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Abstract—The problem of static, nonlinear three-dimensional deformation of pipelaying used in construc-
tion and installation of underwater pipelines is studied within the limits of small strain theory. The
mathematical model consists of the pipeline model and geometric constraints imposed by the seabed and
the lay vessel in stinger or J-type pipelaying. The pipeline is modeled as a thin-walled, slender, extensible
or inextensible tubular beam—column. It is subject to gravity, lateral friction from the seabed, nonlinear
three-dimensional deformation dependent hydrodynamic loads, torsion and distributed moments, varying
axial tension, and internal and external static fluid forces. The problem is solved numerically by developing
a nonlinear incremental finite element algorithm which features condensation and principles of contact
mechanics. Condensation is used along with the geometric constraints to formulate a condensed problem
which produces reaction forces. Strong nonlinearities present in the model are handled by an incremental
finite element approach. The developed computer code is used to study stinger pipelaying for various
stinger configurations, investigate the effect of waier depth, and compare stinger to J-type pipelaying in
deep water.
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NOTATION {x;, X, x;)={x,y,2)} coordinates of the pipeline’s center-
) ) line
{AF} constraint reaction force, exerted on  (x;,0,z,) coordinate of the stinger’s lower end
the pipeline . (x4, 0,2,) coordinate of the stinger's upper
A A, inner and outer cross-sections of the end
pipeline, respectively
B bending rigidity Greek symbols
Cp drag coefficient r. contact region
Dy hydrodynamic dx‘axfneter A incremental operator
E modulus of elasticity é indicates correction at the reaction
F=(F,F,F) internal force vector forces and displacements imposed
H tsrszeﬁa§ moment by the constraints
H, x-coordinate of inner fluid free sur- ¢, strain of the riser centerline in the
face tangential direction
}3’;,; xtcoordxngtc of water free surface curvature defined by eqn (4)
(.55 triad of prmc;pal unit vectors '8 friction coefficient between seabed
Kl sum of the eight stiffness matricas and pipeline
appearing in eqn (33) o density of fluid inside the pipeline
4k undeformed and defqrmed finite ele- p; density of water pipe
ment length, respectively
M = (M) M,, M) internal moment vector Indices
m external moment per unit length ¢ indicates constrained degrees of
A, unit normal vector directed out of freedom
» the infeasible domain f indicates free degrees of freedom
A effective tension i ! indicates longitudinal degrees of
q external foree per unit length freedom
r position  vector for the pipeline indicates transverse degrees of free-
centerline dom
R constraint reaction force exerted on
the pipeline Special symbols
8, 5 arc length of the pipeline centerline Lo
measured in the initial unstrained () indicates the differential operator
state and deformed state, respect- d
ively ds.
T actual tension 5
(1,4,8) triad of local principal unit vectors  “[ ¥, *{ }? locations of indices a, b, ¢ around a
f unit vector tangent to the stinger matrix or vector symbol represent

v, component of the relative flow the positions where the iteration
velocity normal to the riser center- number, /, the increment number, »,
line and the symbols of the type of

w weight of the pipeline supported by degree of freedom are placed,

the seabed

135

respectively
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1. INTRODUCTION

Underwater pipelines are subjected to high stresses
during the installation process {1}. Thorough analysis
of pipelaying is mandatory to ensure safe operation
and minimal down time under specified environ-
mental conditions [2]. Stinger and J-type pipelaying
are the most common methods for construction and
installation of pipelines. The former may be used at
all water depths while the latter is exclusively used in
deep waters. Both methods are studied in this paper.

