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INTRODUCTION 

X-ray diffraction has been used extensively, in recent years, to analyze the structure of high angle grain 
boundaries (1-4). A major difficulty in the interpretation of the X-ray results involves correcting for the vibrational 
motion of the atoms in the boundary (the Debye-Waller factor). Common practice is to assume that all of the atoms in 
the grain boundary have the same vibrational amplitude, independent of their local environment (1-4). Recent 
simulations (5) show that the magnitude and the direction of the atomic vibrations vary from atom to atom in the grain 
boundary region, suggesting that the assumption of isotropic vibrations is not valid. The experimental scattering factor 
is generally deconvoluted assuming isogopic vibrations in order to determine the atomic structure of the grain boundary. 
Fitzsimmons and Sass (3) have attempted to take the assymetric nature of the vibrations into account by fitting their 
scattering data with two vibrational frequencies (parallel and perpendicular to the grain boundary). In the present paper, 
we demonstrate that the assumptions of uniform and isotropic vibrations (one or two frequencies) does not sufficiently 
take the highly inhomogeneous environment of a grain boundary into account and could lead to marked changes in the 
experimentally derived grain boundary structure. 

We have recently introduced ~tn approximate method for calculating the free energy of defects in solids, which we 
called the local-harmonic fl.,H) model (6). In this method, the vibrations of each atom are determined by calculating the 
local-dynamical matrix (ignoring the coupling of vibrations of different atoms) and are employed in a determination of 
the free energy within the fi'amework of an Einstein model. The su'ucture of a defect is calculated by minimizing the free 
enertw with respect to the atomic coordinates. The vibrational frequencies of each atom thus reflect the local atomic 
distribution around the atom at finite temperature. 

In this paper, we calculate the scattering intensities from Y,=5 and Y,=13 (001) twist boundaries in gold based upon 
atomic structure determined from finite temperature atomic relaxations that include the vibrational distributions found 
within the LH model (6). We show that the assumption of isotropic, homogeneous atomic vibrations leads to predicted 
scattering factors that differ greatly from those obtained with the true anisotropic, inhomogeneous vibrations. 

THEORY 

The integrated X-ray scattering intensity is given by Co<lFhld('r)12>, where (hkl) is the reflecting plane and Co is a 
constant that includes information about the l.xnentz polarization, beam absorption, illuminated area, resolution, atomic 
scattering factor, etc. and will be ignored hereafter. The effects of thermal vibration are included in the finite-temperature 
structure factor, Fhkl(T), which is defined as 

N 

Fhkt(T) ffi ~ ext~2gi (Ri + ~i).I~] 
i ff i l  

(1) 

where ri is the displacement of atom i from the averaged position Ri and K is the vector normal to the reflecting planes. 
Thus, the vibrational distribution around each atomic site is needed to calculate Fhld. 
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In the LH model, the average position and three normal mode frequencies are determined for each atom as a function 
of tem.perature. The potential energy of an atom vibrating about its equilibrium position is given in the harmonic 
approxtmauon by: 

Ei = ½m [(rx.imx.iY + (ry.imy.i)2 + (rz~imz.i) 2] (2) 

where m is the mass of the atom and where (rx,i, ry,i, and rz,i) and (rex,i, my i, and mz,i) arc the displacements and 
vibrational frequencies of atom i (the force constant" for the hamonic vibration of  atom i in the x direction is m COx i2), 
respectively, expressed in its normal mode coordinates. The scattering intensity, Ihld = <lFhklCr)12>, can be founcJ by 
averaging over these independent atomic vibrations to find 

Ihkl = (IFhkl(T)[ ~= l i=~ 1 eXl~-2~ 2 (~)K/d2hkl] exI~2xi Ri'l~] 2 (3) 

where dhla is the interplaner spacing and <ri2>K is the mean square displacement of atom i along the K direction. In the 
LH model, the mean-square displacement can be expressed by: 

(4) 

where Kx, Ky, and Kz are components of vector K in the normal mode coordinates of atom i. 

For a system where all atoms are assumed to have the same isotropic environment the mean-square displacements of 
all atoms are the same such that Eq. (3) reduces to the Debye-Waller form for the scattering intensity, I Dw, 

Ihk I ex -4~2B(T) ex 2~iRi- (5) 

where B(T) = <r2> is the mean-square displacement of each atom. This equation is simply the Debye-Waller factor 
multiplied by the static-scattering factor, I o, 

ox 2, :ll (6) 

Since the vibrational properties for each atom in a defect system are different, one introduces errors in predicting the 
integrated intensities of the scattering by simply using the same distribution for each atom. We can quantify this 
difference by defining an effective mean-square displacement (Beff) for the atoms in a grain boundary as a function of 
scattering direction by calculating the ratio of the scattering intensity (including all vibrations) to the static-scattering 
intensity, 

~h--~kl = exp[ "4~2Bdf(T)x/d2~l] (7) 

Any dependence of Beft'(T)K on the scattering direction is an indication that there is anisotropy in the atomic 
distributions. 

