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Abstract-We describe the design, development and testing of a prototype simulator to study problems 
associated with robust and efficient solution of dynamic process problems, particularly for systems with 
models containing moderately to very stiff ordinary differential equations and associated algebraic 
equations. 

A new predictor-corrector integration strategy and modular dynamic simulator architecture allow for 
simultaneous treatment of equations arising from individual modules (equipment units), clusters of 
modules, or in the limit, all modules associated with a process. This “sequential-clustered” method allows 
for sequential and simultaneous modular integration as extreme cases. 

Testing of the simulator using simple but nontrivial plant models indicates that the clustered integration 
strategy is often the best choice, with good accuracy, reasonable execution time and moderate storage 
requirements. 

INTRODUCTION 

Two major stumbling blocks in the development 
of robust dynamic chemical process simulators are: 
(1) mathematical models for many important equip- 
ment types give rise to quite large systems of ordinary 
differential equations (ODES); and (2) these ODE 
systems tend to be moderately to very stiff. The 
development of robust stiff numerical integrators and 
introduction of more powerful computers (larger 
memories, faster processors, new architectures) 
during the past few years now make the dynamic 
simulation of many plant operations a solvable prob- 
lem. We need reliable, accurate dynamic chemical 
plant simulators that make efficient use of these new 
computational tools and hardware. Special attention 
must be given to the treatment of the large Jacobian 
matrices required by stiff-system algorithms, even for 
processes with only a few units. 

This paper describes study into efficient treatment 
of the dynamic chemical plant simulation task. The 
work involved design and construction of a prototype 
simulator capable of handling chemical processes 
giving rise to large stiff ODE systems. This research 
simulator employs test models for controllers, distil- 
lation equipment and a double-pipe heat exchanger, 
and makes extensive use of plex data structures for 
storing numerical integrator, process and physical 
property system variables and constants. 

We implement a novel approach in modular 
dynamic simulation, viz. a single simulator architec- 
ture that allows for simultaneous treatment of 
equations arising from individual modules (equip- 
ment units), clusters of modules, or in the limit, all 
modules associated with a process. This paper de- 
scribes the most important features of the prototype 

simulator and includes results of tests on simulator 
performance. Direct numerical comparisons of 
alternative integration strategies are given for some 
relatively simple test plants. Conclusions and recom- 
mendations drawn from our experiences should be 
of interest to other workers developing dynamic 
simulation software. 

BACKGROUND 

The mathematical modeling of transient chemical 
process operations gives rise to differential/algebraic 
equation systems (principally from mass and energy 
conservation laws) that must subsequently be solved 
during execution of a dynamic process simulator. 
In some cases, the well-mixed assumption applies, 
and the system boundary may be taken around an 
equipment subunit, or even an entire unit. Examples 
of such lumped parameter systems are stirred tank 
reactors, mixers and individual stages in a distillation 
column. 

If spatial gradients within an equipment unit are 
important, distributed parameter systems of equa- 
tions arise. The unsteady-state modeling equations 
are partial differential equations (PDEs), typically 
parabolic or hyperbolic, that depend on the nature 
and level of detail of the model. Examples of dis- 
tributed parameter systems are plug flow reactors, 
packed separation columns and heat exchangers. 

Transient distributed parameter models can 
usually be treated using the “method of lines” (Byrne 
and Hindmarsh, 1977; Haydweiller et al., 1977; 

Carver, 1979) in which spatial derivatives are approxi- 
mated by finite-differences. As a result, a single PDE 
will be represented as a system of ODES, with time 
as the independent variable. By using the method of 
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lines, the dynamic model equation system for a 
chemical plant consists primarily of ODES that can 
be solved with a single numerical integrator. 

The overall equation system will also contain 
algebraic equations that are linked to the ODE- 
dependent variables. Many of these associated 
algebraic equations are required for physical or trans- 
port property evaluation (e.g. equations of state 
might be used to determine densities). 

Until fairly recently most simulator research efforts 
have focused on the modeling of steady-state process 
operations. Historically, early steady-state simulators 
(see reviews by Hlavacek, 1977; Motard et al., 1975), 
and the most popular commercial ones, employ a 
sequential-modular structure in which the procedure 
for solving the model equations for an individual 
equipment unit is incorporated into an individual 
subroutine associated with that unit and assigned to 
a unit program library. An executive routine calls 
upon the module subroutines in sequence (in an order 
specified by the user or determined by a flowsheet 
analyzer), usually following material flow through 
the process from feed to product streams. Typically 
the module routines (and occasionally the executive 
program) call upon a physical property package to 
generate essential property values. 

If recycle streams are present, one or more 
streams are “torn” to render the system acyclic, and 
the sequential-modular solution strategy involves a 
multitiered iterative structure on calculation: (I) an 
outermost iteration involving solution of nonlinear 
equations associated with variables in the tom 
streams; (2) sequential calls upon the unit module 
routines; (3) possibly iterative solution of the mode1 
equations within a module; and (4) evaluation of 
physical properties needed by the modules during 
solution of the model equations (the property 
evaluations may again involve iterative numerical 
methods). Many strategies have been developed for 
optimal or near-optimal mod&e calculation ordering 
(e.g. Duczak, 1986). 

“Design” problems (in which a sufficient number 
of input stream, output stream and equipment 
parameters are specified to render the equation sys- 
tem solvable for the remaining process variables) 
are not solved in a “natural” way by modular- 
sequential simulators. Multiple versions of the same 
model equations (involving different “known” and 
“unknown” variables) may be needed, increasing the 
complexity of the modules. Or substantial low-level 
repetition of “simulation” unit module calculations 
may be required to satisfy internal stream specifi- 
cations. Some design specifications (e.g. for process 
product streams) may even lead to iteration loops 
outside those required for converging the recycle 
calculations. Thus the overall computational scheme 
for design problems may involve nested iteration of 
a fairly high order. Process optimization may add 
yet another level of iteration to the calculations, 
although Biegler and Hughes (1983), Biegler and 

Cuthrell (1985) and Biegler (1988) show that recycle 
convergence and optimization calculations can be 
performed simultaneously using successive quadratic 
programming algorithms. 

Principal alternative steady-state simulator struc- 
tures are those incorporated into simultaneous simu- 
lators, which come in several generic forms variously 
called equation-based, simultaneous, simultaneous- 
modular and modular-simultaneous (Perkins, 1983; 
Biegler, 1983, Shacham et al., 1982; Stadtherr 
and Vegeais, 1986; Morton and Smith, 1989). In 
these simulators, all (or almost all) of the equations 
or simplified (frequently linearized) forms of the 
equations (including model equations, physical 
property equations, stream connection equations, 
process specification equations, etc.) are solved 
simultaneously. 

The simultaneous simulators have the prime virtue 
that “simulation” and “design” problems can be 
solved in essentially the same way, provided that the 
appropriate number (and combination) of variables 
have been assigned values to render the equations 
solvable. The highly nested iterative structure needed 
to solve “design” problems with sequential-modular 
simulators is eliminated and optimization calcu- 
lations can be performed using infeasible path 
algorithms (Hutchison et ai., 1986). 

However, the simultaneous simulators have 
their own problems, principally resulting from the 
numerical solution of the very large system of simul- 
taneous nonlinear equations generated. Usually 
Newton or quasi-Newton algorithms are used to 
solve these nonlinear equations. This requires 
repeated evaluation of the (partial derivative) ele- 
ments in the Jacobian matrices for the equation 
system (see later), and subsequent soIution of high- 
order sparse linear equation systems. Initial guesses 
must be provided by the user or generated by the 
simulator for all (possibly thousands for large plants) 
of the unknown process variables. 

Although most attention has been focused on 
steady-state simulation and design, a few general- 
purpose dynamic process simulators (Ingels and 
Motard, 1970; Ham, 1971; Franks, 1972; Lopez, 
1974; Barney, 1975; Patterson and Rozsa, 1980) have 
been developed during the past 20 yr. The structures 
of most of these simulators are parallel to those for 
the steady-state simulators, i.e. modular-sequential 
and simultaneous. 

Virtually all modular dynamic simulators consist 
of four principal parts: (1) unit model subroutines 
that incorporate the model equations for the associ- 
ated equipment types; (2) a physical property subsys- 
tem that provides estimates of densities, enthalpies, 
vapor-liquid distribution coefficients, etc.; (3) a 
numerical integrator; and (4) a supervisory routine 
that performs input/output operations and oversees 
execution of the simulation calculations. 

These simulators are called “modular” because 
each piece of equipment in the physical plant has its 
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dynamic behavior represented by a set of differential 
and algebraic equations incorporated into a unit 
model subroutine. The simulator framework is a 
general one, i.e. once the unit model subroutines for 
“standard” unit types have been constructed, they are 
available in a unit model subroutine library, and may 
be drawn together in different ways depending on the 
layout of the plant being simulated and the particular 
integration strategy used. 

