown in
Table 2. A backward finite-difference expression is
used for the enthalpy derivative, because this term
appears in a bulk flow term, and only upstream
enthalpies will have an effect (Haydweiller et al.,
1977).

As the number of finite-difference grid points used
to represent the spatial coordinates increases, the
accuracy of the finite-difference approximation of the
spatial derivatives improves, but at the cost of larger

Table 2. Correspondence between original PDE quantities and
method-of-lines ODE quantities with n method-of-lines segments

Original PDE auantitv Method-of-lines ODE auantitv

Axial distance I,
O<x<L

3 PDEs (heat balance,
fluids a and b and
metal)

r, (x. r)

.r. i=1,2,...,n

3n ODES

T,,,(I) i=1,2,...,n

i=1.2. ..n

Enthalpy gradient, g
3H,-4H,_,+H,_,

3,ilY,
1=1.2....,n

DX = total length L divided by n.

ODE set sizes and increasing stiffness (Byrne and
Hindmarsh, 1977).

For the case of method-of-lines treatment of an
equipment unit arising in a chemical plant simulation,
the accuracy of the finite-difference representation
should be in line with the accuracy requirements for
the numerical integrator. For example, if the single-
step r.m.s. truncation error tolerance specified to the
numerical integrator corresponds to O.l”F, then the
error associated with the finite-difference approxi-
mation should be of the order of O.O1~.05”F.

Part of the testing of the prototype MUNCHEPS
simulator involved demonstrating the ability to incor-
porate a method-of-lines equipment unit into a gen-
eral, modular, unsteady-state simulator framework.
A double-pipe heat exchanger model was selected for
this purpose. The system chosen for testing involved
countercurrent flow and exchange of heat between a
hydrocarbon stream and a cooling water stream. The
details of the heat exchanger model formulation and
testing are given in Fagley (1984) and the results of
this testing are summarized in Table 3. Statistics are
for execution on an Amdahl 5860 mainframe with a
scalar processing capacity of about 6mips; for
comparison, a current scalar IBM 3090 processor
operates at about 15 mips.

As shown in Table 3, the accuracy in the water and
hydrocarbon exit temperatures improves with an
increasing number of method-of-lines sections. The
cost of this improved accuracy is an increase in both
execution time and storage requirements. Also, the
stiffness ratio increases with the number of method-
of-lines sections. The initial stiffness ratio for the
system (defined here as the final time of simulation
divided by the inverse of the largest negative

Table 3. Statistics for testing method-of-lines heat exchanger model.
N, = number of sections, integrator r.m.s. error tolerance e = 0.001
in all cases. Accuracy for water and hydrocarbon temperatures is the

time-averaged error, assuming solution for N, = 20 to be exact

Accuracy (‘R)
storage

N, CPU time(s) Water Hydrocarbon (kbyte)

5 4.26 4 2.5 lj 2.0 193.8
IO 6.69 4 0.92 p 0.74 212.9
15 13.56 4 0.35 ,J 0.23 236.8
20 14.18 269.9

170 J. C. FAGLEY and B. CARNAHAN

real eigenvalue part) increased from 160 for five
method-of-lines sections to 840 for 20 method-of-
lines sections, meaning that this is a moderately stiff
equation set.

Note that as the number of sections increases from
five to 20, the ODE set size increases from 15 to
60, and the number of elements in the full system
Jacobian matrix increases by a factor of 16. However,
we see from Table 3 that the storage requirements
increase by only 40%. This is because the storage
space needed for the machine code associated with
simulator and accompanying utility routines (here-
after referred to as background storage) is larger
than the storage space needed for storing numerical
integrator quantities. It should be noted, however,
that as larger plants are simulated, these background
storage requirements will become relatively less and
less significant; numerical integrator quantities will
dominate demand for fast memory.

Another interesting point is brought out by close
inspection of this table. For 15 method-of-lines
sections, the execution time is unexpectedly high-
only 4% smaller than that required for 20 sections.
This can be explained by the fact that for the run
with 15 sections, the integrator required that three
Jacobian matric evaluations be made, while only two
were required for the other three cases. This type of
behavior is typical for a numerical integrator. Time
statistics (and the number of derivative evaluations
and Jacobian matrix evaluations) for a family of
parameter values are somewhat stochastic in nature.
A single set of values such as those shown in Table 3
are “point estimates” and are useful for showing
trends rather than making fixed absolute value pre-
dictions. For example, a miniscule increase in the
error tolerance might well have allowed the integrator
to proceed with just two rather than three Jacobian
matrix evaluations in the 15-section case, changing
the statistics for that case significantly.