Several numerical methods have been developed to
solve the stinger pipelaying problem. Powers and
Finn {1} used an initial value approach to analyze the
small deflection static problem, In their finite element
solution boundary conditions are assumed at the
ocean floor and modified in an iterative procedure
until boundary conditions at the lay vessel are
satisfied. Ovunc and Mallareddy [3] solved the small
deflection three-dimensional static problem using a
stiffness matrix method. Wilkins [4] included non-
linear curvature in a finite difference two-dimensional
static model. Gnone et al. [5, 6] compared experimen-
tal data to numerical predictions computed by a
three-dimensional model that takes into consider-
ation the geometric nonlinearity due to extension but
neglects other geometric nonlinearities. Larsen and
Kavlie [7] treated the two-dimensional, small deflec-
tion static problem by potential minimization. They
neglected the geometric stiffness due to axial force
and concentrated on resolving difficulties arising
from modeling the seabed and stinger using springs.
Konuk [8] solved a comprehensive, nonlinear, static,
three-dimensional model for pipelines. Aspects of
extensibility, deformation dependency of hydro-
dynamic loads, and implementation of constraints
were not discussed. Experimental data were com-
pared to numerical predictions produced by Suzuki
and Jingu[9], using two-dimensional, small deflec-
tion, frequency domain analysis. Bryndum et /. {10]
solved a Hinearized dynamic pipelaying problem using
a finite difference scheme. Specified reaction co-
efficients were used to describe the unilateral con-
straints imposed by the seabed and stinger. Oliver
and Onate{11] solved the static, small deflection,
two-dimensional problem by a finite element ap-
proach. Constraints were imposed in an iterative
scheme by prescribing nodal displacements where
penetration occurred. In the present paper the
static, three-dimensional, large deflection problem is
studied. The pipeline is modeled, in Sec. 2, as a
thin-walled, slender, extensible or inextensible,
tubular beam-—column, subject to gravity, tension,
deformation dependent hydrodynamic loads, torsion,
distributed moments, internal and external fluid
static pressure, and seabed friction. In the solution
algorithm, developed in Sec. 3, the load is applied
incrementally in a finite element scheme. In each
increment iteration is used for convergence and satis-
faction of geometric constraints imposed by the
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seabed and stinger. In Sec. 4 the problems of stinger
and J-type pipelaying are studied.

2. STATIC PIPELAYING MODEL

The mathematical model of pipelaying is com-
prised of the pipeline model and its boundary con-
ditions, and geometric constraints imposed by seabed
and stinger. It is assumed that the pipeline material
is homogeneous, isotropic, and linearly elastic.
Further, the following assumptions are made.

(i}  Pipelines are thin-walled tubular columns.

(ii) Pipelines have circular cross-sections and are
locally stiff so that plane sections remain plain
after bending.

{(iii) Shear deformation is neglected.

(iv) In the unloaded condition pipelines are as-
sumed to be straight and free of structural
imperfections.

(v) Pipelines are considered axially restrained at
their lower end, and they may be extensible or
inextensible.

(vi}) The seabed is assumed to be flat and rigid.

(vii} The stinger is rigid with one end attached to the

lay vessel. The stinger geometry is described by
a quadratic polynomial.
(viii) Friction between seabed and pipeline is propor-
tional to the weight of the pipeline supported
by the seabed. The friction force is exerted in
the y-direction (see Fig. 1).
There is no friction between the pipeline and
the stinger,

(ix)

Using the above assumptions we can develop a
nonlinear three-dimensional mathematical model for
static pipelaying following the model developed
in [12] and [13] for tubular columns. The geometry of
the pipeline axis is shown in Fig. 1 in the deformed
configuration and symbols are explained in the
Notation. Force and moment equilibria yield

F+q=0 M

and

M +(fxF)+m=0, (2)
where the internal force F=(F,, F,, F,) and the
internal moment M = (M, M,, M,). The constitutive
equation for bending and torsion is
M = Bxb + Hi, &)
where B = £ is bending rigidity, and H is torsional
moment, (£, 4, 5) is the triad of local principal unit
vectors of the pipeline centerline
f=v, b=rxvlk, k= 4
Bold characters and ‘"' indicate vector and unit
vector, respectively, and the differential operator
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Fig. 1. Pipelaying.

measured in the unstrained state and is related to 5,

by

d/ds, is with respect to the arc length s, of the

deformed pipeline centerline. x is the principal local

curvature, and r is the position vector shown in

Fig. 1

®

ds,
— =1+4e¢.
ds té

&)

Combining eqns (1), (2}, (3), and (4) we derive the

governing equations for bending

IE.