The unit model routines use input (material 
and information) stream and equipment parameter 
values, call upon the physical property system rou- 
tines as needed, and compute estimates of the deriva- 
tives for the ODE-dependent variables associated 
with the unit. The numerical integrator uses these 
derivative estimates to generate updated values 
for the ODE-dependent variables at discrete times, 
which are then used by the unit module routines 
to calculate output stream parameter values. Unit- 
related algebraic equations are also solved during 
each module call using appropriate, robust numerical 
methods. 

The steady-state equation-based (simultaneous) 
simulators can also be used to solve ordinary differ- 
ential equations in addition to nonlinear algebraic 
equations. The ODES are typically integrated using 
predictor--corrector algorithms, which require, at 
each time step, the iterative solution of the corrector 
equations. Since the corrector equations are non- 
linear algebraic equations, they can be solved by the 
same (typically Newton or quasi-Newton) algorithm 
that is used to solve the other nonlinear algebraic 
equations for the process. 

From an aesthetic viewpoint, the generality of the 
simultaneous equation-based approach to solving 
process problems is very attractive. Both steady-state 
and dynamic results can be produced, and because 
all equations are being solved simultaneously, math- 
ematical rigor is assured. 

Unfortunately, the addition of a potentially large 
number of corrector equations (one for each ODE) to 
an already large set of associated nonlinear algebraic 
equations leads to nonlinear equation systems of 
large order, for which our current methods are very 
heavily taxed and may not be sufficiently robust to 
guarantee reliable performance. It is not clear from 
the literature that large dynamic process plant models 
involving thousands of mixed algebraic and differ- 
ential equations have been solved successfully and 
consistently using this approach. 

In recent years, several new approaches (Palu- 
sinski, 1985; Hillestad and Hertzberg, 1986; Liu and 
Brosilow, 1987) have been suggested to accomplish 
dynamic simulation in a modular framework. First, 
there is the technique of partitioning the flowsheet 
and identifying streams that interconnect units or 
subsets of the plant units. Each unit or subset is 
integrated using a separate numerical algorithm, with 
values of interconnecting stream parameters being 
interpolated/extrapolated in time. This technique 

requires a supervisory program that keeps all units 
or subsets at roughly the same time level, oversees 
extrapolation and interpolation of essential stream 
parameter values and provides a strategy for retrac- 
ing integration time steps when extrapolated values 
later prove to be inaccurate. 

This approach is probably of greatest utility in 
cases where individual units display a weak inter- 
dependence. When there is heavy coupling of plant 
units, and the units show a strong degree of inter- 
dependence through either material or information 
(control signal) stream connections, extrapolation in 
time is often inaccurate, leading to retracing of 
integration time steps. 

Other novel approaches, developed in recent years, 
include: (1) partitioning of plant structure, with tear- 
stream values guessed and iterated upon (Ponton, 
1983); (2) use of a two-tiered approach with separ- 
ation of flow-pressure equations from composition- 
dependent equations (Ponton and Vasek, 1986); and 
(3) a technique that takes advantage of “latency”, the 
property that only a few units in a process are usually 
dynamically “active” at any given time (Kuru and 
Westerberg, 1985). 

In each case, the structure of the simulator and the 
way in which the executive interacts with the unit 
modules is dictated by the adopted algorithm and its 
implementation. In turn, the best application of each 
depends on the type of plant being simulated. The 
techniques which use stream tearing, extrapolation/ 
interpolation in time and iteration around recycle 
loops are best suited to plants with minimal inte- 
gration of material, information (control) and energy 
flow. Conversely, the more rigorous approaches with 
global treatment of the ODE set tend to be better 
suited for treating plants with a high degree of recycle 
(material, energy and control signal) and which incor- 
porate advanced, integrated control algorithms, i.e. 
feedforward and decoupling loops. In these highly 
integrated systems, accurate description of flow 
between the units is paramount in describing the 
interdependence of the units. 

In this paper, another novel algorithm will be 
introduced which incorporates the most global and 
mathematically rigorous technique, total simul- 
taneous integration, in the flexible sequential modu- 
lar simulation framework. The simulator structure 
that allows implementation of the simultaneous 
algorithm will also be described. 

STIFFNESS 

One of the more serious problems associated with 
dynamic simulation of complex processing plants is 
that the ODE system models for a wide variety of 
chemical and chemical engineering problems are 
moderate to very stiff (Barney, 1975; Johnson and 
Barney, 1976; Weimer and Clough, 1979). 

Stiff problems are frequently encountered in 
modeling reactive systems, when kinetic rate con- 



stants differ by more than one or two orders of 
magnitude (DeGrout and Abbott, 1965; Enright and 
Hull, 1976; Guertin ef al., 1977). Stiff ODE systems 
also arise in simulating separation units, where trace 
components on trays of a distillation column may 
have response times several orders of magnitude 
smaller than reboiler/condenser response times 
(Barney, 1975; Franks, 1972; Distefano, 1968; Mah 
et al., 1962). 

Stiff equations almost always arise in dynamic 
chemical plant simulation involving solution of PDEs 
by the method of lines. As the spatial mesh size for 
method-of-lines treatment of PDEs is decreased, the 
approximation of the spatial derivatives becomes 
more exact, but the resulting ODE set becomes 
more stiff. For example, for 1-D thermal diffusion 
with homogeneous Dirichlet boundary conditions, 
theoretical analysis shows that the stiffness ratio 
increases as the square of the number of spatial 
sections (Byrne and Hindmarsh, 1987). These types 
of stiff problems have been encountered, for example, 
in modeling gas absorption columns and tubular 
reactors (Haydweiller er al., 1977). 

Several stiff numerical integration techniques have 
been developed in the past 20 yr or so: semi- and 
fully-implicit Runge-Kutta techniques, exponential- 
fitting methods, spline fitting approaches, higher- 
order derivative methods and linear multistep 
algorithms employing backward differences (Byrne 
and Hindmarsh, 1977). All of these stiff techniques 
remain stable for integration step sizes much larger 
than for classical Runge-Kutta and multistep algor- 
ithms, so that even severely stiff stable problems 
may be treated in a reasonable number of time steps. 
Of course small time steps must be used when 
rapid transients are significant, if these are to 
be computed accurately and observed. One feature 
common to stiff numerical integrators is that the 
system Jacobian matrix plays a central role in the 
solution algorithm. 

Currently, the most popular stiff integrators 
are those developed by Gear (1968, 1971). Gear’s 
methods have been found by many workers to out- 
perform other types of stiff integrators on a wide 
variety of chemistry and chemical engineering prob- 
lems. The Gear algorithms are linear, multistep 
predictor-corrector techniques, based on backward 
difference formulae. Gear integration, as imple- 
mented in the most popular stiff-system codes, has 
many desirable features, including automatic startup, 
automatic step-size and method-order adjustment 
capability and built-in error control (Hindmarsh, 
1974a,b, 1977, 1979; Byrne and Hindmarsh, 1977, 
1987). It is a variable-step, variable-order algorithm. 

Consider the initial-value ODE problem: 
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with the system Jacobian matrix: 

[J,jl = %/a~, . (5) 

Here y is a column vector of n ODE-dependent 
variables, f is a column vector of n functional re- 
lationships for the dependent variable derivatives and 
t is the independent variable, time. 

The system Jacobian J is an n x n matrix of partial 
derivatives; its n eigenvalues Li which ma contain 
both real and imaginary parts, [k = ti (- 111: 

I,= -l/s,+kw,. (6) 

For a stable system, all values of ~~ will be greater 
than zero. The imaginary parts o, represent local 
oscillations in components of the solution of the 
ODE system. The stiffness ratio S is a standard 
measure of the stiffness of the ODE system: 

S = =man /rmm (7) 

Here, rmax and rmln are the maximum and minimum 
values of the r,. For S in the range l-10, the problem 
set is nonstiff, and may be treated effectively with a 
conventional nonstiff integration technique such as 
an Adams-Moulton predictor-corrector or explicit 
Runge-Kutta method. For S in the range 100-1000, 
the equation set is moderately stiff. For larger S, 
conventional techniques either cannot be used at all 
or are very inefficient; numerical stability consider- 
ations dictate a very large number of very small 
integration time steps to complete the integration to 
a useful maximum time T. (Note: for nonlinear ODE 
sets, the values of r, and therefore of S vary with 
time.) 

The term r,,, represents a slowly changing com- 
ponent in the solution, while T,,, represents a 
rapidly changing component. For conventional non- 
stiff integrators (e.g. classical explicit Runge-Kutta 
or Adams-Moulton predictor-corrector methods of 
orders 4-6), the time step of integration must always 
remain small (of the order of T,,,~” to maintain numeri- 
cal stability). However, integration must take place 
over a relatively long time in order to determine the 
nature of the slowly varying components. 