The conclusions from these studies are: (I) it is
not particularly difficult to include method-of-
lines unit model routines in a general modular
dynamic chemical plant simulator, such as the
MUNCHEPS simulator; and (2) the optimal number
of method-of-lines sections to be used depends on
the desired accuracy of numerical integration of the
resulting ODE set. A tradeoff exists between accuracy
and CPU time/storage requirements. For the heat
exchanger we considered, 10-15 sections results in a
fair tradeoff.

SIMULATOR TESTING

The prototype research simulator MUNCHEPS
was developed primarily to determine the feasibility
of performing simultaneous and sequential-clustered
integration in a modular simulation framework. Sub-
sequently, the simulator was tested on example chemi-
cal plants to compare these competing strategies in
terms of execution times, storage requirements and

accuracies. Some of the noteworthy features of the
simulator are listed below.

Plex data structures

The MUNCHEPS simulator makes extensive use
of plex structures (Evans et al., 1977). Plex structures
are used to store equipment parameters, stream
parameters, physical property constants and l- and
2-D arrays that are associated with the Gear integra-
tor. Plex structures have several advantages over
conventional matrix structures: (1) more efficient use
of storage; (2) savings in physical property system
computations by logical classification of streams; and
(3) greater flexibility in simulating a variety of plants,
both in terms of defining new types of stream par-
ameters and constructing different types of equip-
ment unit model routines. The plex data structures
are also quite compatible with the MUNCHEPS
preprocessor, described next.

Preprocessor

Simulator input data are entered through a pre-
processor. The preprocessor is executed separately
from and prior to the simulator itself. The pre-
processor is used to read in information about the
layout of the process and the number and kinds of
chemical species present. During execution of the
preprocessor, the user also specifies information
regarding numerical integration, e.g. r.m.s. single-
step error tolerance, initial conditions and integration
strategy (simultaneous, sequential-clustered or total
sequential). The preprocessor uses this information to
set up the various plex data structures, including
determination of pointer values and total plex vector
lengths. The preprocessor then writes a small main
program (in FORTRAN-77) for the simulation,
where plex vectors are dimensioned to exactly the
length needed for the given simulation. Thus the
simulation uses only that storage which is needed by
the particular process plant and dynamic memory
allocation (unsupported in ANSI FORTRAN-77) is
unnecessary.

Sparse matrix decomposition

The MUNCHEPS simulator makes use of a sparse
matrix LU decomposition procedure which is based
on the Markowitz criterion for reducing decom-
position operations (Duff, 1981). This technique is
particularly useful for treatment of the Jacobian
(sub)matrices that arise. The first time a Jacobian
matrix is generated, the sparse matrix algorithm is
used to determine a strategy for performing its LU
decomposition by Gaussian elimination. This sparse
strategy is then recorded in integer code lists.

The decomposed matrix is used to process
new right-hand-side vectors on each corrector
iteration for each time step. Subsequently, as new
instances of the Jacobian matrix are encountered
every several time steps, the integer code strings are
used to decompose the matrix. This feature allows for

Sequential-clustered method for plant simulation 171

significant time savings, since the decomposition
strategy need be determined only once in many cases.
However, the MUNCHEPS sparse matrix solver
(called SLUD) allows for re-determination of the
decomposition strategy should the structure of the
matrix change (as it does sometimes for nonlinear
ODES) or should a Gaussian pivot element become
too small in magnitude. The current version of the
MUNCHEPS simulator does not make use of sparse
matrix generation techniques involving grouped vari-
ables described earlier, although such a feature is
certainly desirable, especially for simultaneous and
sequential-clustered simulation of large plants.

Simulator structure

The simulator was designed so that the numerical
integrator “drives” the unit model routines indirectly
through an interface routine. This allows for sequen-
tial-clustered and simultaneous integration, where the
ODES from different equipment pieces may be treated
together in spite of the modularity of the routines
generating the essential derivative functions.

Figure 3 shows the basic block structure of the
MUNCHEPS simulator. The arrows show the
routine calling procedure that is used when new
values of the ODE-dependent y are to be stored in the
stream and equipment data structures. Values of y
are calculated by the Gear numerical integration
package, denoted GEAR. GEAR then calls the unit
model routines with the new values of y through the
unit model routine calling program ROCALL. The
unit model routines in turn make calls on the physical
property system through the interface routine PROP.
Also, the routines GET and PUT are used to store
and retrieve numerical values from the plex stream
data structure.

After all values of y have been stored and associ-
ated physical property estimates have been generated,
control returns back to the GEAR routine and then
to the supervisory routine SUPER. Also shown in
Fig. 3 is the sparse matrix solver package SLUD,
which is called by the GEAR integrator when it is
necessary to decompose a new Jacobian matrix, and
during each corrector iteration. The main program,

Fig. 3. Routine calling procedure for storing y values after
a corrector iteration or for storing perturbed y values during

Jacobian element calculation.

written by the preprocessor, is also shown. Further
details of the routine calling procedure for various
types of operations carried out by the MUNCHEPS
simulator and details of the data and routine struc-
tures are given in Fagley (1984).