P

-

i+ xf+ 0+

r

in the tangential

¢, is the strain of the centerline

direction, defined as

®

—(Be"Y' + [(P, — BxO)'Y + [H{E x )]

The actual tension T satisfies the constitutive

+q=0 (6

+ " xm)

equation

10N

and for tors

(10

T = EAe,,

M

1

=0,

+t-m

H/

where EA is stretching rigidity, and the actual tension

where s is the arc length of the pipeline centerline
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T is related to the effective tension P, by
Pe =T + pngG{Hw - (X| + S)]

— pigAlH— (e + 9} (I1)
H, and H, are the x coordinates of water and internal
fluid free surfaces, p,, and p, are the densities of water
and internal fluid, 4, =nD2/4 and 4, =nD?/4, and
z =(x;+s) is measured from the pipeline lower
end. P, is the tangential component of the internal
force F

P,=F-t,

. (12)
and F can be derived by integration of eqn (1). Since
P, is used in this formulation, the vertical component
of q should include the effective riser weight per unit
length W,, defined as the weight of pipeline plus
contents in water [12]. The hydrodynamic com-
ponents of the external force g are

qH\ 1 Vn.
@(8) =g, 0 =5 P CoDulVal { V0 13
q}ig Vug

where only the drag term is considered in the
Morison-Borgman formula {14, 15], C, is the drag
coefficient, D,, is the hydrodynamic diameter, and V,
is the component of the relative flow velocity normal
to the pipeline centerline. The following five
boundary conditions must be defined:

i) 7xMorrats=0;

(i) fxM orr at the upper end;

(i) Forrats =0;

(iv) F or r at the upper end;

(v) the torsional moment at the lower or upper end.

To complete the mathematical model the geometric
constraints imposed by the seabed and the stinger
must be defined. The seabed, according to assump-
tion (vi), is defined by the (y, z) plane as

x =0, (14)
The stinger geometry is defined by a second degree
polynomial

x=agt+bz+c (15)
and
y=0 (16)
X €x <Xy amn
7, €2 <2y, (18)

where (x;, 0, z, ), {x;, 0, z;,) are the coordinates of the
lower and upper ends of the stinger. The upper end

is located on the lay vessel. In addition, the value of
a is specified. In the numerical applications discussed
in Sec. 4, a is treated as a design parameter and
its value is selected by minimizing the maximum
equivalent stress in the pipeline.

The seabed and stinger impose nonpenetration and
nonadhesion conditions on the pipeline which can be
written, respectively, as

r—r )i, 20 on T, (19)

R4 20 on T, (20)
where r, is the constraint position vector, 4, is the unit
normal vector directed out of the infeasible domain,
and R is the reaction force exerted on the pipeline.
The nonfriction constraint for the stinger is
t-R=0, 2D

where 7, is the unit tangent vector to the stinger.
Finally, the friction constraint for the seabed is
IR <u, W, @2)

where R, is the y-component of the force exerted on

the pipeline, W is the weight of the pipeline supported
by the seabed, and y, is the friction coefficient.

3. SOLUTION METHOD

The static pipelaying model developed in the
previous section defines a three-dimensional, large
deformation contact problem. A load incremental
algorithm is developed to treat the nonlinearities and
is described in Sec. 3.1. A condensation algorithm is
developed in Sec. 3.2 which reduces the pipelaying
problem to a condensed finite element problem based
on the contact constraints. This method is different
from other methods developed to solve similar con-
tact problems. Hughes er al. [16] used Lagrangian
multipliers and developed contact elements.
Talaslidis and Panagiotopoulos [17] formulated the
contact problem in a variational inequality form and
solved it using standard quadratic optimization
algorithms. Mahmoud et al. [18] developed an incre-
mental solution scheme for two linear elastic bodies
in contact and subjected to external loads. In their
method, once contact is established in a boundary
region by incremental load application, this
boundary is assumed to remain in contact throughout
the application of the entire load. In each increment
the contact region is extended until equilibrium is
established. In the condensation algorithm developed
in this work to solve the static pipelaying problem,
contact is not necessarily advancing as the incremen-
tally applied load increases. Contact may regress
depending on the stinger configuration. Stein and
Wriggers [19] developed an updated Lagrangian for-
mulation for a finite element computation of defor-
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Fig. 2. Solution algorithm: load increments and condensation.

mation of rods with unilateral frictionless constraints.
In each step the load increment is modified to allow
for the new nodes that come in contact to just touch
the constraint. Yagawa and Hirayama [20] developed
special purpose contact elements inserted between
surfaces to account for contact conditions. Gu [21]
studied the problem of an elastic beam bent on a rigid
barrier. He developed an incremental finite element
algorithm with an interface equation to pinpoint the
location of the moving and unknown marginal nodes
separating the contact and noncontact regions. In
contact regions the displacement was considered
known, and a fixed number of elements was used to
analyze the remaining unconstrained part of the
beam. Karacostas er al [22] studied the dynamic
behavior of a submarine cable constrained by a
frictionless, rigid seabed. Space and time discretiz-
ation produced a unilateral contact problem which
was formulated as a sequence of variational inequal-
ity problems. The latter were solved by quadratic
programming.

