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Abstract---The problem of static, nanlinear three-dimensional deformation of pipelaying used in construc- 
tion and installation of underwater pipelines is studied within the limits of small strain theory. The 
mathematical model consists of the pipeline model and geometric constraints imposed by the seabed and 
the lay vessel in stinger or J-type ~j~l~ying. The pipeline is modeled as a t~~n~wal1~, slender, extensible 
or inextensibie tubular beam-column. It is subject to gravity, lateral friction from the seabed, nonlinear 
three-dimensional deformation dependent hydrodynamic loads, torsion and distributed moments, varying 
axial tension, and internal and external static fluid forces. The problem is solved numerically by developing 
a nonlinear incremental finite element algorithm which features condensation and principles of contact 
mechanics. Condensation is used along with the geometric constraints to formulate a condensed problem 
which produces reaction forces. Strong nonfinearities present in the model are handled by an incremental 
tit&e element approach. The developed computer code is used to study stinger pi~laying for various 
stinger ~on~8urations* investigate the effect of water depth, and compare stinger to J-type pipelaying in 
deep water 

NOTATION (x, ,x2,x,) = (x, y, z) coordinates of the pipeline’s center- 

L@J 

s, $1 

w 

constraint reaction force, exerted on 
the pipeline 

(%10, ZL) 

inner and outer cross-sections of the 
(xi/t 0, %) 

pipeline, respectively 
bending rigidity Greek symbols 
drag coefficient 
hydrodynamic diameter 
modulus of elasticity 
internal force vector 
torsional moment 

2 
s 

x-coordinate of inner fluid free sur- 
face 

e, 

x-coordinate of water free surface 1~ 
triad of principal unit vectors 
sum of the eight stiffness matrices 

4 

appearing in eqn (33) 
undeformed and deformed finite ele- 

P1 

ment length, respectively 
P,, 

internal moment vector indices 
external moment per unit length c 
unit normal vector directed out of 
the infeasible domain 
effective tension 5 
external force per unit length 
position vector for the pipeline f 
centerline 
constraint reaction force exerted on 
the pipeline Special symfiois 
arc length of the pipeline centerline 
measured in the initial unstrained (‘) 
state and deformed state, respect- 
ively 
actual tension 
triad of local principal unit vectors W5 “I 2 
unit vector tangent to the stinger 
component of the relative flow 
velocity normal to the riser center- 
line 
weight of the pipeline supported by 
the seabed 
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line 
coordinate of the stinger’s lower end 
coordinate of the stinger’s upper 
end 

cantact region 
incremental operator 
indicates correction at the reaction 
forces and dispIa~ents imposed 
by the constraints 
strain of the riser centerline in the 
tangential direction 
curvature defined by eqn (4) 
friction coefficient between seabed 
and pipeline 
density of fluid inside the pipeIine 
density of water 

indicates constrained degrees of 
freedom 
indicates free degrees of freedom 
indicates longitudinal degrees of 
freedom 
indicates transverse degrees of free- 
dom 

indicates the differential operator 

d 

ds, 

locations of indices a, b, c around a 
matrix or vector symbol represent 
the positions where the iteration 
number, i, the increment number, n, 
and the symbols of the type of 
degree of freedom are placed, 
respective1y 
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1. INTRODUCTION 

Underwater pipelines are subjected to high stresses 
during the installation process [i]. Thorough analysis 
of pipelaying is mandatory to ensure safe operation 
and minimal down time under specified environ- 
mental conditions [2]. Stinger and J-type pipelaying 
are the most common methods for construction and 
installation of pipelines. The former may be used at 
ail water depths while the latter is exclusively used in 
deep waters. Both methods are studied in this paper. 

