
Math1 Comput. Modelling Vol. 13, No. 9, pp. 83-87, 1990 0895-7177199 $3.00 + 0.00 

Printed in Great Britain Pergamon Press plc 

LINEAR TIME-INVARIANT CONTROL PROBLEMS 
WITH PERTURBATIONS 

LESZEK S. ZAREMBA 

Mathematical Reviews, University of Michigan,416 Fourth Street, Ann Arbor, MI 48107 USA 

(Received March 1990) 

Communicated by Ervin Y. Rodin 

Abstract-We deal with a class of control problems whose (uncertain) mathematical model is given 
by a linear differential equation with control parameters and perturbation parameters influencing 
the dynamics of an object under consideration. All we know about the perturbations is that their 

values belong to a given compact set Q. We show how to ilnd both lower and upper bounds for 
the value function of our original perturbed system in terms of the value functions of two simplified 
unperturbed control problems. We also give explicit formulae for e-optimal policies in the class of 
so-called step-guided strategies. ln the last section the results above are extended to the infinite 

horison setting. 

1. INTRODUCTION 

Consider the following control problem P: Minimize a given function g(z(.)) over all trajectories 
z(.) of the equation 

i(t)= Ax(t)+ Bu(t)- Cv, z(0) = zo,O 5 i? 5 T,t E R", (1) 

where u(l) E P c RP is a control function and v(t) E & C R'J is an unknown perturbation 
function; no additional information on v(t) is available. Our goal is to find estimates, from 

below and above, of the value function of problem P, as well as explicit formulae for E-optimal 
strategies. Toward this end, we consider two cases articulated in assumptions (3i), (32) that 
represent different relationships between the sets BP and CQ. Using Theorems 1 and 2 one is 
able to find lower and upper estimates of the value function of problem P in terms of the value 
functions of problems PI, Pz, defined as follows. (Pi): Minimize g(z(.)) over the solutions of the 
equation 

z;(t) = Aw(t)+ h(t), h(t) E Hi, w(O) = a,, 0 5 t 5 T (2) 

where Hi obeys condition (31) listed at the very beginning of Section 2 (i = 1,2). 

2. ASSUMPTIONS AND STRATEGIES 

There exists a nonempty, bounded set HI c R" such that HI + CQ C BP, (31) 

There exists a nonempty, bounded set Hz such that Hz + CQ > BP. (32) 

Let us recall that the largest set HI satisfying condition (31), according to the terminology 

introduced by L.S. Pontryagin, is called the geometric difference of sets BP, CQ, and is usually 
denoted by BP 2 CQ. 

The function g(z(.)), defined on the space C(0, T; R") of continuous mappings 

z(e) : [O,T] + R" equipped with the max norm, is continuous. (4 
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The sets P and Q are bounded subsets of Rp and RQ, respectively. (5) 

A is a stable matrix. (6) 

Having listed all our assumptions, let us recall that, since all eigenvalues of A have negative 
real parts, there exists a positive definite quadratic form L(z) = (zT,L*z), z E R”, with the 
property that for each solution z(.) of equation (*)z?(t) = Ax(t), the derivative of L(z(t)) along 
equation (*) satisfies the relations [l, p. 3471. 

&(t)),c*j = (-$~(t)~, L*z(t)) + (zT(t), L*Az(t)) = zCT(t)[ATL* 

where L satisfies the Lyapunov equation ATL+ + L”A = I (identity matrix). To define strategies 

+ L*A]z(t) 

for the controller, let us introduce the following multifunctions defined on R” x R”: 

U(z,w) = (21 E P : (L(w - r),B(ii - u)) 2 0, 21 E P} (7) 

v(z, w) = {E E Q : (L(z - w), C@ - u)) L 0, 21 E &I (8) 

and, for any set Hz satisfying condition (32), 

H2(z,w) = {ii E Hz : (L(t - w), i; - h) 2 0, h E Hz} (9) 

It is obvious that all these multifunctions are upper semicontinuous, which follows from a known 
result concerning marginal maps [2]. As such, they admit Bore1 measurable selections ~(2, w), 
v(z,w), hz(z, W) from, respectively, U(t,z), V(t, z), H~(c, w). In this paper, however, we do 
not need any measurability of selections, which, by the way, makes our results more suitable for 
implementation in practice (see the definition below). 

DEFINITION 1. By a step-guided strategy we mean any triplet (u(z, w),A,wR(.)), where u : 
R” x R” + R is an arbitrary selection from U(z, W) (not necessarily measurable), A = (ri) is a 

finite partition of [O,T], and WR(.) is a causal operator defined on the space of all trajectories of 

equation (1). 