The predictor equations are used to generate initial 
estimates of y at each new time level ti + , : 

and the corrector equations are iterated to conver- 
gence using a Newton-Raphson or quasi-Newton 
technique: 

yj;+,” = yl”;, + (I - hc,J*)-’ 

x [ ~co~(Yl’:,)-Yyl”:,+ 2 d,Y,,I-, 1 (9) 
,= I 

dy - = f(y, t>, dt 
Here, 6,, c,, and the (1s and ds are method constants, 
h is the time step of integration (ti+, - ti). q is the 
method order and s is the Newton iteration counter. 
J* is the Jacobian matrix evaluated at the current YW = Yo 7 (4) _ ~_ ~___ 
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or some previous values of y and r. The method 
is referred to as a quasi-Newton technique because 
a single Jacobian matrix may be used for several 
corrector iterations at more than one integration time 
step. 

INTEGRATION STRATEGIES 

Dynamic simulators can be structured in either a 
modular or equation-oriented fashion. Both have 
advantages and disadvantages. For the process en- 
gineer, the modular approach is certainly easier to 
visualize, because processes are normally viewed as 
networks of individual processing units and most of 
the steady-state simulators in current industrial use 
are structured this way internally. In the remainder 
of this paper, we address the problem of effective 
dynamic simulation using a modular approach. 

Once a modular simulation framework and numeri- 
cal integrator have been selected, a strategy for 
incorporating the integrator into the simulator struc- 
ture must be adopted. In the past, two general 
strategies have been used. The first general technique 
involves treating the ODE system arising from each 
individual unit model subroutine separately with the 
numerical integrator (Hlavacek, 1977) (possibly with 
different integrators for different units). Each piece of 
equipment gives rise to an individual ODE system 
which is a subset of the overall ODE system for the 
plant. 

The integration of the ODE subsets is sequenced 
such that each subset is solved individually over a 
time horizon using a local time step. If the input 
variables for the units are fixed at their levels at the 
beginning of the time horizon interval, this approach 
is equivalent to decoupling the units completely dur- 
ing the time interval, a mathematically nonrigorous 
approximation. 

In a modification of this approach, the time 
behavior of stream variables, both information 
(e.g. for control) and material, can be treated 
using interpolation in time (Liu and Brosilow, 1987). 
When materia1 recycle or information feedback 
(e.g. from a controller) occurs, the simulator must 
extrapolate in time to estimate at least some missing 
ODE-dependent variables, so that each ODE sub- 
set can be solved over a given time horizon with 
different time steps (and possibly different integra- 
tors). Algorithms must be developed for ODE subset 
sequencing, interpolation and extrapolation, for 
checking the accuracy of extrapolated values and for 
retracing of the integration calculations when ex- 
trapolated values are later found to be insufficiently 
accurate. This approach is certainly sounder math- 
ematically than the completely decoupled one, but is 
still less rigorous than simultaneous solution of all 
equations. 

The second general strategy for employing a nu- 
merical integrator in a modular, dynamic simulation 
framework involves using the same time step to 

numerically integrate each ODE subset in sequence, 
usually in an order determined by the flow of material 
(the path likely to be followed by a process disturb- 
ance). In this way, all ODE subsets are kept at the 
same time level, and problems with interpolation/ 
extrapolation over more than one time step are 
avoided. The presence of recycle (either material or 
information, e.g. a control signal) can complicate this 
approach, since it may be necessary to iteratively 
reprocess the entire module calculation sequence to 
achieve required accuracy. This problem can be 
minimized by ordering the subsystem integration 
sequence based on the “tearing” of the cycle (in the 
sense of modular-sequential simulation) following the 
unit in the cycle having the longest time constant 
(Dudczak, 1986). 

Each of these techniques has merits. The first 
approach tends to be favored in situations where 
some ODE subsets are difficult to integrate (i.e. 
require relatively small time steps) while other, large 
subsets are relatively easy to integrate. However, this 
approach tends to be unfavorable when the plant 
to be simulated has equipment units that show a high 
degree of interdependence and are sensitive to the 
dynamic behavior of one another. The work de- 
scribed here is concerned with the second approach, 
in which the solutions of the ODE subsets arising 
from each piece of equipment are kept at the same 
simulation time level. 

Traditional modular integration 

One of the criticisms of the modular dynamic 
simulation structure is that due to the modular 
structure, where each type of equipment unit in the 
physical plant has its behavior represented by a 
procedure implemented as an individual subroutine, 
simultaneous treatment of the overall equation sys- 
tem is precluded. In other words, because the 
equation subsystems for computing the derivatives 
and solving any associated algebraic equations for 
each plant unit lie in separate subroutines, they 
cannot be treated collectively. 

The structure of most of the early modular 
dynamic simulators reflects this approach. The simu- 
lators are constructed such that the unit model 
subroutines make calls on the (one or more) numeri- 
cal integrator. In this sense, the unit model routines 
“drive” the numerical integrator, and this traditional 
modular (sequential) structure does preclude simul- 
taneous treatment of the overall equation set. 

Consider, for example, a traditional modular simu- 
lation of the simple, generic plant shown in Fig. 1. 

At each time step, the following procedure would 
be used: 

The subroutine modeling the behavior of unit A 
makes a call to the numerical integrator, provid- 
ing derivative estimates [fin equation (2)] to the 
integrator. The numerical integrator then calcu- 
lates estimates of the ODE-dependent variables 
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Fig. I. Schematic of a plant with three units and nine 
streams. The system Jacobian matrix J is shown on the 
right: M is a submatrix of J; M? results from recycle 

stream 9. _ 

2. 

3. 

in equation (2) and control returns to the unit 
model subroutine for unit A. 
Same as Step I with the subroutine associated 
with unit B making a call to the numerical 
integrator. 
Same as Step I with the subroutine associated 
with unit C making a call to the numerical 
integrator. 

Ne H modular integration approach 

Instead of having the unit model subroutines 
drive the numerical integrator, it is possible to use 
the numerical integrator to drive the unit model 
subroutines. The only known application of this 
approach in the dynamic simulation context is 
described by Patterson and Rozsa (1980). In one 
version of their DYNSYL simulator, the integrator 
calls directly on single modules corresponding to 
individual process units in a modular-sequential 
fashion, gathers system derivatives for all units and 
then implements simultaneous integration for the full 
ODE equation set. 

The simulator structure developed in this work is 
organized such that the integrator makes indirect 
calls on the unit model routines which are individu- 
ally responsible for evaluating derivatives and solving 
any associated algebraic equations for that unit. The 
ODES and algebraic equations associated with an 
individual process unit can be solved simultaneously; 
in addition, ODES and algebraic equations associated 
with any “cluster” of units (where a cluster consists 
of as few as one unit and as many as all units in 
the plant) can also be solved simultaneously by the 
integrator. 

This strategy is implemented by: (1) creating an 
interface routine between the integrator and unit 
routines that is responsible for calling on units within 
a cluster collectively (a) first to solve all algebraic 
equations associated with the cluster, and (b) subse- 
quently to evaluate all derivatives associated with 
ODE dependent variables within the cluster; and 
(2) modifying a standard integrator (we used a Gear 
integrator from Lawrence Livermore Laboratory) so 
that it can perform rigorous simultaneous integration 
within each cluster, for as many as n individual 
equation clusters, where n is the number of units 
in the plant. 

As a result, it is possible to accomplish the inte- 
gration using the traditional sequential approach 
(one unit assigned to each cluster) or using a simul- 
taneous approach (all units assigned to a single 
cluster) or a hybrid of these two approaches, which 
we call the “sequential-clustered” approach. In the 
sequential-clustered approach, the equation sub- 
systems in each cluster (containing one or more 
equipment units) are treated simultaneously, with 
integration remaining sequential in nature from 
cluster to cluster. 

Several strategies for sequencing the integrator 
itself (for different kinds of integrator/interface calls) 
within the general structure described in the previous 
paragraph were postulated and tested as described 
later. 

As an example of how this new modular simulator 
structure is used, consider simultaneous treatment of 
the generic plant shown in Fig. 1. On each integration 
time step (here, assume that there are no algebraic 
equations containing variables associated with more 
than one unit) the following procedure would be used: 

The numerical integrator makes a derivative 
evaluation request by calling the unit model 
subroutine interface program. 
The interface routine calls the unit model rou- 
tine for unit A and the first n, derivatives are 
evaluated. Similar calls are made to the routine 
for unit B and then for unit C, and the next nb 
and last nE derivatives are evaluated. 
Once all the derivative calculations have been 
made, control returns from the interface routine 
to the numerical integrator. 

In this way, all the derivative evaluations are 
available to the numerical integrator at once, and the 
overall equation set may be treated simultaneously. 
A similar procedure is carried out when new esti- 
mates of y are generated by the numerical integrator. 
The routine interface program is used to transmit 
the new y-values to each individual unit model sub- 
routine. 