Several numerical methods have been developed to 
solve the stinger pipelaying problem. Powers and 
Finn II) used an initial value approach to analyze the 
small deflection static problem, In their finite element 
solution boundary conditions are assumed at the 
ocean floor and modified in an iterative procedure 
until boundary conditions at the lay vessel are 
satisfied. Ovunc and Mallareddy [3] solved the small 
deflection three-dimensional static problem using a 
stiffness matrix method, Wilkins [4] included non- 
linear curvature in a finite difference two-dimensional 
static model. Gnone et aE. [S, 61 compared experimen- 
taI data to numerical predictions computed by a 
thr~d~mens~onal model that takes into consider- 
ation the geometric nonlinearity due to extension but 
neglects other geometric nonlinearities~ Larsen and 
Kavlie [7] treated the two-dimensional, small deflec- 
tion static problem by potential minimization. They 
neglected the geometric stiffness due to axial force 
and concentrated on resolving difficulties arising 
from modeling the seabed and stinger using springs. 
Konuk [S} solved a comprehensive, nonlinear, static, 
three-dimensional mode1 for pipelines. Aspects of 
extensibility, deformation dependency of hydro- 
dynamic loads, and implementation of constraints 
were not discussed. Experimental data were com- 
pared to numerical predictions produced by Suzuki 
and Jingu [9]. using two-~rnensio~aI~ small degec- 
tion, frequency domain analysis. Bryndum cl al. [lo] 
solved a linearized dynamic pipelaying problem using 
a finite difference scheme. Specified reaction co- 
efficients were used to describe the unilateral con- 
straints imposed by the seabed and stinger. Oliver 
and Onate [1 I] solved the static, small deflection, 
two-dimensional problem by a finite element ap- 
proach. Constraints were imposed in an iterative 
scheme by prescribing nodal displacements where 
penetration occurred. In the present paper the 
static, thr~-dimensional, large deflection problem is 
studied. The pipe&e is modeled, in Sec. 2, as a 
thin-waIled, slender, extensible or inextensible, 
tubular beam-column, subject to gravity, tension, 
deformation dependent hydrodynamic loads, torsion, 
distributed moments, internal and external fluid 
static pressure, and seabed friction. In the solution 
algorithm, developed in Sec. 3, the load is applied 
incrementally in a finite element scheme. In each 
increment iteration is used for convergence and satis- 
faction of geometric constraints imposed by the 

seabed and stinger. In Sec. 4 the problems of stinger 
and J-type pi~1a~ng are studied. 

2. STATIC PIPELAYING MODEL 

The mathematical model of pipelaying is com- 
prised of the pipeline model and its boundary con- 
ditions, and geometric constraints imposed by seabed 
and stinger. It is assumed that the pipeline material 
is homogeneous, isotropic, and linearly elastic. 
Further, the following assumptions are made. 

(iii ) 

(iv) 

(v) 

(vi) 
(vii) 

(viii ) 

(ix) 

Pipelines are thinwaIled tubufar columns. 
Pipelines have circuIar cross-sections and are 
locally stiff so that plane sections remain plain 
after bending. 
Shear deformation is neglected. 
In the unloaded condition pipelines are as- 
sumed to be straight and free of structural 
imperfections. 
Pipelines are considered axially restrained at 
their lower end, and they may be extensible or 
inextensibIe. 
The seabed is assumed to be flat and rigid. 
The stinger is rigid with one end attached to the 
lay vesset. The stinger geometry is described by 
a quadratic polynomiaf. 
Friction between seabed and pipeline is propor- 
tional to the weight of the pipeline supported 
by the seabed. The friction force is exerted in 
the y-direction (see Fig. 1). 
There is no friction between the pipeline and 
the stinger. 

Using the above assumptions we can develop a 
nonlinear three-dimensional mathematical model for 
static pipelaying foliowing the model developed 
in ]I 21 and ]l3] for tubular columns. The geometry of 
the pipeline axis is shown in Fig. 1 in the deformed 
~nfiguration and symbols are explained in the 
Notation. Force and moment equilibria yield 

and 

F’+q=o (1) 

M’ -t (i x F) + m = 0, (2) 

where the internal force F = (F,, F,, FJ) and the 
internal moment M = (M,, Mr, M,). The constitutive 
equation for bending and torsion is 