The critical design feature of the simulator archi-
tecture shown in Fig. 3 is that the numerical integra-
tor “drives” the unit model routines by calling them
through the calling program ROCALL. It is this
feature of the program structure that allows for
simultaneous and sequential-clustered integration in
the modular simulation framework.

Development of the procedure by which the
numerical integrator drives the unit model routines
involved very extensive modification of the Gear
integration software (acquired from Livermore Lab-
oratories); in its original form, the software is capable
of integrating just one ODE set. The package was
altered so that N, (potentially as large as the number
of units in a plant) clusters of ODE sets could be
handled. Modifications to the original code were also
required to allow for implementing the predictor
equations for all clusters prior to beginning corrector
equation iteration for any clusters and for forcing an
extra corrector iteration at the end of each successful
integration step.

The automatic stepsize and method-order logic
was also altered so that multiple sets of ODES
could be handled. In the original Gear code, the
allowable time steps of integration that meet the
specified user-supplied error tolerances arc estimated
for orders q + 1, q and q - 1 every (q + 1)th time
step; here q is the method order being used on the
current step. The integrator then chooses the largest
of these three estimated time steps for its next step-
size, and switches (if necessary) the order of the
method accordingly.

This order and stepsize-changing logic was altered
as follows for the MUNCHEPS simulator. Every
(q + 1)th time step an acceptable time step of inte-
gration is estimated for each ODE set (i.e. for each
of the N, clusters) for each of three method orders,
q + 1, q and q - 1. For each of these three orders,
a minimum acceptable integration time step (taken
over all N, ODE sets) is found. The maximum of
these three minimum time steps is then selected as the
next stepsize; the method order is changed, if neces-
sary, to that producing the selected stepsize.

We also found after extensive testing that integra-
tor performance could be improved significantly (see
Table 9) by modifying the Jacobian matrix updating
strategy used in the original Livermore software.
Originally, a new Jacobian matrix calculation was
triggered whenever the quantity hc, [see equation
(9)] changed by more than 30% as a result of stepsize
and order changes. We modified this criterion as
follows:

1. The Jacobian matrix J is updated only when the
corrector equations fail to converge.

172 J. C. FAGLEY and B. CARNAHAN

2. Whenever hc,, changes by more than 2%,
the nonzero elements of the matrix hc,J are
resealed, and a new sparse matrix LU decompo-
sition is performed using the currently saved
calculation strategy.

Plex data structures were also incorporated into the
Gear integrator to facilitate storage of numerical
integrator quantities for clustered sets of ODES. One
feature of the original Gear integrator is that only one
type of call is made to the derivative evaluation
routine, independent of whether this call is made
during a predictor step, a corrector step, a call to
evaluate derivatives for finite-difference Jacobian
matrix determination, a call after an unsuccessful
attempted step, etc. In the type of dynamic simulation
described here, it is important to distinguish among
these and other types of calls because coupled alge-
braic equations are involved, some of which involve
running sums.

For example, the integral portion of the action
taken by a PID controller involves numerical esti-
mation of the time integral in the offset of a sensed
process variable. Tn order to be able to estimate this
running sum, it is important that information be
passed to the unit model routine for the PID con-
troller which indicates what type of call it is. For
instance, if this call represents a normal continuation
of integration, a term is added onto the running sum.
If this is the first call after an unsuccessful time step,
a term must be subtracted from the running sum, and
so on. Modifications were made to the Gear integra-
tor to allow for the passage of this type of infor-
mation through an integer code in the calling
argument list to the interface routine ROCALL.

Another feature of dynamic simulation of this sort
is that the governing ODE sets are coupled with
algebraic equation (AE) sets. In the most general
case, unit model routines can contain algebraic
equations which include variables calculated by other
unit model routines. It would then be possible to
formulate simulation problems with an algebraic
equation set, characteristic of steady-state chemical
plant simulation, “imbedded” inside the dynamic
problem. Rigorous solution would then involve
convergence of the overall algebraic equation set
(similar to the steady-state simulation case) during
each corrector iteration for numerical solution of the
overlying ODE description.

In the simplest (and most common) case all
algebraic equations coupled with the ODE set for a
unit model routine only contain variables that appear
in that unit routine model so that algebraic equation
solution can be accomplished internal to the unit
model routine.

For the formulation of the coupled ODE and AE
set description of units encountered during develop-
ment of the MUNCHEPS simulator, some cases were
encountered where AE and ODE variables of interest
in one routine were indeed calculated in another

routine. For example, determination of component
balances on an individual tray in a distillation column
involve both liquid flows down from the tray above
and vapor flows upward from the tray below.