Comparison of sequential and simultaneous integration 

For sequential integration of the plant shown in 
Fig. 1, each of the three units are treated in sequence 
on each time step; the first n, ODES are numerically 
integrated for the time step, then the next nb and 
finally the last n,. During the corrector iterations for 
each piece of equipment, three Jacobian submatrices 
are used, denoted M, , M., and MS in Fig. 1. 

For simultaneous integration of the same plant, n, 

is equal to n, plus nb plus n,. Also, the overall n, x n, 
Jacobian matrix shown in Fig. 1 is used. 

The principal advantage of sequential integration 
is that smaller Jacobian submatrices are used. The 
number of individual derivative evaluations needed 
to generate full submatrices by finite-differencing 
(perturbation) is equal to ni + nt +nf. By com- 
parison, generation of a full Jacobian matrix 
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employed during simultaneous treatment requires 
(n, + nb + n,)* individual derivative evaluations. 

In addition to the evaluation of the Jacobians, 
inversion calculations (usually by LU decompo- 
sition) are also required. For a full Jacobian, the 
number of such calculations is proportional to the 
cube of the matrix order. Thus, the inversion of 
three small Jacobians will require far less work than 
for one large one. (This advantage for sequential 
integration is diminished somewhat for real systems, 
however, since actual plant Jacobians tend to be 
sparse, and sparse matrix methods can be used to 
reduce the number of operations from the theoretical 
maximum.) 

The advantage of simultaneous integration is 
that by treating the equation set as a whole, no 
inaccuracies are introduced by recycle streams. For 
example, for sequential integration of the example 
plant, when the first n, ODES are integrated on each 
time step, old values for streams S, must be used 
because final corrected values will not be available 
until unit C is integrated on the time step. By 
comparison, for simultaneous integration, recycle 
streams pose no special problem because all 
equations are predicted and corrected as a group. 

In summary, the sequential approach is a shortcut 
technique which requires fewer calculations per time 
step, but may require small time steps (for a reinte- 
gration over the time step to generate “matching” 
recycle stream parameters) for accurate treatment of 
recycle. The simultaneous approach is a more rigor- 
ous technique, requiring more calculations per time 
step, but remaining accurate for larger time steps, 
even when extensive recycle is present. Note that 
recycle may be either recycle of material or feed- 
back of information (e.g. a controller signal). Direct 
comparison of simultaneous, sequential-clustered 
and sequential integration in terms of execution 
times, storage requirements and accuracy on two test 
plants is described later on. 

OTHER CONSIDERATIONS 

In designing a modular dynamic plant simu- 
lator, two other considerations should be taken into 
account. First, if simultaneous or sequential-clustered 
integration is used, the resulting Jacobian (sub)- 
matrices that arise can become quite large and there- 
fore computationally expensive to invert. However, 
as plants are simulated that give rise to larger 
equation systems, the resulting Jacobian matrices 
tend to be more and more sparse. This is because 
each ODE-dependent variable typically only appears 
in a few of the many ODES in the overall ODE 
system. 

As larger and larger plants are simulated, it 
becomes more important to use sparse matrix tech- 
niques for solving the corrector equations at each 
time step. These sparse inversion techniques can take 
advantage of the high fraction of zero elements in 

both generating and inverting the Jacobian matrices. 
Using sparse matrix techniques, the equations and 
variables are re-ordered in a way that tends to 
minimize the number of calculations needed to 
effectively invert the Jacobian matrix. 

Most sparse-matrix inversion techniques are 
based on the Markowitz criterion (Duff, 1981). which 
selects the pivots for Gaussian elimination primarily 
on the criterion of reducing the number of fill 
elements (nonzero elements generated where zero 
elements occur in the starting matrix). 

Sparse matrix generation techniques (for finite- 
difference determination of system Jacobian matrix 
elements) are also very useful and involve a two-step 
process: (1) the full matrix is initially generated, 
column by column, and relationships between vari- 
ables and functions (which variables affect which 
functions) are noted; this information is used to 
determine groupings of variables that do not affect 
the same functions so that several variables may 
be perturbed together; and (2) on subsequent 
evaluations of the matrix, the variable-groupings 
are employed. 

As a simple example of this technique, note that for 
a (tridiagonal system of equations, where variable i 
affects only functions (derivatives) i - 1, i and i + 1, 
full Jacobian matrix generation by finite-differencing 
(perturbation) requires evaluation of each of the n 
functions n times, for a total of n* t 1 evaluations. 
If a sparse generation technique is used, only four 
evaluations of the n functions would be needed. The 
three groupings would be: variables (1,4, 7, _ _ .), 
(2, 5, 8, . . .) and (3, 6,9,. . _). 

Another important consideration is the possibility 
of using shortcut techniques to reduce the amount of 
execution time spent estimating physical properties. 
For plant simulations of this type, we have found that 
these estimation calculations may consume 8&90% 
of the total execution time. Obviously, there is great 
incentive to try to reduce this percentage. 

Use of shortcut techniques may be regarded as a 
direct method of reducing physical property costs. 
Indirect techniques, such as employing efficient 
numerical algorithms that complete the integration 
with as few time steps (and therefore as few physical 
property evaluations) as possible may prove to be just 
as effective. With the indirect approaches, the fraction 
of the total execution time spent estimating physical 
properties is not altered appreciably, but the total 
execution time is reduced. 

SOLUTION STRATEGIES FOR ODES 

We selected Gear’s BDF (backward difference 
formula) methods as the most suitable integrators 
for the various stiff systems encountered in many 
chemical processes. Having chosen the integrator, 
we next attempted to find a suitable algorithm 
for incorporating these linear, multistep predictor- 
corrector algorithms into a simulator structure that 
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Fig. 2. Four well-mixed tanks in series with recycle. 

would allow for sequential, sequential-clustered or 
simultaneous integration strategies. 

The objective of our preliminary testing was to 
determine a single robust and accurate sequential 
integration strategy for Gear’s methods (since se- 
quential integration will place the greatest strain on 
method accuracy for systems containing recycle) and 
then to incorporate this strategy into a prototype 
chemica1 plant simulator. From the accuracy stand- 
point (particularly for processes containing material 
recycle or information feedback), it is clearly prefer- 
able to implement the predictor equations for all 
clusters before implementing the corrector equations 
for any clusters, and this strategy was used in all our 
tests. 

For preliminary screening of algorithms, the sim- 
plified plant shown in Fig. 2 was chosen; it consists 
of four well-mixed tanks in series with an internal 
recycle stream. The tank sizes were chosen such 
that the governing ODE set had a stiffness ratio of 
5 x 106. 

The simplified plant was broken into two inte- 
gration blocks or “clusters”: the first two tanks were 
assigned to the first cluster, and the remaining two 
tanks to the second cluster. Also, the composition 
of the feed stream to the plant was perturbed at a 
specified time with a step change (discrete jump), to 
determine the suitability of the Gear integrator for 
handling discontinuities. 

In all, five sequential integration schemes were 
tested. In each case, the integration of equations in 
cluster 1 preceded those in cluster 2 for a given time 
step; the predicted values of the recycle stream 
(stream 6) from the second cluster back to the first 
were used in the first block’s corrector equations 
(implementing the predictor and corrector equations 
over both clusters as described above). 

Other features of five sequential schemes are: 

1. 

2. 

3. 

4. 

Predicted values of stream 3 are used in the 
second cluster’s corrector equations. 
Predicted values of stream 3 from the first 
cluster are used in the second cluster’s corrector 
equations on the first corrector iteration and 
corrected values are used thereafter. 
Corrected values of stream 3 from the first 
cluster are used in the corrector equations for 
the second cluster. 
Same as Scheme 2 except that a final corrector 
iteration is forced for all equations in each 
cluster after the corrector cycle for each time 
step is completed. 

Table 1. Results for four-tank problem of Fig. 2. for integration 
to time 200 h. e =normalized r.m.s. truncation error tolerance, 
sim = simultaneous. seq = sequential, n, - number of time steps, 
DE = number of derivative evaluations, % increase = % increase 
in derivative evaluations beyond requirement for simultaneous 

integration 

e Method % DE Increase (%) 

0.001 sim 151 6754 
0.00 1 seq- I 977 35,988 432.8 
0.00 1 seq-2 359 11,263 66.8 
0.001 seq-3 231 7532 11.5 
0.001 scq-4 207 869 1 28.7 
0.001 seq-5 172 7185 6.4 

0.01 sim 98 4884 
0.01 seq.4 128 5305 8.6 
0.0 I seq-s 112 5085 4.1 

0.1 sim 63 3861 
0.1 seq.4 87 3873 0.3 
0.1 seq-5 66 3873 0.3 

5. Same as Scheme 3 except that a final corrector 
iteration is forced for all equations in each 
cluster after the corrector cycle for each time 
step is completed. 