3.1. Load incremental algorithm

The gravity loads, the fluid flow velocity, and hence
the hydrodynamic load, are applied incrementally
(see Fig. 2). Within each increment, iterations are
performed until convergence of degrees of freedom is
achieved. Within each iteration condensation is per-
formed based on the contact constraints. The incre-
mental counterpart of the mathematical model
developed in Sec. 2 consists of the following
equations. The weak incremental form of bending
equation (6) is {23]

h h
Bj Ar"-F ds, + (P, — BKZ}J Ar'-F ds,
0 ¢

0

{il
+f (F-Ar) (r'-F) ds,

h
—2B j @ -ArY(r"-¥)ds,
g
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h
+HJ (Ar x 1")-T ds,
0
4 4
+Hf (r' x Ar")-¥ ds; +j (Ar' x m)¥ ds,
o 0
h
+.( [Ar x (m} d(s,) + m.6(/, — 5,))]- ¥ ds,
1]
1
=j [Ag X AAqP 8(s,) + AAq. 6(I, — 5] -Tds,
0
i !
—f (AF-r)(r'-T') ds, —AHJ (r xr')Fds,
0 0

b
—j Ir' x (Am + Am®38(s,)
8

+Am () ~ 5,))]-F ds,
i 4
+ BAr"-¥

0

+AF-T (23)

0

The incremental form of torsion equation (7) is

AH(s,) = AH(0) = J " AF
(]

ey
-(m-}— 3 m,o(s,—
e=]

s }) ds,

-r' t~<Am £ ¥ Am‘,-é(s,,u-sl)) ds,.
¢ e=1
24)

The incremental form of the force equilibrium
equation (1) is

b kiy
AF=AF(I,)—J‘ (Aq+ Z AAQ(S(Sk—S,))dSI.

51 k=&”

@%)

The incremental forms of eqns (10), (11) and (12),
respectively, are

APe = EAAe! - A‘xlg(pr{)—— pmAi) (26)
i
APe = Alei =+ Aleé + AF3<X§ +*1~:';’)
, , , Ae,
+F,Ax, + F-_)Ax2+ F3AX3~' F3m
@n
AT =AF v +F-Ar. (28)

In the above equations, F is the virtual displacement
vector; / and /; are the undeformed and deformed
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element lengths. Further, m® and m!. are the vectors
of concentrated moments at the bottom and top of
a finite element: Aq® and Aq. are the vectors of
additional concentrated forces due to constraints at
the bottom and top of a finite element; k,, and e, are
the total numbers of constrained nodes and concen-
trated moments, respectively, from the bottom of
the pipeline up to s;; s, and s, are the locations of
constrained nodes and nodes with concentrated
moments, respectively. It should be pointed out that
in eqn (23} all quantities appearing in front of the
integrals are considered constant for each element. In
the above incremental formulation, the following
equations are used to compute x;, x}, Ax;, Ax}in a
prediction—correction scheme

51
X, = x;(0) + j x; ds, (29)
0
xp= (1= xf = x{)2 30)
! 1+e,
51
Ax;=[ Axids, @31
1
F x3Ax5 + x{Ax]
Axi=1]1 —
*3 [+EA(1+6,)2:| )
X3 A ——
14
1

| ARx{ + AFx}+ AF
+EA(1+£,)2+F3[ L AGXa+A5

1
.<X3+m>+Fle; + F,Ax;

—Ax g(pnA4;— Pon)] . (32)

Thus, the number of degrees of freedom per element
is reduced from 12 to eight. The resulting incremental
finite element form is

( 5 [K,J) W= {(F}+4F), (3

=1

where {u} is the deformation vector due to the
external force vector {F} and force vector {4F} due
to the constraint reaction forces. The /th matrix is
derived from the /th integral on the left hand side of
eqn (23).