RESULTS 

The LH model (6) was used to determine the relaxed structures (as a function of temperature) of two [001] twist 
grain boundaries in gold with reciprocal densities of coincident sites (Y.) of 5 and 13 and misorientation angles of 36.9 
and 22.6 degrees, respectively. Periodic boundary conditions were employed in the directions parallel to the grain 
boundary and perfect crystal blocks were used at the edges of the simulation cell in the direction perpendicular to the 
grain boundary. Relative translations of the two subcrystals were allowed in the directions parallel and perpendicular to 
the block such that the pressure within the simulation cell was always zero. The embedded-atom method (EAM) gold 
potential of Foiles, Baskes, and Daw (7), was used to represent the atomic interactions. A more complete discussion of 
the minimization procedure as well as details about the structure and thermodynamic properties of these boundaries will 
be presented elsewhere (9). 
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The scattering intensities, Ihld, were calculated as a function of temperature using the equilibrium structures and 
vibrational frequencies found within the LH model (6). Room-temperatmt values of ~ for several reflecting planes arc 
given in Table I for the X.=5 boundary and Table II for F,=13. Also shown in Tables I and 1I arc results for the static- 
scattering factor [I o, Eq. (6)] and the Dcbye-Waller n]odel [I Dw, F_.q. (5)] for the same stnmtures. For the Dcbyc-Wallcr 
model, we used the value for B(T) (= 1.08 J # / 8 5 2 )  employed in an analysis of the experimental X-ray scattering 
studies of the Z=I3 grain boundary in gold (2). The percent deviations between the intensities calculated with the LH 
frequencies and with the Dcbye-Waller factor arc also given. These deviations range from 8 to 47% and from 6 to 23% 
for the Z=5 and Z-=13 boundaries, respectively. 

Effective mean-square displacements, Beff, are shown in Figs. 1 and 2 as a function of t e x t u r e  for different grain 
boundary reflections in the Y,---5 and E=13 boundaries. As the temperature is increased, the amplitude of the atomic 
vibrations increase. Correspondingly, the deviation between the mean square atomic displacements Beff for the different 
reflections becomes more pronounced. This deviation increases with temperature in a roughly linear manner. For the 
E=5 boundary, the slopes vary between 1.3xlO -5 and 4.5x10 "5/~2/°K for the [7,3,0|and [4,1,0] planes, respectively. 
The slopes for E-=13 calculated from Figure 2 vary between 1.9xlO -~ and 5.5x10 -s A2/OK for the [4,0,0] and [10,0,0 t 
o lanes, respectively. This range of slopes for the Y,=13 boundary can be compared to the value of 3.9 -+ 0.08x10- 
7k2/OK found in the analysis of experimental scattering data using the Dcbye-Waller model (8). " 

Since the grain boundary structure is not periodic along the direction normal to the interface plane, the reflections are 
modulated rods of intensity called relrods. The calculated intensity profile as a function of 1 (the Miller index 
perpendicular to the boundary plane) for the [4,0] relrod is plotted in Figure 3 for the Z-=5 boundary. We have also 
plotted the same profile calculated using the Debye-Waller correction term with B(T) -- 1.08 J~2/8~2. Use of a constant 
Debye-Waller correction leads to an overestimate of intensities in the range of I = [-2.5,-2.1], whereas it underestimates 
the intensity by as much as 10% in the ranges [-2.1,0.5]. One should note that the error for a [4,0] reflection point is 
only 9.4%; thus, the difference in the two calculated intensity profiles is not as large as it would be for other relrods, 
such as the [5,1] where the error is approximately 50%. Although the deviations between the Debye-Waller and the full 
vibrational spectrum intensities are of order 10%, comparison with the static structure factor (no vibrations) shows that 
the Debye-Waller correction to the static structure factor overestimates the true correction by nearly 50%. 

DISCUSSION AND CONCLUSIONS 

The large deviations in Tables I and II between the intensities calculated with the local-harmonic model frequency 
distribution, Ihkl, and those calculated with the constant B Debye-Waller factor, Ihkl DW, illustrate the sensitive 
dependence of the scattering intensity on the description of the atomic vibrational distributions. That sensitivity is also 
clearly seen in the relrods [Fig. (3)], where substantial errors are found when the experimental mean-square 
displacement is used in the Debye-Waller factor. While mother choice of the Debye-Waller factor (i.e. with Beff), or for 
that matter two different Debye-Waller factors (one along the direction normal to the boundary and another in the plane of 
the boundary) as used in the case of 5' =13 boundary (3), might improve agreement between calculated relrods for a 
specific scattering direction, the strong dependence of Beff on scattering direction seen in Figures 1 and 2 indicates that 
no single value of Beff can adequately describe all scattering data. 