These five strategies are referred to as “seq-1” to 
“seq-5” in Table 1. Simultaneous (single-cluster) inte- 
gration of this plant was also carried out. The results 
of these various tests are summarized in Table 1 for 
various values of e, the user-specified r.m.s. trun- 
cation error tolerance used by the Gear integrator. 

From Table 1, we see that in each case the simul- 
taneous scheme requires the fewest number of time 
steps to complete the integration. This is expected 
since it is the most rigorous approach. Also, note that 
sequential Scheme 5 fares the best of the sequential 
schemes tested. This scheme was subsequently 
adopted as the single sequential algorithm used in the 
prototype MUNCHEPS (Modular Unsteady-State 
Chemical Engineering Process Simulator) described 
in the rest of the paper. 

To review the principal features of the simulator 
integrator: 

I. Predictors are used for all equipment units or 
clusters of equipment units prior to initiating 
corrector iterations. 

2. Corrected values are used as soon as they are 
available. 

3. One extra corrector iteration is forced at the end 
of each time step. 

While this third feature results in more derivative 
evaluations per time step (an extra number equal to 
the total number of ODES in the process), the 
integration is completed in fewer (larger) time steps, 
with net computational savings. Forcing this extra 
corrector iteration and performing all predictor steps 
prior to beginning the iterative corrector steps helps 
very significantly to overcome the major weakness of 
sequential integration, inaccurate treatment of infor- 
mation and material recycle streams for large time 

steps. 
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Other conclusions drawn from this initial testing 
are: 

1. The Gear integrator has little trouble in 
dealing with step change forcing functions. The 
algorithm automatically reduces the step size 
and resorts to a method order of one in the 
neighborhood of the step change, making it a 
single-step (backward Euler) method at the 
discontinuity. 

2. As expected, introduction of recycle and stricter 
error tolerances tends to favor use of the 
more rigorous simultaneous approach over the 
sequential-clustered approach. 

3. A sequential approach, with predicted values 
generated before beginning any corrector iter- 
ations, and an extra forced corrector iteration 
results in an 80% savings in execution time 
compared with a less sophisticated straight- 
forward sequential integration approach (for 
comparable accuracy). 

Comparison of simultaneous integration and 
sequential integration Scheme 5 on other plant units 
will be described later. 

SOLUTION OF PDEs 

When temperature or concentration gradients 
within an equipment unit are important and the 
well-mixed assumption does not apply, PDEs govern. 
It is possible, using the method of lines, to reduce the 
governing PDE set to a larger ODE set, a process 
involving discretization of the space variable with a 
finite-difference grid. Partial derivatives with respect 
to spatial coordinates are then replaced with finite 
difference approximations, and partial derivatives 
with respect to time become ordinary derivatives with 
respect to time at each grid point. 

As an example, consider the method-of-lines 
treatment of a double pipe heat exchanger model, 
with n finite-difference grid points in the axial 
direction (and radial variations neglected) (Fagley, 
1984). Originally, in the PDE representation, the 
temperature of fluid a is a single function of time 
and distance along the exchanger. After method-of- 
lines treatment, the temperature of fluid a becomes 
n functions of time only. Similarly, the partial 
derivative of enthalpy with respect to axial distance 
becomes n finite-difference approximations. The 
correspondence between the original PDE quantities 
and the method-of-lines quantities is shown in 
Table 2. A backward finite-difference expression is 
used for the enthalpy derivative, because this term 
appears in a bulk flow term, and only upstream 
enthalpies will have an effect (Haydweiller et al., 
1977). 

As the number of finite-difference grid points used 
to represent the spatial coordinates increases, the 
accuracy of the finite-difference approximation of the 
spatial derivatives improves, but at the cost of larger 

Table 2. Correspondence between original PDE quantities and 
method-of-lines ODE quantities with n method-of-lines segments 

Original PDE auantitv Method-of-lines ODE auantitv 

Axial distance I, 
O<x<L 

3 PDEs (heat balance, 
fluids a and b and 
metal) 

r, (x. r ) 

.r. i=1,2,...,n 

3n ODES 

T,,,(I) i=1,2,...,n 

i=1.2. ..n 

Enthalpy gradient, g 
3H,-4H,_,+H,_, 

3,ilY, 
1=1.2....,n 

DX = total length L divided by n. 

ODE set sizes and increasing stiffness (Byrne and 
Hindmarsh, 1977). 

For the case of method-of-lines treatment of an 
equipment unit arising in a chemical plant simulation, 
the accuracy of the finite-difference representation 
should be in line with the accuracy requirements for 
the numerical integrator. For example, if the single- 
step r.m.s. truncation error tolerance specified to the 
numerical integrator corresponds to O.l”F, then the 
error associated with the finite-difference approxi- 
mation should be of the order of O.O1~.05”F. 

Part of the testing of the prototype MUNCHEPS 
simulator involved demonstrating the ability to incor- 
porate a method-of-lines equipment unit into a gen- 
eral, modular, unsteady-state simulator framework. 
A double-pipe heat exchanger model was selected for 
this purpose. The system chosen for testing involved 
countercurrent flow and exchange of heat between a 
hydrocarbon stream and a cooling water stream. The 
details of the heat exchanger model formulation and 
testing are given in Fagley (1984) and the results of 
this testing are summarized in Table 3. Statistics are 
for execution on an Amdahl 5860 mainframe with a 
scalar processing capacity of about 6mips; for 
comparison, a current scalar IBM 3090 processor 
operates at about 15 mips. 

As shown in Table 3, the accuracy in the water and 
hydrocarbon exit temperatures improves with an 
increasing number of method-of-lines sections. The 
cost of this improved accuracy is an increase in both 
execution time and storage requirements. Also, the 
stiffness ratio increases with the number of method- 
of-lines sections. The initial stiffness ratio for the 
system (defined here as the final time of simulation 
divided by the inverse of the largest negative 

Table 3. Statistics for testing method-of-lines heat exchanger model. 
N, = number of sections, integrator r.m.s. error tolerance e = 0.001 
in all cases. Accuracy for water and hydrocarbon temperatures is the 

time-averaged error, assuming solution for N, = 20 to be exact 

Accuracy (‘R) 
storage 

N, CPU time(s) Water Hydrocarbon (kbyte) 

5 4.26 4 2.5 lj 2.0 193.8 
IO 6.69 4 0.92 p 0.74 212.9 
15 13.56 4 0.35 ,J 0.23 236.8 
20 14.18 269.9 
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real eigenvalue part) increased from 160 for five 
method-of-lines sections to 840 for 20 method-of- 
lines sections, meaning that this is a moderately stiff 
equation set. 

Note that as the number of sections increases from 
five to 20, the ODE set size increases from 15 to 
60, and the number of elements in the full system 
Jacobian matrix increases by a factor of 16. However, 
we see from Table 3 that the storage requirements 
increase by only 40%. This is because the storage 
space needed for the machine code associated with 
simulator and accompanying utility routines (here- 
after referred to as background storage) is larger 
than the storage space needed for storing numerical 
integrator quantities. It should be noted, however, 
that as larger plants are simulated, these background 
storage requirements will become relatively less and 
less significant; numerical integrator quantities will 
dominate demand for fast memory. 

Another interesting point is brought out by close 
inspection of this table. For 15 method-of-lines 
sections, the execution time is unexpectedly high- 
only 4% smaller than that required for 20 sections. 
This can be explained by the fact that for the run 
with 15 sections, the integrator required that three 
Jacobian matric evaluations be made, while only two 
were required for the other three cases. This type of 
behavior is typical for a numerical integrator. Time 
statistics (and the number of derivative evaluations 
and Jacobian matrix evaluations) for a family of 
parameter values are somewhat stochastic in nature. 
A single set of values such as those shown in Table 3 
are “point estimates” and are useful for showing 
trends rather than making fixed absolute value pre- 
dictions. For example, a miniscule increase in the 
error tolerance might well have allowed the integrator 
to proceed with just two rather than three Jacobian 
matrix evaluations in the 15-section case, changing 
the statistics for that case significantly. 

The conclusions from these studies are: (I) it is 
not particularly difficult to include method-of- 
lines unit model routines in a general modular 
dynamic chemical plant simulator, such as the 
MUNCHEPS simulator; and (2) the optimal number 
of method-of-lines sections to be used depends on 
the desired accuracy of numerical integration of the 
resulting ODE set. A tradeoff exists between accuracy 
and CPU time/storage requirements. For the heat 
exchanger we considered, 10-15 sections results in a 
fair tradeoff. 

SIMULATOR TESTING 

The prototype research simulator MUNCHEPS 
was developed primarily to determine the feasibility 
of performing simultaneous and sequential-clustered 
integration in a modular simulation framework. Sub- 
sequently, the simulator was tested on example chemi- 
cal plants to compare these competing strategies in 
terms of execution times, storage requirements and 

accuracies. Some of the noteworthy features of the 
simulator are listed below. 