All stiffness matrices and, in general, the hydro-
dynamic load, are deformation dependent. Iterations
are performed in each increment until convergence of
degrees of freedom is achieved. An iterative pro-
cedure with predictor and corrector phases is used in
each increment and all stiffness matrices, the equi-
valent nodal forces and the boundary conditions are
updated. In the prediction phase, x,, x3, Ax;, Ax} are
computed using eqns (29)-(32). In the correction
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phase, x,,x},Ax|, Ax], x;, x3, Ax,, Ax; are com-
puted by solving matrix equation (33), and
X3, X3, Ax,, Axj are corrected using eqns (29)—(32).
The above algorithm is summarized in Fig. 2.

3.2. Condensed problem

With iteration i, in increment », the nonadhesion
and nonpenetration conditions given by eqns (19) and
(20) are used to produce a condensed problem for the
constrained degrees of freedom only. The latter are
determined based on the following criteria.

(i) All y-degrees of freedom along the stinger satisfy
eqn (16) and are constrained.

All x-degrees of freedom along the pipeline are
constrained if the nonpenetration inequality
condition (19) is violated.

If inequality (19) is violated by a node for the
first time in the current iteration, no reaction
force is available. Otherwise, the reaction force
has been computed in the previous iteration/
increment; in such case the nonadhesion inequal-
ity condition (20) is tested. If it is satisfied,
contact is maintained through the current iter-
ation; if not the node is released.

For all nodes that are in contact with the seabed,
the friction inequality constraint (22) is tested.
If it is satisfied the corresponding y-degree of
freedom is constrained; otherwise it is released.

(i)

(iii)

(iv)

In the ith iteration of the nth increment the
governing matrix equation is

[KY @y =(Fy'+ APy, ()

where [K]" is the stiffness matrix updated at the
nth increment, and ‘{u}", ‘(F)" and "' {4F}" are
incremental degrees of freedom, external forces, and
reaction forces of the values of all increments.

Partitioning eqn (34) into constrained (c) and free
(f) degrees of freedom we have

o ] fif = {0
(33

Indicating degrees of freedom in directions x, and
x, by ¢t (for transverse) and in direction x; by / (for
longitudinal), we further partition eqn (35) as

(K Kl | [Kddy [Kidy|”
[Kh]a‘ {Kh‘]cc' i {Kh]qf {Kll]cf
K)e KJe | Ky 1Ky
[Kh]/c [KII]a- [Kll]ff [KI/]f/

Moy )" '(EX)" 7 (4"
e | _ R {AF},
Ny [ VEL T YR, [ 09
{u}, {F}, {4F},
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where
i r b n 1} r h n
X
{ur}c !
X3
{ul}c )C3
Xy
< {u,}f} =< | x| p 37
Xy
X2l S
X3
{“z}f {x }f
L J . 3 J
i ( h " H ( F 3 n
{F.}. !
F,
Fy
{Fhpr =< B ¢ (38)
M,
My
F
F,
{ f}f M3}f
i-1( T n i~1 ( Wn
{4F). AF,
AF,
{AE}C AF3
AF,
LRyt = 1 AR | ¢ (9
AMZ f
AF.
{4F}, ot
" 4 \. 3 4
I [ n
AF,
i—1 n AM
{AF}, !
= < |lAM,| » ={0}. 40)
AF,

\ P

Eliminating the longitudinal degrees of freedom
(x5, x3) from eqn (36), using eqns (29)32), we derive
the following matrix equation for the transverse
degrees of freedom:

[[Ktl ]r(' [Ku]cf:ln ’{{ul }r }"
[Kn ]fc [Ku ]ﬂ {ur }.f

-
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Advancing from iteration 7 to ( + 1) in increment n,
results in changes to the incremental displacement
vector ‘{u}" and the additional reaction force vector
{8AF}". Thus, we have

[[Kn]a- [Kn]r_/’]" i{{&u, }c}" - i{{éAFt}c}" (42)
[Ku]_/c [Kn]jf {6u, }f {(SAE }f '

Since '{8AF,} = {0}, eqn (42) can be condensed to
(K1 — K Yy IK T KB {0u e = "{0AF,}2, (43)

where ‘{du,}" is computed from the following
equation, using the geometry of the constraint {u, }
and the values of the incremental displacement vec-
tors computed in the previous increments and the last
iteration

{ou i = {u} - ';ill {uJe—"{u i 44)

Further, the nonfriction constraint of the stinger as
expressed by eqn (21) yields

t-AF.=1,-AF, + - AF,,+ 1, AF, =0, (45)

from which AF,, can be computed.