It means the values of the function wn(.), playing the role of a guiding function, are chosen 
instantly in a nonanticipating fashion, according to a specified rule R. In a very particular case, 
when WR(.) does not depend on z(.) at all, WR(.) may be identified with a fixed function w(t). 
In such a case, a step-guided strategy is said to be simple. 

Observe that each step-guided strategy, coupled with a perturbation function v(t) E Q, gives 
rise to the following trajectory of system (1): i(t) = At(t) + Bu(x(O)), w(O)) - Cv(t), z(O) = ~0, 
0 5 t < ~1, and for t E [q,q+l), i(t) = At(t) -t- Bu(z(T~), w(T~)) - G(t). 

Denote by U,, the space of all step-guided strategies. In order to underline the dependence of 
a trajectory z(.) of system (1) on a step-guided strategy U,~ E USg, and a perturbation function 
v(.), we shall often write z(t) = z[t,t~,u,~,v(.)]. Thus, each u,~ E U,, ensures the cost to pay 
by the controller will not exceed the amount 

C(xo, hg) = SUPM4*, 20, uag, 4+)1) : v(t) E &I (10) 

and the value function of problem P equals V(q) = inf{C(zc,uSg) : uJg E U,,}. Finally, 
let VI(Z) (resp. Vs(z)) be the minimal value of g(+(.)) over all trajectories z(s) of.equation (2) 
satisfying ‘u)(O) = I with H being equal to HI (resp. Hz) satisfying condition (31) (resp. 32). 
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3. MAIN RESULTS 

Let us start with the following observation. 

REMARK 1. The spaces of the solutions of equations (1) and (2) are equibounded ([[z(t)]] 2 KT, 
0 < t 5 T). They are also equicontinuous as subsets of their closures that are compact in 
C(0, T, Rn), the space of continuous mappings from [0, q into R” with the max norm [3]. Since 
A is a stable matrix, the equicontinuity and boundedness of solutions of (l), (2) do not actually 
depend on T. 

THEOREM 1. Assume that conditions (4)-(6) hold and perturbations v(t) E & belong to any 

subclass of Lebesque measurable functions (for example, piecewise constant functions). Then, 
under condition (31)) each simple step-guided strategy ii,, = (G(z, w), A, w(.)), where ~(2, w) is 
any selection from V(z, w) given by (7), A = ( i) 7 is any finite partition of [0, T], and G(.) is any 

optimal trajectory for the simplified problem Pi, i.e., Vl(xo) = g(G(.)) (&-optimal trajectories 
would also suffice), guarantees the inequality 

V(ro) I qro, %g) I b(zo) + m(E(6)) (11) 

where E(6) + 0 as the diameter 6 of the partition A goes to zero and m(.) is the modulus of 
continuity of g(.). What is important, E(S) does not depend on the length of the interval [O,T]. 

PROOF. We are going to demonstrate the estimate (Ii, 12 and p(S) will be specified later) 

lll(t, 20, us,, v(.)) - G(t)11 5 C(S) = ,8(b) + 0 as 6 --, 0, 0 2 t 5 T (12) 

which does not depend on a perturbation v(t) E Q and T > 0. The conclusion will readily follow 

from (12) since, by virtue of (4) and Remark 1, g(z(.)) is uniformly continuous on the space of 

trajectories of equation (1). 

To prove (12), set s(t) = x(t) - G(t), z(t) = z[t,zO,Uss,v(.)] and compute d/dtl(s(t)), 
where L(s) = (s, L* ) s is a positive definite quadratic form with L’ being the unique solu- 
tion of the matrix Lyapunov equation (L is symmetric): ATL* + L’A = -I (identity ma- 
trix). Take into consideration a subinterval [ri, Ti+l) of the partition A. Observe that B(t) = 
As(t) + Bti(e(Ti), G(Ti)) - Cv(t) - h(t), q 5 t < Ti+l, where L(e) gives rise to w(.) via equa- 
tion (2). Denoting by V(.) a concrete perturbation function that influences equation (l), we ob- 

tain d/dtLs(t) = sT(t)[ATL* + L*A]s(t) + S(L*s(t), Bii(Z(ri), W(Ti)) - CE(t) - Jl(t)) = -s2(t) + 
2(L*s(t), BG(t(Ti), W(T~)) - CE(t) - h(t)). By virtue of (3i), there exists a Lebesque measurable 
function G(t) E P for which BE(t) = C%(t) + h(t). This fact enables us to conclude 