M=Brct;+Hr: (3) 

where B = EI is bending rigidity, and H is torsional 
moment, (t A, 6) is the triad of local principal unit 
vectors of the pipeline centerline 

* 
t rr’ , 6= r’ x r”/rc, K =lr”Ia (4) 

Bold characters and ‘n’ indicate vector and unit 
vector, respectively, and the differential operator 
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Fig. 1. Pipelaying. 

d/hi is with respect to the arc length s, of the measured in the unstrain~ state and is related to ~1 
deformed pipeline centerline. K is the principal local by 
curvature, and r is the position vector shown in 
Fig. 1: ds, -=1+c,. 

ds 
r=x,i+x*j+(X,+S)k (5) 

Combining eqns (11, 0, (31, and (4) we derive the 
6, is the strain of the centerline in the tangential 
direction, defined as 

governing equations for bending 

-(Br”)” + [(I-‘, - B~*)r’j + [H(r’ x r”)] (9) 

+ (r’ x m)’ + q = 0 (6) 
The actual tension T satisfies the constitutive 

and for torsion equation 

H’+t.m=O, (7) T = EAc,, (10) 

where s is the arc length of the pipeline centerline where EA is stretching rigidity, and the actual tension 
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T is related to the effective tension P, by 

P, = T + pvgAo tH,t - fn, + s)] 

- PigAi[.lir,-Cxk + S>l. (11) 

H, and Hi are the x coordinates of water and internal 
fluid free surfaces, p, and pi are the densities of water 
and internal fluid, A, = nOi/ and Ai = nDf/4, and 
z = (x, + s) is measured from the pipeline lower 
end. P, is the tangential component of the internal 
force F 

P,=F.; (12) 

and F can be derived by integration of eqn (1). Since 
P, is used in this formulation, the vertical component 
of q should include the effective riser weight per unit 
length W,, defined as the weight of pipeline plus 
contents in water [12]. The hydrodynamic com- 
ponents of the external force q are 

q~(s,)={~~~i-‘~~,C~D~,V~,{ ;:i; 03) 

where only the drag term is considered in the 
Morison-Borgman formula [14, 151, CD is the drag 
coefficient, D, is the hydrodynamic diameter, and V, 
is the component of the relative flow velocity normal 
to the pipeline centerline. The following five 
boundary conditions must be defined: 

(i) i x M or r’ at s, = 0; 
(ii) r^ x M or r’ at the upper end; 
(iii) F or r at s, = 0; 
(iv) F or r at the upper end; 
(v) the torsional moment at the lower or upper end. 

To complete the mathematical model the geometric 
constraints imposed by the seabed and the stinger 
must be defined. The seabed, according to assump- 
tion (vi), is defined by the (y, z) plane as 

x= 0. (14) 

The stinger geometry is defined by a second degree 
polynomial 

X =az*+!?z i-c (15) 

and 

y=o (16) 

XL 5: x 5 XL! (17) 

Z,IZ I;Z”, (18) 

where (xL, 0, z,), (x,, 0, zU) are the coordinates of the 
lower and upper ends of the stinger. The upper end 

is located on the lay vessel In addition, the value of 
a is specified. In the numerical applications discussed 
in Sec. 4, a is treated as a design parameter and 
its value is selected by minimizing the maximum 
equivalent stress in the pipeline. 

The seabed and stinger impose nonpenetration and 
nonadhesion conditions on the pipeline which can be 
written, respectively, as 

(r - r,)fi,>O on r, (19) 

R.&Z0 on r,, (20) 

where r, is the constraint position vector, ri, is the unit 
normal vector directed out of the infeasible domain, 
and R is the reaction force exerted on the pipeline. 
The nonfriction constraint for the stinger is 

i;R=O, (21) 

where ;, is the unit tangent vector to the stinger. 
Finally, the friction constraint for the seabed is 

lR,J<y*W, (22) 

where RY is the 3~-component of the force exerted on 
the pipeline, W is the weight of the pipeline supported 
by the seabed, and pY is the friction coefficient. 