It was found that by using a two-round calling
procedure, these types of problems could be over-
come. For instance, suppose a new value of the
ODE-dependent variables are determined at a given
time level. A first series of calls is then made to all tray
routines, and all vapor flows and liquid flows are
determined. Subsequently, a second round of calls
is made during which derivatives are determined.
Since all liquid and vapor flows have been deter-
mined during the first round of calls, the derivatives
may now be determined accurately. Details of this
two-round calling procedure are given in Fagley
(1984).

Another example involves control of liquid level
in a mixing tank. Calculation for material balance
ODES for the tank requires that the outlet flow
rate be known, which in turn requires a known
controller setting, which in turn relies on liquid level
in the tank. On the first round of calls to the mixing
tank<ontroller subprocess, the liquid level (an alge-
braic variable that depends on the current values of
the molar holdup, composition, density and physical
dimensions of the mixing tank) is computed by the
tank model and a controller setting is determined by
the controller model, given the current liquid level.
On the second round of calls, the correct controller
setting, and therefore the correct outlet flowrate, are
available for accurate derivative evaluation by the
tank model.

DESCRIPTION OF TEST PLANTS

We include here tests for two example plants
simulated with MUNCHEPS. The first plant is the
controlled distillation system shown in Fig. 4. The
accompanying MUNCHEPS topology map is shown
in Fig. 5. This distillation system is used to separate
a mixture of benzene, toluene and o-xylene. The
control scheme used is a material-balance control
scheme suggested by Shinskey (1977). Results shown
for this plant are for a total simulation time of 25 min
with a perturbation in the feed rate occurring at a
simulation time of 3 min.

This controlled fractionation plant may be
described as an underdamped oscillatory system with
a period of roughly 10 min. Each TRAY unit routine
model contains four ODES, one for each component
(chemical species) and one for total liquid holdup.
The reboiler routine model contains five ODES, one
for each component, one for liquid holdup and one
for the metal temperature in the reboiler (the reboiler
routine includes the reboiler heat exchanger and
column bottoms). The overhead condenser routine
model contains five ODES, one for each component,
one for the total liquid holdup and one for the
enthalpy of the liquid in the overhead condenser

Sequential-clustered method for plant simulation

n

173

Condensate

Fig. 4. Layout of a seven-tray distillation column. Four PID controllers, denoted 1 to 4, are employed.
Hashed lines denote information (controller signal) streams.

accumulator. Details of the modeling equations (with
a total of 38 ODES) used to describe the dynamic
behavior of each piece of equipment, and further
discussion of the control strategy and system
response, are given in Fagley (1984).

Results are also shown for a second plant, consist-
ing of the seven-tray column shown in Fig. 4 with
a double-pipe heat exchanger added to exchange
heat between the cold feed entering the fraction-
ation system and the hot liquid leaving the column
bottoms. For this application, 10 method-of-lines
sections were selected for the heat exchanger, so that
the overall system size was 68 ODES, with 38 ODES
for the column and 30 for the heat exchanger. As
before, the results shown are for the plant simulated
up to a simulation time of 25 min, with a feed rate
perturbation introduced at a time of 3 min.

TEST RESULTS

The seven-tray plant of Fig. 4 was simulated
using three different equipment grouping strategies:
simultaneous (one integration block with 38 ODES);
sequential-clustered (the reboiler and bottom three
trays in one integration block and the condenser and
top four keys in a second); and total sequential with
nine integration blocks (one for each tray, one for the
condenser and one for the reboiler).

Table 4 gives a summary results for these tests.
Execution times are for the Amdahl 5860 computer
with a single scalar processor. Results for a simul-

taneous integration with a user-specified, normalized,
r.m.s. truncation error tolerance of 0.0005 was
assumed to be the “exact” solution. “Error” refers
to the time-averaged absolute value of the normal-
ized error in the parameter values for the two
outlet streams (distillate and bottoms product): total

Fig. 5. MUNCHEPS topology of plant shown in Fig. 4.
Each box represents a unit model routine. Streams denoted
P are information streams containing pressures, and are

used to determine flowrates through valves.

174 J. C. FAGLEY and B. CARNAHAN

Table 4. Results for seven-tray plant of Fig. 4. sim, seq-clu, and seq
refer to simultaneous, sequential-clustered and sequential integra-

tion. respectively

Error CPU time storage

e Method (%j (s) (kbvtel

Table 5. Integration statistics for seven-tray column of Fig. 4 with
e = 0.01. R = number of time steps, DE = number of derivative
evaluations, JE = number of Jacobian matrix evaluations for each

cluster in order

0.001

0.0 I

0.1

sim 0.030 14.6 286
seq-clu 0.10 12.3 228

w 0.063 23.0 205
sim 0.42 4.85 286

seq-clu 0.36 4.80 228

=q 0.79 16.1 205
sim 0.78 3.67 286

srq-clu 1.8 3.45 228
sea 2.7 11.9 205

molar flow rate, temperature, enthalpy and mole
fractions.