Plex data structures 

The MUNCHEPS simulator makes extensive use 
of plex structures (Evans et al., 1977). Plex structures 
are used to store equipment parameters, stream 
parameters, physical property constants and l- and 
2-D arrays that are associated with the Gear integra- 
tor. Plex structures have several advantages over 
conventional matrix structures: (1) more efficient use 
of storage; (2) savings in physical property system 
computations by logical classification of streams; and 
(3) greater flexibility in simulating a variety of plants, 
both in terms of defining new types of stream par- 
ameters and constructing different types of equip- 
ment unit model routines. The plex data structures 
are also quite compatible with the MUNCHEPS 
preprocessor, described next. 

Preprocessor 

Simulator input data are entered through a pre- 
processor. The preprocessor is executed separately 
from and prior to the simulator itself. The pre- 
processor is used to read in information about the 
layout of the process and the number and kinds of 
chemical species present. During execution of the 
preprocessor, the user also specifies information 
regarding numerical integration, e.g. r.m.s. single- 
step error tolerance, initial conditions and integration 
strategy (simultaneous, sequential-clustered or total 
sequential). The preprocessor uses this information to 
set up the various plex data structures, including 
determination of pointer values and total plex vector 
lengths. The preprocessor then writes a small main 
program (in FORTRAN-77) for the simulation, 
where plex vectors are dimensioned to exactly the 
length needed for the given simulation. Thus the 
simulation uses only that storage which is needed by 
the particular process plant and dynamic memory 
allocation (unsupported in ANSI FORTRAN-77) is 
unnecessary. 

Sparse matrix decomposition 

The MUNCHEPS simulator makes use of a sparse 
matrix LU decomposition procedure which is based 
on the Markowitz criterion for reducing decom- 
position operations (Duff, 1981). This technique is 
particularly useful for treatment of the Jacobian 
(sub)matrices that arise. The first time a Jacobian 
matrix is generated, the sparse matrix algorithm is 
used to determine a strategy for performing its LU 
decomposition by Gaussian elimination. This sparse 
strategy is then recorded in integer code lists. 

The decomposed matrix is used to process 
new right-hand-side vectors on each corrector 
iteration for each time step. Subsequently, as new 
instances of the Jacobian matrix are encountered 
every several time steps, the integer code strings are 
used to decompose the matrix. This feature allows for 
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significant time savings, since the decomposition 
strategy need be determined only once in many cases. 
However, the MUNCHEPS sparse matrix solver 
(called SLUD) allows for re-determination of the 
decomposition strategy should the structure of the 
matrix change (as it does sometimes for nonlinear 
ODES) or should a Gaussian pivot element become 
too small in magnitude. The current version of the 
MUNCHEPS simulator does not make use of sparse 
matrix generation techniques involving grouped vari- 
ables described earlier, although such a feature is 
certainly desirable, especially for simultaneous and 
sequential-clustered simulation of large plants. 

Simulator structure 

The simulator was designed so that the numerical 
integrator “drives” the unit model routines indirectly 
through an interface routine. This allows for sequen- 
tial-clustered and simultaneous integration, where the 
ODES from different equipment pieces may be treated 
together in spite of the modularity of the routines 
generating the essential derivative functions. 

Figure 3 shows the basic block structure of the 
MUNCHEPS simulator. The arrows show the 
routine calling procedure that is used when new 
values of the ODE-dependent y are to be stored in the 
stream and equipment data structures. Values of y 
are calculated by the Gear numerical integration 
package, denoted GEAR. GEAR then calls the unit 
model routines with the new values of y through the 
unit model routine calling program ROCALL. The 
unit model routines in turn make calls on the physical 
property system through the interface routine PROP. 
Also, the routines GET and PUT are used to store 
and retrieve numerical values from the plex stream 
data structure. 

After all values of y have been stored and associ- 
ated physical property estimates have been generated, 
control returns back to the GEAR routine and then 
to the supervisory routine SUPER. Also shown in 
Fig. 3 is the sparse matrix solver package SLUD, 
which is called by the GEAR integrator when it is 
necessary to decompose a new Jacobian matrix, and 
during each corrector iteration. The main program, 

Fig. 3. Routine calling procedure for storing y values after 
a corrector iteration or for storing perturbed y values during 

Jacobian element calculation. 

written by the preprocessor, is also shown. Further 
details of the routine calling procedure for various 
types of operations carried out by the MUNCHEPS 
simulator and details of the data and routine struc- 
tures are given in Fagley (1984). 

The critical design feature of the simulator archi- 
tecture shown in Fig. 3 is that the numerical integra- 
tor “drives” the unit model routines by calling them 
through the calling program ROCALL. It is this 
feature of the program structure that allows for 
simultaneous and sequential-clustered integration in 
the modular simulation framework. 

Development of the procedure by which the 
numerical integrator drives the unit model routines 
involved very extensive modification of the Gear 
integration software (acquired from Livermore Lab- 
oratories); in its original form, the software is capable 
of integrating just one ODE set. The package was 
altered so that N, (potentially as large as the number 
of units in a plant) clusters of ODE sets could be 
handled. Modifications to the original code were also 
required to allow for implementing the predictor 
equations for all clusters prior to beginning corrector 
equation iteration for any clusters and for forcing an 
extra corrector iteration at the end of each successful 
integration step. 

The automatic stepsize and method-order logic 
was also altered so that multiple sets of ODES 
could be handled. In the original Gear code, the 
allowable time steps of integration that meet the 
specified user-supplied error tolerances arc estimated 
for orders q + 1, q and q - 1 every (q + 1 )th time 
step; here q is the method order being used on the 
current step. The integrator then chooses the largest 
of these three estimated time steps for its next step- 
size, and switches (if necessary) the order of the 
method accordingly. 

This order and stepsize-changing logic was altered 
as follows for the MUNCHEPS simulator. Every 
(q + 1)th time step an acceptable time step of inte- 
gration is estimated for each ODE set (i.e. for each 
of the N, clusters) for each of three method orders, 
q + 1, q and q - 1. For each of these three orders, 
a minimum acceptable integration time step (taken 
over all N, ODE sets) is found. The maximum of 
these three minimum time steps is then selected as the 
next stepsize; the method order is changed, if neces- 
sary, to that producing the selected stepsize. 

We also found after extensive testing that integra- 
tor performance could be improved significantly (see 
Table 9) by modifying the Jacobian matrix updating 
strategy used in the original Livermore software. 
Originally, a new Jacobian matrix calculation was 
triggered whenever the quantity hc, [see equation 
(9)] changed by more than 30% as a result of stepsize 
and order changes. We modified this criterion as 
follows: 

1. The Jacobian matrix J is updated only when the 
corrector equations fail to converge. 
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2. Whenever hc,, changes by more than 2%, 
the nonzero elements of the matrix hc,J are 
resealed, and a new sparse matrix LU decompo- 
sition is performed using the currently saved 
calculation strategy. 

Plex data structures were also incorporated into the 
Gear integrator to facilitate storage of numerical 
integrator quantities for clustered sets of ODES. One 
feature of the original Gear integrator is that only one 
type of call is made to the derivative evaluation 
routine, independent of whether this call is made 
during a predictor step, a corrector step, a call to 
evaluate derivatives for finite-difference Jacobian 
matrix determination, a call after an unsuccessful 
attempted step, etc. In the type of dynamic simulation 
described here, it is important to distinguish among 
these and other types of calls because coupled alge- 
braic equations are involved, some of which involve 
running sums. 

For example, the integral portion of the action 
taken by a PID controller involves numerical esti- 
mation of the time integral in the offset of a sensed 
process variable. Tn order to be able to estimate this 
running sum, it is important that information be 
passed to the unit model routine for the PID con- 
troller which indicates what type of call it is. For 
instance, if this call represents a normal continuation 
of integration, a term is added onto the running sum. 
If this is the first call after an unsuccessful time step, 
a term must be subtracted from the running sum, and 
so on. Modifications were made to the Gear integra- 
tor to allow for the passage of this type of infor- 
mation through an integer code in the calling 
argument list to the interface routine ROCALL. 

Another feature of dynamic simulation of this sort 
is that the governing ODE sets are coupled with 
algebraic equation (AE) sets. In the most general 
case, unit model routines can contain algebraic 
equations which include variables calculated by other 
unit model routines. It would then be possible to 
formulate simulation problems with an algebraic 
equation set, characteristic of steady-state chemical 
plant simulation, “imbedded” inside the dynamic 
problem. Rigorous solution would then involve 
convergence of the overall algebraic equation set 
(similar to the steady-state simulation case) during 
each corrector iteration for numerical solution of the 
overlying ODE description. 

In the simplest (and most common) case all 
algebraic equations coupled with the ODE set for a 
unit model routine only contain variables that appear 
in that unit routine model so that algebraic equation 
solution can be accomplished internal to the unit 
model routine. 