3. SOLUTION METHOD 

The static pipelaying model developed in the 
previous section defines a three-dimensional, large 
deformation contact problem. A load incremental 
algorithm is developed to treat the nonlinearities and 
is described in Sec. 3.1. A condensation algorithm is 
developed in Sec. 3.2 which reduces the pipela~ng 
problem to a condensed finite element problem based 
on the contact constraints. This method is different 
from other methods developed to solve similar con- 
tact problems, Hughes et al. f16] used Lagrangian 
multipliers and developed contact elements. 
Talaslidis and Panagiotopoulos [ 171 formulated the 
contact problem in a variational inequality form and 
solved it using standard quadratic optimization 
algorithms. Mahmoud et al. [18] developed an incre- 
mental solution scheme for two linear elastic bodies 
in contact and subjected to external loads. In their 
method, once contact is established in a boundary 
region by incremental load application, this 
boundary is assumed to remain in contact throughout 
the application of the entire load. In each increment 
the contact region is extended until equilibrium is 
established. In the condensation algorithm developed 
in this work to solve the static pipelaying problem, 
contact is not necessarily advancing as the incremen- 
tally applied load increases. Contact may regress 
depending on the stinger configuration. Stein and 
Wriggers [ 191 developed an updated Lagrangian for- 
mulation for a finite element computation of defor- 
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Fig. 2. Solution algorithm: load increments and condensation. 

mation of rods with unilateral frictionless constraints. 
In each step the load increment is modified to allow 
for the new nodes that come in contact to just touch 
the constraint. Yagawa and Hirayama [20] developed 
special purpose contact elements inserted between 
surfaces to account for contact conditions. Gu [21] 
studied the problem of an elastic beam bent on a rigid 
barrier. He developed an incremental finite element 
algorithm with an interface equation to pinpoint the 
location of the moving and unknown marginai nodes 
separating the contact and noncontact regions. In 
contact regions the displacement was considered 
known, and a fixed number of elements was used to 
analyze the remaining unconstrained part of the 
beam. Karacostas et al. [22] studied the dynamic 
behavior of a submarine cable constrained by a 
frictionless, rigid seabed. Space and time discretiz- 
ation produced a unilateral contact problem which 
was formulated as a sequence of variational inequal- 
ity problems. The latter were solved by quadratic 
programming. 

3.1. Load incremental algorithm 

The gravity loads, the fluid flow velocity, and hence 
the hydrodynamic load, are applied incrementally 
(see Fig. 2). Within each increment, iterations are 
performed until convergence of degrees of freedom is 
achieved. Within each iteration condensation is per- 
formed based on the contact constraints. The incre- 
mental counterpart of the mathematica1 model 
developed in Sec. 2 consists of the following 
equations. The weak incremental form of bending 
equation (6) is[23] 

B 
s 

’ Ar”.r ds, + (P, - BK*) 
I 

/I 
Ar’.?‘d.s, 

0 0 

+ “(FM)(r’9’)ds, 
I 0 

-2B 
I 

” (r’*Ar”)(r”.P’)dSI 
0 
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+H 
s 

“(At xr”).f’ds, 
0 

+ H 
s 

fl 

(r’ x Ar”).Y df, + ‘I (Ar’ x m)Y ds, 
0 s 0 

- 

s 
” (AF.r’)(r’.?‘) ds, -AH 

0 

- 

s 
” [r’ x (Am + Arn~~(~~) 

0 

+Am:6(1, - s,))]+F’ ds, 

(23) 

The incremental form of torsion equation (7) is 

AH@,) = AH(O) = 
s 

” Acri 
0 

@s I 

. mf C m;&s,-s,) ds, 
c= I 

c.1 
- Am+ c Am,..S(s,--s,) 

u=l 

(24) 

The incremental form of the force equilibrium 
equation (1) is 

kll 
AF = AF(1, ) - Aq+ C AAq&s,-s,) ds,. 

k=k, > 

(25) 