4. APPLICATIONS

The algorithm developed in the previous section to
solve the pipelaying problem formulated in Sec. 2 has
been implemented in program PIPELAY.NS.3D
(PIPEline LAYing Nonlinear Static 3-Dimensional
Analysis). A major task in developing algorithms
for nonlinear structural analysis is verification of
the computer code. Our approach to verification is
described in Sec. 4.1. In the rest of this section several
numerical applications are used to study stinger
pipelaying in moderate and deep water, and J-type
pipelaying in deep water.

4.1. Verification

The major functions of program PIPELAY .NS.3D
which must be verified are as follows.

(i) The solution algorithm for the three-dimen-
sional, large deformation, nonlinear analysis of
the pipeline.

The algorithm for identifying constrained de-
grees of freedom using the nonpenetration and
nonadhesion conditions, and the friction con-
straint on the seabed boundary.

(iii) The condensation and solution process.

(ii)

The first function of the program has been tested
thoroughly over a period of six years by systematic
comparison with linear programs and simple non-
linear applications that can be solved analyti-
cally [12}. The ability of PIPELAY .NS.3D to handle
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the extensibility of beam—column structures has also
been tested for short stiff beams [13].

The second function of the program has been
tested in the following ways.

(i) The entire pipeline was laid incrementally on a
flat seabed under the action of its own weight. It
was verified that all nodal points, including the
two boundary points, were in contact with the
seabed. The reaction forces were all equal and
their sum was equal to the total pipeline weight
in water. The nodal bending moments were
almost equal to zero.

The entire pipeline was laid to a flat seabed and
was subjected to lateral horizontal uniform load.
The friction coefficient was given different values
and the pipeline deflection was verified to be
compatible with the friction force.

(iii) In all application cases all constraint conditions

defined by eqns (14)(21) were satisfied.

The third function of the program, condensation,
has been tested in various substructuring appli-
cations. A substructuring-condensation process was
developed in solving the problem of nonlinear, large
deflection, three-dimensional, static and dynamic
analyses of nonintegral riser bundles[23, 24].
Further, it was verified that all degrees of freedom
identified as constrained in the following pipelaying
applications were the only degrees of freedom present
in the condensed matrix form [eqn (43)].

(i)

4.2. Stinger pipelaying

In this subsection, two stinger pipelaying appli-
cations, in moderate water depth, are considered. The
properties of the pipeline used in all numerical appli-
cations in this paper are summarized in Table 1. A
heavy coating is added to the pipeline to keep it in
place after installation [2]. The external diameter of
coating and density are also shown in Table 1.

The first application in this section involves
pipelaying in 67 m water depth, in a tidal current of
surface velocity 1.0 m/sec. The current velocity is in
the z-direction and the pipelaying bending is planar
in the (x, ) plane. The stinger end point coordinates
are (xy, zy) = (72.0, 400.0 m) for the upper end, and
(x.,2,)=(41.5, 265.0 m) for the lower end. These
coordinates are used to define coefficients b and ¢ in
terms of a in eqn (15). Coeflicient a is used as a design

Table 1. Properties of pipeline used in numerical appli-

cations

Property Value
External diameter, D, 0.61m
Internal diameter, D, 0.58m
Diameter of coating, D, 0.7l m
Density of steel pipes, p,, 7900 kg/m?
Density of water, p, 1025 kg/m?
Density of coating, p, 3000 kg/m?
Tension applied at the pipeline’s upper end 580 kN
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Fig. 3. Maximum equivalent for two-dimensional pipelaying in 67 m water depth; nine stinger configur-
ations.

parameter as shown in Fig. 3, to find a good stinger
design. No attempt is made to optimize for a. The
value of a = —0.0012 selected, however, is expected
to be very close to the actual optimum. The two
maxima appearing in the maximum equivalent stress
graph—one along the unsupported part of the
pipeline and the other along the stinger supported
section of the pipeline—are almost equal for the
selected value of a. The maximum equivalent stress is

defined as the maximum equivalent von Mises stress
in any particular cross-section of the pipeline. The
corresponding lateral deflection is shown in Fig. 4.