d/dtL(S(t)) 5 -S2(t) + 2(L*S(t), B&(t)) (13) 

where ui(t) = ti(t(ri),W(ri)) - ii(t),7 < t < Ti+l. To estimate the second term in (13), let us 
observe that by the choice of ii(z, w) (see(7)), we have (L*s(Ti), Bui(t)) 5 0 and consequently 
(L*S(t),B&(t)) 5 (L*(S(t) - S(Ti)),BZli(t)). If We Set p’ = max{]]u]] : u E P} and P=(T) = 
max{P]]L*]] . I/s(t) - s(t’)ll . llBll . p’ : It - t’l < T we see that @T(T) tends to zero as T does } 
(independently of i and a perturbation function v(.)), which yields the inequality d/dtL(s(t)) 5 
-s2(t) +&(a), 0 5 t 5 T. Since all eigenvalues of matrix A are negative, [Is(t) - s(t’)ll does not 
really depend on T, so the last inequality may be written as 

$L(s(t)) I -s2(t) + P(6), 0 5 t 5 T (14) 

Setting D = {t E [O,T]: s2(t) 5 p(S)} we see that the theorem is proved for t E D. Observe 
that (O,T)\D is an open set, which means it is the union of at most countable number of 
open intervals (ai, pi), i = 1,2, . . . . On each of these intervals, we have d/dtL(s(t)) < 0 and 
consequently L(s(t)) < L(s(oi)), (Yi 5 t 5 ,f&. Since s’(Oi) = p(6) = s2@), we derive the 
inequality 

0 < L@(t)) < max{L(r) : II41 = I/%% t E KG”)\4 
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where s(t) = z(t,z~,&~,~(.)) - G(t). S ince L(z) is positive definite, for some constants 11,12, 
the following inequalities hold: l1.s’ 5 L(s(t)) 5 lzs’, s E R”, which yields lls’(t) 5 max{l(z) : 

11z11 = m> 5 /zp(a), t E [O,T) D. Finally, we obtain the estimate (12) because pT(6) does 
not actually depend on T. 

Inequality (11) gives an upper bound on the value function V(z) of problem P, namely 

V(q) = inf sup g[z( ., 
u*g U(.) 

20, %g, $*)I I K(zo), (15) 

where VI(Q) is the value function of problem PI defined at the end of Section 1. The theorem 
below provides a lower bound on V(Q). 

THEOREM 2. Assume that conditions (4)-(6) hold and perturbations v(t) E Q belong to the 
class of piecewise constant functions. Then, under condition (32), 

V(Q) = inf sup g[z(., 
u.g V(.) 

20, %,,V(.)l 1 v2(2’0). (16) 

We shall give a constructive proof of this theorem by proving an even stronger result (Theo- 
rem 3). Toward this end, we reverse the roles of the parameters U, V, by introducing a fictitious 
agent A, responsible for selecting parameter v with the aim of maximizing g(z(.)). Agent A will 
be allowed to employ strategies vsg = (~(2, w), A, we) in the sense of Definition 1. 

THEOREM 3. Assume that conditions (32), (4)-(6) hold. Then each step-guided strategy 

Gag = (~(~,w),~wR(.)> f o agent A for which G(~,w) is a selection from V(z, W) given by 
(8), A = (Ti) is a finite partition of [O,T] and wR(.) = G(e) is the solution of the equation 
G(t) = Az?l(t) + h2(2(7i), G(q)), q < t < Ti+l, 27(O) = 20, guarantees the inequality 

(17) 

with ~(6) + 0 as 6 -+ 0; here hz(c,w) is any selection from Hz(c,w) given by (9), u(t) is any 
measurable selection, m(.) is the modulus of continuity of g(e), and ~(6) does not depend on the 
length of the interval [0, T]. 

Before proving this theorem, let us notice that (17) implies an essentially stronger result than 
(16), by giving a formula for a perturbation function v(.) satisfying (16) (independently of u,,!). 
This perturbation function is piecewise constant, which follows from the definition of the step- 

guided strategy cdg. Consequently, the following inequality 

sup :lf%g[z(., 20, Ggr %g)l L h(20) 
UlKT 

implying inequality (16), holds true; it is known from elementary game theory that, for any kind 

of payoff functional P, 

provided each pair (a,@) gives rise to an outcome in whatever sense. In the proof of Theorem 3 
we shall use the Filippov lemma: If Ic(t, u): [a, b] x U - R is a continuous function and U is 

a compact set, then for each Lebesque measurable function q(t) E l(t, U), almost everywhere 
(a.e.) there is a Lebesque measurable function u(t) E U for which $(t) = k(t, u(t)) a.e. 