The incremental forms of eqns (lo), (11) and (12), 
respectively, are 

AP,= EAAc,- Ax,g(p,,A,- pmAi) (26) 

(27) 

AT = AF.r’ f FeAr’. (28) 

In the above equations, ? is the virtual displacement 
vector; I and I, are the undeformed and deformed 

element lengths. Further, mt and m:. are the vectors 
of concentrated moments at the bottom and top of 
a finite element: Aqf and Aqt are the vectors of 
ad~tional concentrated forces due to constraints at 
the bottom and top of a finite element; k,, and e,, are 
the total numbers of constrained nodes and concen- 
trated moments, respectively, from the bottom of 
the pipeline up to s ,; s, and s, are the locations of 
constrained nodes and nodes with concentrated 
moments, respectively. It should be pointed out that 
in eqn (23) all quantities appearing in front of the 
integrals are considered constant for each element. In 
the above incremental formulation, the following 
equations are used to compute xj, xi, Ax3, Ax; in a 
prediction-correction scheme 

i 

I, 

x,=x,(O)+ x; ds, (29) 
0 

I 
x; = (1 - x;z - x;*p -- 

1 +q 
(30) 

Ax;= Ax; ds, (31) 

4 

I[ 

x;Ax; + x;Ax; 
- EA(1 -I- c!)~ 1 

x;+---- 
1 +r, 

1 
+ 

EA(1 +c,)‘+ F, 
AF,x; f A&+,x; + AF, 

@+&) + F,Ax; + F,Ax; 

(32) 

Thus, the number of degrees of freedom per element 
is reduced from 12 to eight. The resulting incremental 
finite element form is 

where {of is the deformation vector due to the 
external force vector (F) and force vector (AF) due 
to the constraint reaction forces. The fth matrix is 
derived from the Ith integral on the left hand side of 
eqn (23). 

All stiffness matrices and, in general, the hydro- 
dynamic load, are deformation dependent. Iterations 
are performed in each increment until convergence of 
degrees of freedom is achieved. An iterative pro- 
cedure with predictor and corrector phases is used in 
each increment and all stiffness matrices, the equi- 
valent nodal forces and the boundary conditions are 
updated. In the prediction phase, x,, xi, Ax,, Ax; are 
computed using eqns (29)-(32). In the correction 
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phase, x,,x~,Ax,,Ax~,x,,x~,Ax~,Ax~ are corn- 
puted by solving matrix equation (33), and 
x3, xi, Ax,, Ax; are corrected using eqns (29)-(32). 
The above algorithm is summarized in Fig. 2. 

3.2. Condensed problem 

With iteration i, in increment n, the nonadhesion 
and nonpenetration conditions given by eqns (19) and 
(20) are used to produce a condensed problem for the 
constrained degrees of freedom only. The latter are 
determined based on the following criteria. 

(i) All y-degrees of freedom along the stinger satisfy 
eqn (16) and are constrained. 

(ii) All x-degrees of freedom along the pipeline are 
constrained if the nonpenetration inequality 
condition (19) is violated. 

(iii) If inequality (19) is violated by a node for the 
first time in the current iteration, no reaction 
force is available. Otherwise, the reaction force 
has been computed in the previous iteration/ 
increment; in such case the nonadhesion inequal- 
ity condition (20) is tested. If it is satisfied, 
contact is maintained through the current iter- 
ation; if not the node is released. 

(iv) For all nodes that are in contact with the seabed, 
the friction inequality constraint (22) is tested. 
If it is satisfied the corresponding y-degree of 
freedom is constrained; otherwise it is released. 

In the ith iteration of the nth increment the 
governing matrix equation is 

[Kl” ‘(uf”= ‘(Fj”+ i-‘{_4F}“, (34) 

where [Kj” is the stiffness matrix updated at the 
nth increment, and ‘(~)n, ‘(F)” and i-i (AFY are 
incremental degrees of freedom, external forces, and 
reaction forces of the values of all increments. 