From Table 4, we see that:

1.

2.

Simultaneous integration tends to be a little
more accurate than the other two techniques for
a given value of error tolerance e.
Simultaneous and sequential-clustered inte-
gration are roughly equivalent to each other and
superior to sequential integration in terms of
execution time.

3. The simultaneous integration scheme requires
the most storage.

The latter observation is to be expected, since storage
for a 38 x 38 Jacobian matrix (and other associ-
ated integrator arrays) must be assigned by the pre-
processor; much smaller Jacobian submatrices are
used in the other two cases. The fact that the simul-
taneous scheme requires only 40% more storage
than the sequential scheme indicates that a large
portion of storage is being used to store the simu-
lator object code. For larger plants, however, the
difference in storage requirements between simul-
taneous and sequential integration will be much more
pronounced.

In view of the results shown in Table 4 for this
plant, either simultaneous or sequential-clustered
integration would be preferred, giving better accuracy
at less cost than for sequential integration. Figure 6

Li 0 Sequential - cludered
* Simultaneou5

20 0 sequsntiot

f \ J

3 10

2
0

i.

01 1 I I
1 2 3

Accuracy (% error)

Fig. 6. CPU time vs accuracy (Percentage error) for sequen-
tial, sequential-clustered and simultaneous integration for

the plant of Fig. 4.

Method
sim seq-clu seq

“r 32 34 114
DE 3344 4417 13,532
JE 1 1.2 2, 18, 17, 16, 16,

IS, 14, 14, 14
% DE for JE 43 27 19
CPU time (s) 4.85 4.80 16.1

illustrates the tradeoff between cost (CPU time) and
accuracy for the results shown in Table 4.

Table 5 shows final numerical integrator statistics
for the three integration strategies with an error
tolerance e of 0.01.

Notice that simultaneous integration, being the
most rigorous technique, requires the fewest number
of time steps to complete the simulation, though the
sequential-clustered method requires only a few
more. The cost of evaluating the Jacobian (sub)-
matrices is also clearly indicated in this table. Even
though simultaneous integration requires only one
Jacobian matrix evaluation, the evaluation of the
elements in the relatively large 38 x 38 matrix
requires 43% of the total individual derivative
evaluations.

By comparison, the sequential scheme requires its
nine Jacobian submatrices to be evaluated an average
of 16 times. However, these submatrices are rela-
tively small (4 x 4 and 5 x 5) and evaluation of the
Jacobian elements by perturbation requires only
19% of the total individual derivative evaluations.
Note that for this plant, the sum of the squares of
the number of ODES in each piece of equipment
(the total number of elements in all nine Jacobians)
is one-ninth the square of the sum (the number
of elements in the Jacobian for simultaneous
integration).

The second plant tested was the distillation system
of Fig. 4 with heat integration between the hot
bottoms stream and the cold incoming feed. Three
equipment-grouping strategies were used:

Simultaneous-one integration block with 68
ODES.
Sequential-10 integration blocks: one for the
feed heat exchanger (30 ODES), one for the
reboiler and one for the overhead condenser
(5 ODES each) and one for each of the seven
trays (four ODES each).
Sequential-clustered-three equipment clusters,
one for the feed-bottoms heat exchanger (30
ODES), one for the reboiler and bottom three
trays (17 ODES) and one for the overhead
condenser and top four trays (21 ODES).

The plant was tested with a normalized single-step
truncation error tolerance of 0.01 specified for the
numerical integrator. The results are summarized in
Table 6.

Sequential-clustered method for plant simulation 17.5

Table 6. Integration statistics for seven tray column of Fig. 4

with feed heat exchanger. e = 0.01, n = number of time steps,
DE = number of derivative evaluations, JE = number of Jacobian

matrix evaluations for each cluster in order

n,
DE
JE
% DE for JE

Storage (kbyte)
CPU tnne (s)

Method
sim seq-clu seq

38 36 89
13.464 8687 18,184

2 1, I.1 3, 3, , 3, 3
68.7 20 21.5

362 290 236
10.2 7.34 20.2

Note that the sequential-clustered scheme is par-
ticularly efficient for this problem, requiring 38%
less CPU time than the simultaneous run, and 64%
less CPU time than the sequential run. As before,
the sequential-clustered approach makes good use
of both execution time and storage. However, the
benefits of sequential-clustered relative to simul-
taneous integration are somewhat exaggerated here
because, on average, we would expect the more
rigorous simultaneous approach to require fewer
Jacobian matrix evaluations.