For the formulation of the coupled ODE and AE 
set description of units encountered during develop- 
ment of the MUNCHEPS simulator, some cases were 
encountered where AE and ODE variables of interest 
in one routine were indeed calculated in another 

routine. For example, determination of component 
balances on an individual tray in a distillation column 
involve both liquid flows down from the tray above 
and vapor flows upward from the tray below. 

It was found that by using a two-round calling 
procedure, these types of problems could be over- 
come. For instance, suppose a new value of the 
ODE-dependent variables are determined at a given 
time level. A first series of calls is then made to all tray 
routines, and all vapor flows and liquid flows are 
determined. Subsequently, a second round of calls 
is made during which derivatives are determined. 
Since all liquid and vapor flows have been deter- 
mined during the first round of calls, the derivatives 
may now be determined accurately. Details of this 
two-round calling procedure are given in Fagley 
(1984). 

Another example involves control of liquid level 
in a mixing tank. Calculation for material balance 
ODES for the tank requires that the outlet flow 
rate be known, which in turn requires a known 
controller setting, which in turn relies on liquid level 
in the tank. On the first round of calls to the mixing 
tank<ontroller subprocess, the liquid level (an alge- 
braic variable that depends on the current values of 
the molar holdup, composition, density and physical 
dimensions of the mixing tank) is computed by the 
tank model and a controller setting is determined by 
the controller model, given the current liquid level. 
On the second round of calls, the correct controller 
setting, and therefore the correct outlet flowrate, are 
available for accurate derivative evaluation by the 
tank model. 

DESCRIPTION OF TEST PLANTS 

We include here tests for two example plants 
simulated with MUNCHEPS. The first plant is the 
controlled distillation system shown in Fig. 4. The 
accompanying MUNCHEPS topology map is shown 
in Fig. 5. This distillation system is used to separate 
a mixture of benzene, toluene and o-xylene. The 
control scheme used is a material-balance control 
scheme suggested by Shinskey (1977). Results shown 
for this plant are for a total simulation time of 25 min 
with a perturbation in the feed rate occurring at a 
simulation time of 3 min. 

This controlled fractionation plant may be 
described as an underdamped oscillatory system with 
a period of roughly 10 min. Each TRAY unit routine 
model contains four ODES, one for each component 
(chemical species) and one for total liquid holdup. 
The reboiler routine model contains five ODES, one 
for each component, one for liquid holdup and one 
for the metal temperature in the reboiler (the reboiler 
routine includes the reboiler heat exchanger and 
column bottoms). The overhead condenser routine 
model contains five ODES, one for each component, 
one for the total liquid holdup and one for the 
enthalpy of the liquid in the overhead condenser 
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Fig. 4. Layout of a seven-tray distillation column. Four PID controllers, denoted 1 to 4, are employed. 
Hashed lines denote information (controller signal) streams. 

accumulator. Details of the modeling equations (with 
a total of 38 ODES) used to describe the dynamic 
behavior of each piece of equipment, and further 
discussion of the control strategy and system 
response, are given in Fagley (1984). 

Results are also shown for a second plant, consist- 
ing of the seven-tray column shown in Fig. 4 with 
a double-pipe heat exchanger added to exchange 
heat between the cold feed entering the fraction- 
ation system and the hot liquid leaving the column 
bottoms. For this application, 10 method-of-lines 
sections were selected for the heat exchanger, so that 
the overall system size was 68 ODES, with 38 ODES 
for the column and 30 for the heat exchanger. As 
before, the results shown are for the plant simulated 
up to a simulation time of 25 min, with a feed rate 
perturbation introduced at a time of 3 min. 

TEST RESULTS 

The seven-tray plant of Fig. 4 was simulated 
using three different equipment grouping strategies: 
simultaneous (one integration block with 38 ODES); 
sequential-clustered (the reboiler and bottom three 
trays in one integration block and the condenser and 
top four keys in a second); and total sequential with 
nine integration blocks (one for each tray, one for the 
condenser and one for the reboiler). 

Table 4 gives a summary results for these tests. 
Execution times are for the Amdahl 5860 computer 
with a single scalar processor. Results for a simul- 

taneous integration with a user-specified, normalized, 
r.m.s. truncation error tolerance of 0.0005 was 
assumed to be the “exact” solution. “Error” refers 
to the time-averaged absolute value of the normal- 
ized error in the parameter values for the two 
outlet streams (distillate and bottoms product): total 

Fig. 5. MUNCHEPS topology of plant shown in Fig. 4. 
Each box represents a unit model routine. Streams denoted 
P are information streams containing pressures, and are 

used to determine flowrates through valves. 
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Table 4. Results for seven-tray plant of Fig. 4. sim, seq-clu, and seq 
refer to simultaneous, sequential-clustered and sequential integra- 

tion. respectively 

Error CPU time storage 

e Method (%j (s) (kbvtel 

Table 5. Integration statistics for seven-tray column of Fig. 4 with 
e = 0.01. R = number of time steps, DE = number of derivative 
evaluations, JE = number of Jacobian matrix evaluations for each 

cluster in order 

0.001 

0.0 I 

0.1 

sim 0.030 14.6 286 
seq-clu 0.10 12.3 228 

w 0.063 23.0 205 
sim 0.42 4.85 286 

seq-clu 0.36 4.80 228 

=q 0.79 16.1 205 
sim 0.78 3.67 286 

srq-clu 1.8 3.45 228 
sea 2.7 11.9 205 

molar flow rate, temperature, enthalpy and mole 
fractions. 

From Table 4, we see that: 

1. 

2. 

Simultaneous integration tends to be a little 
more accurate than the other two techniques for 
a given value of error tolerance e. 
Simultaneous and sequential-clustered inte- 
gration are roughly equivalent to each other and 
superior to sequential integration in terms of 
execution time. 

3. The simultaneous integration scheme requires 
the most storage. 

The latter observation is to be expected, since storage 
for a 38 x 38 Jacobian matrix (and other associ- 
ated integrator arrays) must be assigned by the pre- 
processor; much smaller Jacobian submatrices are 
used in the other two cases. The fact that the simul- 
taneous scheme requires only 40% more storage 
than the sequential scheme indicates that a large 
portion of storage is being used to store the simu- 
lator object code. For larger plants, however, the 
difference in storage requirements between simul- 
taneous and sequential integration will be much more 
pronounced. 

In view of the results shown in Table 4 for this 
plant, either simultaneous or sequential-clustered 
integration would be preferred, giving better accuracy 
at less cost than for sequential integration. Figure 6 

Li 0 Sequential - cludered 
* Simultaneou5 

20 0 sequsntiot 

f \ J 

3 10 

2 
0 

i. 

01 1 I I 
1 2 3 

Accuracy ( % error) 

Fig. 6. CPU time vs accuracy (Percentage error) for sequen- 
tial, sequential-clustered and simultaneous integration for 

the plant of Fig. 4. 

Method 
sim seq-clu seq 

“r 32 34 114 
DE 3344 4417 13,532 
JE 1 1.2 2, 18, 17, 16, 16, 

IS, 14, 14, 14 
% DE for JE 43 27 19 
CPU time (s) 4.85 4.80 16.1 

illustrates the tradeoff between cost (CPU time) and 
accuracy for the results shown in Table 4. 

Table 5 shows final numerical integrator statistics 
for the three integration strategies with an error 
tolerance e of 0.01. 

Notice that simultaneous integration, being the 
most rigorous technique, requires the fewest number 
of time steps to complete the simulation, though the 
sequential-clustered method requires only a few 
more. The cost of evaluating the Jacobian (sub)- 
matrices is also clearly indicated in this table. Even 
though simultaneous integration requires only one 
Jacobian matrix evaluation, the evaluation of the 
elements in the relatively large 38 x 38 matrix 
requires 43% of the total individual derivative 
evaluations. 

By comparison, the sequential scheme requires its 
nine Jacobian submatrices to be evaluated an average 
of 16 times. However, these submatrices are rela- 
tively small (4 x 4 and 5 x 5) and evaluation of the 
Jacobian elements by perturbation requires only 
19% of the total individual derivative evaluations. 
Note that for this plant, the sum of the squares of 
the number of ODES in each piece of equipment 
(the total number of elements in all nine Jacobians) 
is one-ninth the square of the sum (the number 
of elements in the Jacobian for simultaneous 
integration). 

The second plant tested was the distillation system 
of Fig. 4 with heat integration between the hot 
bottoms stream and the cold incoming feed. Three 
equipment-grouping strategies were used: 

Simultaneous-one integration block with 68 
ODES. 
Sequential-10 integration blocks: one for the 
feed heat exchanger (30 ODES), one for the 
reboiler and one for the overhead condenser 
(5 ODES each) and one for each of the seven 
trays (four ODES each). 
Sequential-clustered-three equipment clusters, 
one for the feed-bottoms heat exchanger (30 
ODES), one for the reboiler and bottom three 
trays (17 ODES) and one for the overhead 
condenser and top four trays (21 ODES). 