Partitioning eqn (34) into constrained (c) and free 
(j) degrees of freedom we have 

where 

(35) 
Indicating degrees of freedom in directions x, and 
x, by t (for transverse) and in direction xj by 1 (for 
longitudinal), we further partition eqn (35) as 

‘-’ (AF,}, 

1 I w/I/ 

1 i 

Xl Iii X2 

x3 c 

E (39) 

(37) 

(38) 

= 

Eliminating the longitudinal degrees of freedom 
(x3, xi) from eqn (36), using eqns (29)-(32), we derive 
the following matrix equation for the transverse 
degrees of freedom: 
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Advancing from iteration i to (i + 1) in increment n, 
results in changes to the incremental displacement 
vector ‘{u)” and the additional reaction force vector 
‘(5AF)“. Thus, we have 

the extensibility of ~~~oI~n st~ctures has also 
been tested for short stiff beams fl3]. 

The second function of the program has been 
tested in the following ways. 

(i) The entire pipeline was laid incrementally on a 
flat seabed under the action of its own weight. It 
was verified that all nodal points, including the 
two boundary points, were in contact with the 
seabed. The reaction forces were all equal and 
their sum was equal to the total pipeline weight 
in water. The nodal bending moments were 
almost equal to zero. 

(ii) The entire pipeline was laid to a flat seabed and 
was subjected to lateral horizontal uniform load. 
The friction coefficient was given different values 
and the pipeline deflection was verified to be 
compatible with the friction force. 

Since ‘{&AF, 1.7 = { 0}, eqn (42) can be condensed to 

(KIX - W,,&K$~ K,l$)i I&):= ‘&fF,):, (43) 

where ‘(&,)z is computed from the following 
equation, using the geometry of the constraint fu,] 
and the values of the incremental displacement vec- 
tors computed in the previous increments and the last 
iteration 

n-1 
‘@,>: = 1%) -j;, I&):- i{u,>:. (44) 

Further, the nonfriction constraint of the stinger as 
expressed by eqn (21) yields 

f.AF,. = tJ- AF,, + t,*AF, + t,.AF,, = 0, (45) 

from which AF, can be computed. 

4. APPLICATIONS 

The algorithm developed in the previous section to 
solve the pipelaying problem formulated in Sec. 2 has 
been implemented in program PIPELAY.NS.3D 
(PIPEline LAYing Nonlinear static 3-Dimensional 
Analysis). A major task in developing algorithms 
for nonlinear structural analysis is verification of 
the computer code. Our approach to verification is 
described in Sec. 4.1. In the rest of this section several 
numerical applications are used to study stinger 
pipelaying in moderate and deep water, and J-type 
pipeiaying in deep water. 

4.1, Verification 

The major functions of program PIPELAY.NS.3D 
which must be verified are as follows. 

(i) The solution algorithm for the three-dimen- 
sionat, large deformation, nonlinear analysis of 
the pipeline. 

(ii) The algo~thm for identifying constrained de- 
grees of freedom using the non~netration and 
nonadhesion conditions, and the friction con- 
straint on the seabed boundary. 

(iii) The condensation and solution process. 

The first function of the program has been tested 
thoroughly over a period of six years by systematic 
comparison with linear programs and simple non- 
linear applications that can be solved analyti- 
tally [12]. The ability of PIPELAY.NS.3D to handle 

(iii) In all application cases all constraint conditions 
defined by eqns (14)-(21) were satisfied. 

The third function of the program, condensation, 
has been tested in various substructuring appli- 
cations. A substructuring-condensation process was 
developed in solving the problem of nonlinear, large 
deflection, three-dimensional, static and dynamic. 
analyses of nonintegral riser bundles 123,241. 
Further, it was verified that all degrees of freedom 
identified as constrained in the following pipelaying 
applications were the only degrees of freedom present 
in the condensed matrix form [eqn (4311. 

4.2. Stinger pipelaying 

In this subsection, two stinger pipelaying appli- 
cations, in moderate water depth, are considered. The 
properties of the pipeline used in all numerical appli- 
cations in this paper are summarized in Table 1. A 
heavy coating is added to the pipeline to keep it in 
place after instalIation 121. The external diameter of 
coating and density are also shown in Table 1. 