Table 6 shows once again that the cost of evaluat-
ing the large (68 x 68) Jacobian matrix is quite
expensive in the simultaneous case, requiring over
two-thirds of the individual derivative evaluations.
The large size of this Jacobian matrix is reflected in
the total storage requirements. The simultaneous
scheme requires an additional 53% memory and the
sequential-clustered approach an additional 23%, as
compared to the sequential case.

The sequential scheme is particularly inefficient in
terms of execution time. This is due to the high degree
of recycle internal to the column. However, from
these results we may also conclude that the degree of
coupling is not great enough to demand simultaneous
treatment of the entire column and heat exchanger
(the results for all cases differ by less than 1%).

Table 7 shows the CPU time breakdown for simul-
taneous and sequential integration of the distillation
test plant shown in Table 5. Note that in both cases,
most execution time is spent in computing physical
properties. We used a proprietary property package
supplied by Professor Motard of Washington Univer-
sity of St Louis for test purposes; although a new
property system interface program was written for
the MUNCHEPS simulator, the property routines
themselves were not modified.

Table 7. Breakdown (in percent) of CPU time for the simultaneous
and sequential integration cases shown in Table 5

SlIllUltdlleOUS Sequential

(%) (%)

Physical properties 79.4 82.9
Unit model routine calculations 5.7 4.7
Plex structure storage/retrieval 4.2 4.3
Sparse LU strategy/decomposition 3.9 0.8
Sparse LU solution 3.5 3.0
Gear integrator 1.6 2.2
Supervisory routines 1.7 2.1

Total 100.0 100.0

Table 8. Time statistics for sparse and full LU decompositmn and
equation solution for simultaneous (38 x 38 system) and sequential

(two 5 x 5 and seven 4 x 4 subsystems) integration of the seven-tray
plant up to a simulation time of 3 min. Results are for simulation of

seven-tray column with error tolerance e = 0.01

Simultaneous intenration CPU time cs) Savines (%)

Full decomposition 0.500
Sparse decomposition 0.156 68.8

Full solution 0.206
Sparse solution 0.140 32.0

Total full 0.706
Total sparse 0.296 58.5

Sequential integration
Fult decomposition
Sparse decomposition

Full solution
Sparse solution

Total full
Total sparse

0.041 I
0.0320 22.1

0.189
0.121 36.0

0.230
0.153 33.5

There are two approaches one might take to im-
prove overall execution times. One is to reduce the
amount of calculation needed for each physical prop-
erty evaluation. This would require modification or
replacement of the property routines or some short-
cut approach such as interpolation or extrapolation
of infrequently computed property values, and would
reduce the percentage of execution time spent in the
physical properties routines.

Another way of decreasing overall execution time
is to use more efficient numerical integration tech-
niques so that a given simulation is accomplished in
fewer steps and, consequently, with the need for fewer
physical property evaluations. This second method
would not necessarily show a change in execution-
time breakdown percentages.

Table 8 shows the relative advantage of using
sparse matrix decomposition techniques. Note that
for the small Jacobian submatrices used in sequential
integration, the savings in matrix decomposition and
solution times are relatively small. By contrast, for
the larger and more sparse Jacobian matrix used in
simultaneous integration, more pronounced savings
in execution times are realized with the sparse tech-
nique. As shown here, using a sparse technique for
this 38 x 38 matrix results in a 58.5% saving in
execution time. For larger systems, greater savings
would be realized.

Table 9 summarizes one final set of numerical
experiments performed on the seven-tray distillation
plant. The strategy used in the original GEAR soft-
ware involves updating the Jacobian matrix whenever
the corrector equations fail to converge or whenever
the quantity hc, [see equation (9)] changes by more
than 30%. Results using this strategy are reported as
“Orig” in the table.

After experimentation with other Jacobian matrix
recalculation strategies, we adopted a somewhat
different approach and modified the integration
software accordingly. The Jacobian matrix is up-
dated only when the corrector equations fail to
converge. Whenever the quantity hc, changes by

176 J.C. FACLEY and B. CARNAHAN

Table 9. Execution time statistics and storage requirements for three
different Jacobian matrix updating strategies. Orig cases use the
original Gear (Livermore) software heuristic (see text), New cases use
the modified updating criterion (see text), Diag cases use the original
heuristic wrth a diagonal Jacobian matrix approximation only.
Results are for simulation of sewn-tray column with error tolerance

e =O.Ol

Method

Simultaneous

Sequential

RUtI

New
Orig
Diag

New
Orig
Diag

CPU time Increase storage
(s) (%) Wyte)

4.85 286
Il.4 135 286

132 2620 274

16.1 205

33.0 105 205
76.0 372 204

more than 2%, the nonzero elements of the matrix
hc,J are resealed (note that the Jacobian elements
themselves need not be recalculated) and the resealed
matrix is decomposed. The results of these tests
(shown as “New” in the table) illustrate that the new
strategy is clearly superior, especially for simul-
taneous integration (the “Orig” and “New” run
results are of comparable accuracy). Effectively the
new strategy allows a calculated Jacobian matrix to
be used over more steps (because of the resealing)
without sacrificing accuracy, and reduces the number
of Jacobian evaluations required for the complete
integration.