The plant was tested with a normalized single-step 
truncation error tolerance of 0.01 specified for the 
numerical integrator. The results are summarized in 
Table 6. 
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Table 6. Integration statistics for seven tray column of Fig. 4 

with feed heat exchanger. e = 0.01, n = number of time steps, 
DE = number of derivative evaluations, JE = number of Jacobian 

matrix evaluations for each cluster in order 

n, 
DE 
JE 
% DE for JE 

Storage (kbyte) 
CPU tnne (s) 

Method 
sim seq-clu seq 

38 36 89 
13.464 8687 18,184 

2 1, I.1 3, 3, , 3, 3 
68.7 20 21.5 

362 290 236 
10.2 7.34 20.2 

Note that the sequential-clustered scheme is par- 
ticularly efficient for this problem, requiring 38% 
less CPU time than the simultaneous run, and 64% 
less CPU time than the sequential run. As before, 
the sequential-clustered approach makes good use 
of both execution time and storage. However, the 
benefits of sequential-clustered relative to simul- 
taneous integration are somewhat exaggerated here 
because, on average, we would expect the more 
rigorous simultaneous approach to require fewer 
Jacobian matrix evaluations. 

Table 6 shows once again that the cost of evaluat- 
ing the large (68 x 68) Jacobian matrix is quite 
expensive in the simultaneous case, requiring over 
two-thirds of the individual derivative evaluations. 
The large size of this Jacobian matrix is reflected in 
the total storage requirements. The simultaneous 
scheme requires an additional 53% memory and the 
sequential-clustered approach an additional 23%, as 
compared to the sequential case. 

The sequential scheme is particularly inefficient in 
terms of execution time. This is due to the high degree 
of recycle internal to the column. However, from 
these results we may also conclude that the degree of 
coupling is not great enough to demand simultaneous 
treatment of the entire column and heat exchanger 
(the results for all cases differ by less than 1%). 

Table 7 shows the CPU time breakdown for simul- 
taneous and sequential integration of the distillation 
test plant shown in Table 5. Note that in both cases, 
most execution time is spent in computing physical 
properties. We used a proprietary property package 
supplied by Professor Motard of Washington Univer- 
sity of St Louis for test purposes; although a new 
property system interface program was written for 
the MUNCHEPS simulator, the property routines 
themselves were not modified. 

Table 7. Breakdown (in percent) of CPU time for the simultaneous 
and sequential integration cases shown in Table 5 

SlIllUltdlleOUS Sequential 

(%) (%) 

Physical properties 79.4 82.9 
Unit model routine calculations 5.7 4.7 
Plex structure storage/retrieval 4.2 4.3 
Sparse LU strategy/decomposition 3.9 0.8 
Sparse LU solution 3.5 3.0 
Gear integrator 1.6 2.2 
Supervisory routines 1.7 2.1 

Total 100.0 100.0 

Table 8. Time statistics for sparse and full LU decompositmn and 
equation solution for simultaneous (38 x 38 system) and sequential 

(two 5 x 5 and seven 4 x 4 subsystems) integration of the seven-tray 
plant up to a simulation time of 3 min. Results are for simulation of 

seven-tray column with error tolerance e = 0.01 

Simultaneous intenration CPU time cs) Savines (%) 

Full decomposition 0.500 
Sparse decomposition 0.156 68.8 

Full solution 0.206 
Sparse solution 0.140 32.0 

Total full 0.706 
Total sparse 0.296 58.5 

Sequential integration 
Fult decomposition 
Sparse decomposition 

Full solution 
Sparse solution 

Total full 
Total sparse 

0.041 I 
0.0320 22.1 

0.189 
0.121 36.0 

0.230 
0.153 33.5 

There are two approaches one might take to im- 
prove overall execution times. One is to reduce the 
amount of calculation needed for each physical prop- 
erty evaluation. This would require modification or 
replacement of the property routines or some short- 
cut approach such as interpolation or extrapolation 
of infrequently computed property values, and would 
reduce the percentage of execution time spent in the 
physical properties routines. 

Another way of decreasing overall execution time 
is to use more efficient numerical integration tech- 
niques so that a given simulation is accomplished in 
fewer steps and, consequently, with the need for fewer 
physical property evaluations. This second method 
would not necessarily show a change in execution- 
time breakdown percentages. 

Table 8 shows the relative advantage of using 
sparse matrix decomposition techniques. Note that 
for the small Jacobian submatrices used in sequential 
integration, the savings in matrix decomposition and 
solution times are relatively small. By contrast, for 
the larger and more sparse Jacobian matrix used in 
simultaneous integration, more pronounced savings 
in execution times are realized with the sparse tech- 
nique. As shown here, using a sparse technique for 
this 38 x 38 matrix results in a 58.5% saving in 
execution time. For larger systems, greater savings 
would be realized. 

Table 9 summarizes one final set of numerical 
experiments performed on the seven-tray distillation 
plant. The strategy used in the original GEAR soft- 
ware involves updating the Jacobian matrix whenever 
the corrector equations fail to converge or whenever 
the quantity hc, [see equation (9)] changes by more 
than 30%. Results using this strategy are reported as 
“Orig” in the table. 

After experimentation with other Jacobian matrix 
recalculation strategies, we adopted a somewhat 
different approach and modified the integration 
software accordingly. The Jacobian matrix is up- 
dated only when the corrector equations fail to 
converge. Whenever the quantity hc, changes by 
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Table 9. Execution time statistics and storage requirements for three 
different Jacobian matrix updating strategies. Orig cases use the 
original Gear (Livermore) software heuristic (see text), New cases use 
the modified updating criterion (see text), Diag cases use the original 
heuristic wrth a diagonal Jacobian matrix approximation only. 
Results are for simulation of sewn-tray column with error tolerance 

e =O.Ol 

Method 

Simultaneous 

Sequential 

RUtI 

New 
Orig 
Diag 

New 
Orig 
Diag 

CPU time Increase storage 
(s) (%) Wyte) 

4.85 286 
Il.4 135 286 

132 2620 274 

16.1 205 

33.0 105 205 
76.0 372 204 

more than 2%, the nonzero elements of the matrix 
hc,J are resealed (note that the Jacobian elements 
themselves need not be recalculated) and the resealed 
matrix is decomposed. The results of these tests 
(shown as “New” in the table) illustrate that the new 
strategy is clearly superior, especially for simul- 
taneous integration (the “Orig” and “New” run 
results are of comparable accuracy). Effectively the 
new strategy allows a calculated Jacobian matrix to 
be used over more steps (because of the resealing) 
without sacrificing accuracy, and reduces the number 
of Jacobian evaluations required for the complete 
integration. 

Table 9 also includes results for cases where a 
diagonal approximation to the Jacobian matrix is 
used (labelled “Diag”). While this strategy results in 
some storage savings, there is a heavy penalty in 
terms of increased execution time. It should be 
mentioned here that all other results presented in this 
paper have been obtained using the new Jacobian 
matrix updating strategy. 

CONCLUSIONS 

Design, construction and testing of a prototype 
modular, dynamic, chemical plant simulator capable 
of simulating plants that give rise to large, stiff 
equation sets has revealed several features important 
to this type of simulation. First, total sequential, 
sequential-clustered and simultaneous integration in 
a single modular simulation framework has been 
demonstrated. Simultaneous treatment of two or 
more individual unit model routines is made possible 
through use of a novel simulator structure in which 
the numerical integrator “drives” the unit model 
routines indirectly through an interface; the integra- 
tor incorporates features to allow for solution of 
many potentially large ODE systems. 

Subsequent testing of the simulator showed that a 
well-chosen sequential-clustered scheme is often the 
optimal choice, giving good execution time response 
with moderate storage requirements and acceptable 
accuracy. The sequential-clustered approach allows 
for simultaneous treatment of units that display a 
strong interdependence, while integration remains 
sequential from cluster to cluster. 

Testing of the simulator has also demonstrated the 
benefits of sparse matrix solution techniques and the 
benefits of a new Jacobian matrix updating strategy. 
A sparse matrix grouped-variable Jacobian gener- 
ation technique would be beneficial especially for the 
sequential-clustered and simultaneous integration 
approaches, but this feature is not currently incor- 
porated into the prototype simulator. 

Additional testing of the simulator demonstrated 
the use of the method of lines for treatment of 
distributed parameter models in the dynamic, modu- 
lar simulation framework. The resulting ODE sets 
were easily handled by the stiff integrator. In 
addition, experience in constructing and testing the 
simulator has shown that a preprocessor and plex 
data structures are well suited to this type of simu- 
lation, allowing for enhanced flexibility and making 
good use of available storage. 
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