The first application in this section involves 
pipelaying in 67 m water depth, in a tidal current of 
surface velocity 1.0 m/set. The current velocity is in 
the z-direction and the pipelaying bending is planar 
in the (x, t) plane. The stinger end point coordinates 
are (x,,, zU) = (72.0, 400.0 m) for the upper end, and 
(xL, zL) = (41.5, 265.0 m) for the lower end. These 
coordinates are used to define coefficients b and c in 
terms of a in eqn (15). Coefficient a is used as a design 

Table 1. Properties of pipeline used in numerical appli- 
cations 

Property Value 

External diameter, D, 0.61 m 
Internal diameter, D, 0.58 m 
Diameter of coating, D, 0.71 m 
Density of steel pipes, P.,, 7900 kg/m’ 
Density of water, p,, 1025 kg/m3 
Density of coating, p, 3000 kg/m3 
Tension applied at the pipeline’s upper end 580 kN 
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Fig. 3. Maximum equivalent for two-dimensional pipelaying in 67 m water depth; nine stinger configur- 
ations. 

parameter as shown in Fig. 3, to find a good stinger 
design. No attempt is made to optimize for a. The 
value of (I = -0.0012 selected, however, is expected 
to be very close to the actual optimum. The two 
maxima appearing in the maximum equivalent stress 
graph-one along the unsupported part of the 
pipeline and the other along the stinger supported 
section of the pipeline-are almost equal for the 
selected value of a. The maximum equivalent stress is 

defined as the maximum equivalent von Mises stress 
in any particular cross-section of the pipeline. The 
corresponding lateral deflection is shown in Fig. 4. 

In the second application the tidal current is ap- 
plied in the y-direction, thus making the pipeline’s 
deflection three-dimensional as shown in Fig. 6 for 
a = -0.0012. The latter was selected by comparing 
the maximum equivalent stress in the pipeline for the 
various values of a shown in Fig. 5. 
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stinger 

4,3. Deep water stirnger pj~ei~yi~~ 

Two applications similar to those considered in the 
previous section are studied in 125m water depth. 
The stinger geometry is defined by eqn (15) and the (ii) 
following coordinates of the upper and lower stinger 
ends, respectively: (n,, za) = (128.0, 440.0 m) and 
(x,, z,) = (78.0, 305.0 m). On the basis of the maxi- 
mum equivalent stress graphs shown in Figs 7 and 9, 
the value of u = -0.0011 was selected. The corre- 
sponding deflections for two-dimensional and three- 
dimensional cases are shown in Figs 8 and 10, 
respectively. (iii ) 

4.4. Deep water J-type pipeiaying 

In deep water the alternative pipelaying method, 
J-type, may be used. The pipeline is laid without 
stinger support at a much sharper angle at the 
lay vessel. This is shown in the two- and three- 
dimensional applications in Figs I1 and 12, respec- 
tively. In j-type pjpe~ayjng the maximum equivalent (iv) 

stress exhibits one peak along the unsupported 
pipeline section. 

By studying the numerical application resuhs (v) 

shown in Figs 3-12, the following conclusions can be 
drawn. 

(i) In stinger pipelaying, stresses along the pipeline (vi) 
section which remains in contact with the 
stinger are the same in two- and three-dimen- 