Table 9 also includes results for cases where a
diagonal approximation to the Jacobian matrix is
used (labelled “Diag”). While this strategy results in
some storage savings, there is a heavy penalty in
terms of increased execution time. It should be
mentioned here that all other results presented in this
paper have been obtained using the new Jacobian
matrix updating strategy.

CONCLUSIONS

Design, construction and testing of a prototype
modular, dynamic, chemical plant simulator capable
of simulating plants that give rise to large, stiff
equation sets has revealed several features important
to this type of simulation. First, total sequential,
sequential-clustered and simultaneous integration in
a single modular simulation framework has been
demonstrated. Simultaneous treatment of two or
more individual unit model routines is made possible
through use of a novel simulator structure in which
the numerical integrator “drives” the unit model
routines indirectly through an interface; the integra-
tor incorporates features to allow for solution of
many potentially large ODE systems.

Subsequent testing of the simulator showed that a
well-chosen sequential-clustered scheme is often the
optimal choice, giving good execution time response
with moderate storage requirements and acceptable
accuracy. The sequential-clustered approach allows
for simultaneous treatment of units that display a
strong interdependence, while integration remains
sequential from cluster to cluster.

Testing of the simulator has also demonstrated the
benefits of sparse matrix solution techniques and the
benefits of a new Jacobian matrix updating strategy.
A sparse matrix grouped-variable Jacobian gener-
ation technique would be beneficial especially for the
sequential-clustered and simultaneous integration
approaches, but this feature is not currently incor-
porated into the prototype simulator.

Additional testing of the simulator demonstrated
the use of the method of lines for treatment of
distributed parameter models in the dynamic, modu-
lar simulation framework. The resulting ODE sets
were easily handled by the stiff integrator. In
addition, experience in constructing and testing the
simulator has shown that a preprocessor and plex
data structures are well suited to this type of simu-
lation, allowing for enhanced flexibility and making
good use of available storage.

REFERENCES

Barney J. R., Dynamic simulation of large stiff systems.
Ph.D. Thesis, McMastcr University, Hamilton, Ontario
(1975).

Biegler L. T., Simultaneous modular simulation and opti-
mization. Proc. Second Int. Conf. on Foundations of
Computer-Aided Process Design (A. W. Westerberg and
H. H. Chien, Eds), p. 369. CACHE, Austin (1983).

Biegler L. T., On the simultaneous solution and optimiz-
ation of large scale enaineerina systems. Comput. them.
Engng 12, 3cj7 (1988). - - -

Biegler L. T. and J. E. Cuthrell, Improved infeasible path
opimizalion for sequential modular simulators-I. The
interface; II: The optimization algorithm. Compur. them.
Engng 9, 245 (1985).

Biegler L. T. and R. R. Hughes, Process optimization: a
comparative case study. Compur. them. Engng 7, 645
(1983).

Byrne G. D. and A. C. Hindmarsh, Numerical Solution of
S&IT Ordinary Difleren&iaI Equation Sets. AIChE Today
Series, New York (1977).

Byrne G. D. and A. C. Hindmarsh, Stiff ODE solvers: a
review of current and coming attractions. J. Comput. Phys
70, I (1987).

Carver M. B., FORSIM-VI: a program package for the
automatic solution of arbitrarily-defined differential
eauations. Comput. Phys. Commun. 17, 239 (1979).

De&out J. J. and M. J: Abbott, A computation of one-
dimensional combustion of methane. AIAA JI 3, 381
(1965).

Distefano G. P., Stability of numerical integration tech-
niques. AIChE JI 14, 946 (1968).

Dudczak J., Optimal structuring of modular computations
of chemical engineering systems. Comput. rhem. Engng
10, 7 (1986).

Duff I. S., Sparse Matrices and Their Uses. Academic Press,
New York (1981).

Enright W. H. and T. E. Hull, Comparing numerical
methods for the solution of stiff systems arising in chem-
istry. Numerical Method for Differential Systems (L.
Lapidus and W. E. Schiesser, Ed?.). Academic Press, New
York (1976).

Evans L. B., B. Joseph and W. D. Seider, System structures
for process simulation. AIChE JI 23, 658 (1977).

Fagley J. C.. Flexibility and efficiency in modular dynamic
chemical plant simulation. Ph.D. Thesis, University of
Michigan (1984).