In the second application the tidal current is ap-
plied in the y-direction, thus making the pipeline’s
deflection three-dimensional as shown in Fig. 6 for
a = —0.0012, The latter was selected by comparing
the maximum equivalent stress in the pipeline for the
various values of a shown in Fig. S.
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4.3. Deep water stinger pipelaying

Two applications similar to those considered in the
previous section are studied in 125 m water depth.
The stinger geometry is defined by eqn (15) and the
following coordinates of the upper and lower stinger
ends, respectively: (x,, z,)=(128.0, 440.0 m) and
{x;,2,}=(78.0, 3050 m). On the basis of the maxi-

o chey w Fioe 7 nEY
mum ﬁq‘d“\r’aiﬂut siress gf uyua shownin k igs /and %,

the value of 4 = —0.0011 was selected. The corre-
sponding deflections for two-dimensional and three-
dimensional cases are shown in Figs 8 and 10,
respectively.

4.4, Deep water J-type pipelaying
In deep water the alternative pipelaying method,

J-type, may be used. The pipeline is laid without
stinger support at a much sharper angle at the
lay vessel. This is shown in the two- and three-
dimensional applications in Figs 11 and 12, respec-
tively. In J-type pipelaying the maximum equivalent
stress exhibits one peak along the unsupported
pipeline section.

4.5, Conclusions

By studying the numerical application results
shown in Figs 3-12, the following conclusions can be
drawn.

)

In stinger pipelaying, stresses along the pipeline

W\'UUH Wlllbﬂ icmains Hl \‘Ull\dbl Wllll UIU
stinger are the same in two- and three-dimen-

a=

~0.0012.

(ii)

(i)

()

)

(vi)

sional applications. This is so because the
pipeline deflection is restricted by the stinger in
both the (x, z) plane and the y-direction.

In static analysis, the major load component
exeried on the pipeline is due to the pipeline
weight in water and not the hydrodynamic
load. Thus, the difference between stresses in
two- and three-dimensional cases diminishes as
the water depth increases. This can be con-
cluded by comparing Fig. 3 to Fig. 5, Fig. 7 to
Fie © and Fiz 11 to Fie 12

Fig. 9, and Fig. 11 to Fig. 12
In stinger pipelaying two peaks appear in the
maximum equivalent stress graphs, as shown in
Figs 3, 5, 7 and 9. A good stinger configuration
should make the two maxima, one located in
the unsupported pipeline section and the other
in the stinger supported section, nearly equal,
so that the latter is not subjected to extensive

stirocg
STESSE,

In deeper water, the unsupported pipeline
length is longer, and the touch down point is
further away from the lay vessel, This becomes
obvious by comparing Figs 4 and 6 to Figs 8
and 10.

In stinger pipelaying, stresses increase with
water depth because of the increase in length
of the unsupported pipeline section {compare

MNP POILC PPN S0 AV

Figs 3 and 5 to 7 and 9, respectively).

In stinger pipelaying, the geometry of the
stinger dominates the stress distribution along
the stinger supported section of the pipe.
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Fig. 5. Maximum equivalent stress for three-dimensional water depth; nine stinger configurations.

(vii) J-type pipelaying may be preferable to stinger pipeline deformation. In stinger pipelaying
laying in deep water, since the former results there is a reversal in the curvature sign because
in reduced stresses. This can be concluded of the stinger configuration.
by comparing Figs 7 and 9 to 11 and 12,
respectively. 5. SUMMARY

(viii) In J-type pipelaying, the maximum equivalent
stress graph exhibits only one maximum along The static problem of pipelaying has been studied

the unsupported pipeline section. This is so, by developing a numerical solution. The pipeline
because there is no inflection point in the model is three-dimensional, nonlinear, and has large
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Fig. 6. Lateral x- and y-deflections for three-dimensional pipelaying in 67 m water depth; stinger
configuration g = —0.0012.

deformation. The nonpenetration, nonadhesion and
friction constraints have been used to model the
seabed and stinger constraints and to identify the
constrained degrees of freedom. The latter are used in
a condensation process to produce a reduced matrix
problem which is used to compute reaction forces. An
incremental finite element method has been used for

space integration to handle the nonlinearities of the
model. The deformation dependent hydrodynamic
load and all stiffness matrices are updated within each
increment. All three aspects of the developed algor-
ithm, that is, the incremental finite element technique,
the contact constraints, and the condensation pro-
cess, have been thoroughly tested by studying simple
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verification cases and other related applications on
marine risers. Several practical applications have
been studied numerically for both stinger and J-type
pipelaying and useful conclusions have been derived.
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