sional applications. This is so because the 
pipeline deflection is restricted by the stinger in 
both the (x, z) plane and the y-direction. 
In static analysis, the major load component 
exerted on the pipeline is due to the pipeline 
weight in water and not the hydrodynamic 
load. Thus, the difference between stresses in 
two- and three-dimensiona cases diminishes as 
the water depth increases. This can be con- 
cluded by comparing Fig. 3 to Fig. 5, Fig. 7 to 
Fig. 9, and Fig. I1 to Fig. 12. 
In stinger pi~~aying two peaks appear in the 
maximum equivalent stress graphs, as shown in 
Figs 3, 5,7 and 9. A good stinger configuration 
should make the two maxima, one located in 
the unsupported pipeline section and the other 
in the stinger supported section, nearly equal, 
so that the latter is not subjected to extensive 
stress. 
Xn deeper water, the unsupported pipeline 
length is longer, and the touch down point is 
further away from the lay vessel. This becomes 
obvious by comparing Figs 4 and 6 to Figs 8 
and IO. 
In stinger pipelaying, stresses increase with 
water depth because of the increase in length 
of the unsupported pipeline section (compare 
Figs 3 and 5 to 7 and 9, respectively). 
In stinger pipelaying, the geometry of the 
stinger dominates the stress distribution along 
the stinger supported section of the pipe. 
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Legend 
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l a = -0.0009 --_ 

Legend 
6 a= -0.0013 
* a= -0.00145 --- 

0 a = -0.0016 --_-- 

l a = -0.0019 --- 

1 a= -0.0021 _______________ 

Fig. 5. Maximum equivalent stress for three-dimensional water depth; nine stinger configurations. 

(vii) J-type pipelaying may be preferable to stinger pipeline deformation. In stinger pipelaying 
laying in deep water, since the former results there is a reversal in the curvature sign because 
in reduced stresses. This can be concluded of the stinger configuration. 
by comparing Figs 7 and 9 to 11 and 12, 
respectively. 5. SUMMARY 

(viii) In J-type pipelaying, the maximum equivalent 
stress graph exhibits only one maximum along The static problem of pipelaying has been studied 
the unsupported pipeline section. This is so, by developing a numerical solution. The pipeline 
because there is no inflection point in the model is three-dimensional, nonlinear, and has large 
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Fig. 6. Lateral X- and y-deflections for three-dimensional pipelaying in 67m water depth, stinger 
configuration a = -0.0012. 

deformation. The nonpenetration, nonadhesion and space integration to handle the nonlinearities of the 
friction constraints have been used to model the model. The deformation dependent hydrodynamic 
seabed and stinger constraints and to identify the load and all stiffness matrices are updated within each 
constrained degrees of freedom. The latter are used in increment. All three aspects of the developed algor- 
a condensation process to produce a reduced matrix ithm, that is, the incremental finite element technique, 
problem which is used to compute reaction forces. An the contact constraints, and the condensation pro- 
incremental finite element method has been used for cess, have been thoroughly tested by studying simple 
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Fig. 7. Maximum equivalent stress for two-dimensional pipelaying in 125 m water depth; eight stinger 
configurations. 
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Fig. 8. Inplane pipeline deflection for two-dimensional pipelaying in 125m water depth; stinger 
configuration a = - 0.0011. 
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Fig. 9. Maximum equivalent stress for three-dimensional pipelaying in 125 m water depth; six stinger 
configurations. 
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l3g. 10. Lateral x- and y-deflections for three-dimensional pipelaying in 125 m water depth; stinger 
configuration a = -0.0011. 



Three-dimensional nonlinear statics of pipelaying 

TM80 kN ; ZTIDAL Vsur=l.O m/set ; 

50_ . . . . . . .._..................................... 

40__...............~...............~............ 

20_ _...._..........;............ j............. 

o- :._.;.;._;_.. 
-450 -400 -350 -300 -250 -200 -150 -100 -50 

DISTANCE FROM VESSEL’S END (METERS) 

-450 -400 -350 -300 -250 -200 -150 -100 . 

DISTANCE FROM VESSEL’S END (METERS) 

............. 

........... 

.... ....... 

\ 

....... .... 

.......... . 

............. 

211 

Fig. 11. Inplane pipeline deflection and maximum equivalent stress for two-dimensional pipelaying in 
125 m water depth. 
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Fig. 12. Lateral X- and y-deflections and maximum equivalent stress for three-dimensional J-type 
pipelaying in 125 m water depth. 

verification cases and other related applications on 

marine risers. Several practical applications have 
been studied numerically for both stinger and J-type 
pipelaying and useful conclusions have been derived. 
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