Franks R. G. E.. Modeling and Simulation in Chemical
Engineering. Wiley, New York (1972).

Sequential-clustered method for plant simulation 177

Gear C. W., The automatic integration of stiff ordinary
differential equations. Infirm. Process. 68, 187 (1968).

Gear C. W., Numerical Initial Value Problems in Ordinary
Differential Equations. Prentice-Ha& New York (1971).

Guertin E. W., J. P. Sorenson and W. E. Stewart, Exponen-
tial collocation of stiff reactor models. Compuf. them.
Engng I, 197 (1977).

Ham P. G., REMUS: the transient analysis of integrated
chemical processes. Ph.D. Thesis, University of Pennsyl-
vania (1971).

Haydweiller J. C., R. F. Sincovec and L. Fan, Dynamic
simulation of chemical processes described by distributed
and lumped parameter models. Comput. them. Engng 1,
125 (I977).

Hillestad H. and T. Hertzberg, Dynamic simulation of
chemical engineering systems by the sequential modular
approach. Comput. &em. Engng 10, 377 (1986).

Hindmarsh A. C., Construction of math software, Part III.
The control of error in the Gear package. Report UCID
30050 Part 3, Lawrence Livermore Laboratories (1974a).

Hindmarsh A. C., Gear ODE system solver. Report
UCID 3000, I. Rev. 3, Lawrence Livermore Laboratories
(1974b).

Hindmarsh A. C., Linear multistep methods for ODES..
Method formulations, stability, and the methods of
Nordsieck and Gear. Report UCRL-5 I 186, Lawrence
Livermore Laboratories (1977).

Hindmarsh A. C., Stiff system problems. Report UCRL-
87406, Lawrence Livermore Laboratories (1979).

Hlavacek V., Analysis of a complex plant-steady state and
transient behavior. Comput. &em. Engng 1, I (1977).

Hutchison H. P.. D. J. Jackson and W. Morton, The
development of an equation-oriented flowsheet simulator
and optimization package, I and II. Comput. Chem.
Engng 10, I (1986).

Ingels D. M. and R. L. Motard, PRODYC-a simulation
for process dynamics and control. Report Re. 4-70,
University of Houston (1970).

Johnson A. I. and J. R. Barney, Numerical solution of
large systems of stiff ordinary differential equations in a
modular simulation framework. Numerical Merhods .for
D@rential Systems (L. Lapidus and W. E. Schiesser,
Eds). Academic Press, New York (1976).

Liu Y. C. and C. B. Brosilow, Simulation of large
scale dynamic systems. Comput. them. Engng 11, 241
(1987).

Kuru S. and A. W. Westerberg, A Newton-based strategy
for exploiting latency in dynamic simulation. Comput.
them. Engng 9, I75 (1985).

Lopez L., DYSCO: an interactive executive program for
dynamic simulation and control of chemical processes.
Ph.D. Thesis, University of Michigan (1974).

Mah, R. S. H., S. Michaelson and R. W. H. Sargent,
Dynamic behavior of multi-component multi-stage sys-
tems. Numerical methods for solution. Gem. Engng Sci.
1, 3 (1962).

Morton W. and G. J. Smith, Time delays in dynamic
simulation. Comput. them. Engng 13, 631 (1989).

Motard R. L., M. Shacham and E. M. Rosen, Steady-state
chemical process simulation. AIChE Jt 21, 417 (1975).

Palusinski 0. A., Simulation of dynamic systems using
multirate integration techniques. Tracts. Sot. Comput.
Sim. 2, II (1985).

Patterson G. K. and R. B. Rozsa, DYNSYL: a general-
purpose dynamic simulator for chemical processes.
Comput. them. Engng 4, 1 (1980).

Perkins J. D., Equation-oriented flowsheeting. Proc. Second
Irtt. Conf- on Foundations oJ Computer-Aided Process
Design (A. W. Westerberg and H. H. Chien, Eds), p. 309.
CACHE. Austin (I 983).

Ponton J. W., Dynamic process simulation using flowsheet
structure. Compur. them. Engng 7, 13 (1983).

Ponton J. W. and V. Vasek, A two-level approach to
chemical plant and process simulation. Comput. them.
Engng 10, 277 (1986).

Shacham M. et al., Equation oriented approach to process
llowsheeting. Comput. them. Engng 6. 79 (1982).

Shinskey F. G., Distillation Control. McGraw-Hill, New
York (1977).

Stadtherr M. A. and J. A. Vegeais, Recent progress in
equation-based process flowsheeting. Proc. I985 Summer
Computer Simukztion Conf. Society for Computer Simu-
lation (1986).

Weimer A. W. and D. E. Clough, A critical evaluation of
the SIRK methods for stiff systems. AIChE JI 25, 730
(1979).