PROOF. Similarly as in the proof of Theorem 1, it is enough to show that 

sup Il&xo, u(.),Gg) - a(t)\/ < c(6), 0 < t 5 T 
u(t)eP 

(18) 

with ~(6) --$ 0 as 6 + 0. Setting s(t) = z(t,tO,u(.),ijSg) - G(t), let us compute d/dtL(s(t)), 
where L is the same as in the proof of Theorem 1. Take into consideration a subinterval [pi, T~+I) 
of the partition A and observe that, for t E [Ti,Ti+l), we have d/dtL(s(t)) = sT(t)[ATL* + 
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L*A]~(t)+2(L*s(t), Bu(~)--Cc(~(ri), G(ri)))-2(L*s(t), hz(E(ri), 27r(ri))), with G(O) = Z(O) = ~0. 
By virtue of (32), we have Bu(t) E CQ + Hz. Applying the Filippov lemma, we arrive at 

Bu(t) = C%(t) + h(t), where v(t) and h(t) are Lebesque measurable selections from & and H, 

respectively. Hence 

d/dtl(S(t)) 5 - S2(t) + 2(L*S(t), C[V(t) - G(t(ri), ?iJ(Ti))]) 

+ 2(L*s(t)j h(t) - h2(z(C)j G(G))), 7i < i! < 7i+l. (19) 

To estimate the middle term in the right-hand side of (19), let us invoke (8) to conclude 

(L*s(q), C[v(t) - c(x(G), G(ri))]) I 0. BY virtue of Remark 1 and assumption (5), the mid- 
dle term in (19) is less than or equal to pr(ri+i - ri), where pi(s) + 0 as s -+ 0 uniformly with 
respect to u(s), v(e)) and T. A similar conclusion, with pi(.) replaced by a function ,&( .), refers to 

the last term in (19), using the boundedness of H2 and Remark 1. Letting fls(s) = pi(s) + @2(s) 
we arrive at 

d/dtl(s(t)) < -s2(t) + Ps(ri+i - Ti), ri 5 i! < ri+l (20) 

Arguing exactly in the same manner as in the last part of the proof of Theorem 1 (starting with 
inequality (14))) we obtain (18) with E(S) = E(S), which completes the proof. 

4. CONCLUSIONS 

Coupled together, the better Theorems 1, 2 (as well as Theorems 1, 3) work, the smaller the 
difference [V~(EO) - V~(ZO)). In particular, when there is a set H satisfying H + CQ = BP, then 

&(x0) = v2(10) f or each point 20 E R” and the pairs (tisg, Gsg) “produce” families of saddle 

points, i.e., 

&(x0) -G(b) I g(x[., 20, &g&l) I &(x0) + E2(62) 

where &I(&) and ~~(52) tend to zero with the diameters 61,62 of the corresponding partitions 
Al,As, respectively; here E,, = (ti(z,~),Ai,~(.)) and Gss = (G(z,~),A~,w~(.)) are defined in 
Theorem 1 and Theorem 3, respectively. Putting the thought above in a little different terms, 
one may say that Theorems 1,2, and 3 enable one to obtain both lower and upper bounds for the 
value function of the original problem (P) assuming (31) and, clearly, the regularity conditions 

(4)-(6). In fact, when (31) holds th en we have an upper bound by Theorem 1. On the other 

hand, one can always find an E > 0 (the smaller the better) with the property Hf + CQ > BP, 
where by Xc, X C R”, we mean the set {Z E R” : IIf - ~11 5 E for some 2 E X}. Condition (32) 
will be then satisfied with H2 = Hf, which will enable us to apply Theorem 2 in order to get a 
lower bound for V(Q). 

Finally, based on Remark 1, we can extend the results above to the infinite horison setting 
(T = +co). Practically everything remains unchanged; small differences are needed, however. 
They refer to the definition of an admissible partition A = (ri) and assumption (4). Namely, 
by an admissible partition, we mean in this context any partition A = (ri) with the property 
that each segment [0, T] contains a finite number of partition points ri. As far as condition (4) 
is concerned, we require that g(z(.)) b e continuous on the space C(O,oo; R”) equipped with the 
max norm. 
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