It is difficult to say what errors are introduced into an experimentally derived atomic structure when the constant B 
Debye-Waller factor approximation is used. The general procedure used in analyzing scattering data is to calculate the 
static scattering intensity, Ihkl o, from the experimental data by assuming B is constant and using Eq. (5). This static 
scattering intensity is then compared to calculated intensities based on some static model structure. In some cases, the 
model structure is modified until agreement is reached. If a constant Debye-Waller factor is used, then the Ihki ° 
calculated from the experimental data is in error. We can estimate that error in the present results from our data in Tables 
I and II. ff we assume that Ihkl is the correct result for the scattering intensity, then the static scattering intensity would 
be given by Ihld/exp[:4~ 2 B/dhld 2] if B were assumed constant. Comparison of that estimate of Ihkl o with the actual 
values for Ittkl o show errors roughly comparable to those between II0d and Ihva Dw. Thus, since the errors are different 
for various scattering directions, it is inevitable that structures determined from the incorrect static scattering will be in 
error. However, it is not possible to say at this point how severe the error would be. 

The origin of these discrepancies can be understood by examining Figure 4 where the distribution of vibrational 
frequencies of atoms in the boundary calculated with the LM model for the Z-*-5 boundary at room temperature is plotted 
[the magnitude of the mean-square displacements is related to the frequency by Eq. (4)]. The frequency distribution is 
extends over roughly +_.20% COo, where ¢oo is the vibrational frequency of an atom in the perfecet crystal. The large 
spread of frequencies is an indication that the environment around the atoms in the boundary is very inhomogeneous, 
and that to assume a single, isotropic vibrational frequency is nora good approximation. A more complete discussion of 
the distribution of vibrational motion will be given elsewhere (9). 

Unfortunately, it is not possible to experimentally measure an effective mean-square displacement as a function of 
scattering direction. The most promising approach is probably to include theoretical calculations of the mean-square 
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displacements in the data analysis. These distributions might be determined in a number of ways, e.g. molecular 
dynamics, Monte Carlo calculations (5), or approximate methods such as used here. 
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Calculated 
TABLE I 

Room-Temperature Scattering Intensities for the 

h k Ihkl lhkl o IhklDW A% 

3 3 65.232 76.022 60.305 -7.6 
I 1 0.363 0.399 0.389 7.1 
2 0 5,025 5.595 5.314 5.7 
2 2 33.724 35.010 31.585 -6.3 
3 2 3.455 3.971 3.360 -2.8 
4 0 54.914 61.128 49.755 -9.4 
4 I 15.296 18.840 15.138 -l.0 
5 I 5.040 3.740 2.676 -46.9 
5 2 4.667 5.731 3.946 -15.4 
5 3 4.885 5.470 3.532 -27.7 
5 4 31.827 41.088 24.244 -23.8 
6 l 30.082 38.041 23.631 -21.4 
7 2 11.909 14.264 7.212 -39.4 
7 3 8.194 9.919 4.703 -42.6 

~=5 Twist Boundary in Gold.* 

TAB/.,EII 
Calculated Room-Temperature Scattering Intensities for the ~=I 3 Twist Boundary in Gold.* 

h k Ihkl Ihkl O lhkl Dw A% 

5 5 806.577 967.845 755.687 -6.3 
10 6 319.686 525.572 268.121 -16.1 
10 4 409.213 597.698 336.640 -17.7 
6 0 329.574 377.544 315.932 -4.1 
9 3 309.233 372.274 238.467 -22.9 
7 3 137.642 170.338 127.836 -7.1 
9 1 138.424 164.846 109.860 -20.6 
4 0 142.073 146.602 135.441 -4.7 
6 5 162.213 191.437 141.553 -12.7 

10 0 40.271 69.910 42.620 5.8 
10 1 121.005 165.276 100.262 -17.1 
10 5 23.982 39.045 21.033 -12.3 
4 2 72.972 75.416 68.309 -6.4 
9 5 33.531 48.994 28.995 -13.5 
8 7 20.653 32.294 18.461 -10.6 
11 5 34.561 64.614 31.371 -9.2 

* The intensities of the [hk] reflections calculated (arbitrary unit) with the local-harmonic model 
vibrational frequencies (Ihkl), assuming no vibrational motion (IhklO), and assuming a uniform, 
isotropic, vibration ('IhklDW). A% is the percent deviation between Ihl d and Ihkl DW. 
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Figure 1. Calculated values of the effective mean-square radius, Beft(T)K (Eq. 7), as a function of 
t=mperam~ for a ~=5 twist boundary in gold. The various symbols indicate diffea'ent scattering 
planes. 
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Figure 2. Calculated values of the effective mean-square radius, BefI(T)K (Eq. 7), as a function of 

temperature for a Y-=13 twist boundary in gold. The various symbols indicate different 
scattering planes 
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Figure 3. Calculated scattering intensity (arbiu'ary unit) of the [4,0] relrod in a Y.=5 twist boundary in gold 

as a function of the miller index, 1, perpendicular to the boundary. The dotted curve was 
calculated u.dng the local-harmonic model vibrational dLsu'ibudon the dashed curve assumed that 
all atoms had the same, isow0pic, atomic distribution, and the solid curve assumed no thermal 
vibration. 
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Figure 4. C~lcular~! frequency distribution (arbitrary unit) of atoms in a Z,=5 twist boundary in gold at 

room temperature based on the local-harmonic model.(o~o is frequency of atoms in the perfect 
crystal). 


