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The residence time control problem is considered for linear systems that are 
subject to both input and measurement noise disturbances. It is shown that the 
maxima1 residence time is bounded and an upper bound is derived. Necessary and 
sufficient conditions for the existence of controllers that achieve the upper bound 
are derived and design techniques for residence time controllers are considered. 
Connections with optimal output feedback control are explored. The approach is 
based on an asymptotic version of the large deviations theory. D 1990 kademr press, 

1llC 

1. INTRODUCTION 

Given a controlled dynamical system with states x(t) E R”, control 
u(t) E R”, output JJ(~)E IWP and disturbances t(t) E R’, assume its desired 
behaviour is specified by a pair ( Y, r}, where Y is the domain to which the 
output should be confined and 5 is the period of the confinement, i.e., 
y(t) E Y, for all t E [0, T]. 

For a given pair (Y, z}, the problem of residence time control is 
formulated as the problem of choosing a feedback control law so as to 
force the output to remain, at least on the average, in Y during period z, 
in spite of the disturbances that are acting on the system. 

In [ 1,2] the residence time control problem was analyzed for linear 
systems with small, additive white noise. It was assumed that all states are 
available for control and control laws restricted to be linear, state feedback. 
It has been shown that the class of stabilizable linear systems can be 
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divided into two subclasses, weakly and strongly residence time control- 
lable systems. Weakly residence time controllable systems are those systems 
for which the largest achievable residence time is bounded. On the other 
hand, strongly residence controllable are those systems for which any 
residence time is achievable by a choice of u. 

In the present paper we assume that the control u is based on a 
measured output that is perturbed by additive noise. We show that due to 
the measurement noise the largest achievable residence time is always 
bounded and derive controllers which result in closed loop systems that 
achieve the maximal residence time. 

The structure of the paper is as follows: In Section 2 we briefly review the 
results of [I, 21, in Section 3 we analyze the achievable residence time 
using direct (static) output feedback, in Section 4 state estimator feedback 
is considered, in Section 5 we consider an example, and Section 6 is 
devoted to conclusions. All proofs are given in the Appendix. 

2. PRELIMINARIES AND PROBLEM FORMULATIONS 

1. Residence Time Calculation 

Consider the system 

dx = Ax dt + EC dw, 

y = Dx, 

x(0) = x’), 
(2.1 1 

where x E R”, y E Rp, w(t) is a standard r-dimensional Brownian motior 
and 0~~4 1 is a parameter. 

Let !P be a bounded domain in Rp that contains the origin and whose 
boundary a!P is smooth. Assume that x0 E 9, = {x E RP 1 y = Dx E ul) and 
denote the solution of (2.1) with initial condition x0 by y(t, x0). Define the 
first passage time of y(t, x,), x0 E Sz,, from Y as 

5’(x0) = inf {t 2 0 / y(t, x0) E aY>. (2.2) 

Due to the noise in (2.1), F(x~) is a random variable. We denote its mean 
by t~,Jx,). The following theorem was proven in [2]. 

THEOREM 2.1. Assume that A is Hurwitz, rank D = p, and (A, C) is 
completel,v disturbable, i.e., rank[ C AC. . . A”- ‘C] = n. Then uniformly for 
all x0 belonging to compact subsets of Q = (x E IL!” ( DeAr.x E ‘P, t 3 0) we 
have 

lim .s* In r~JxO) = p( vl), (2.3) 
E-II 
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where 

p(Y)=rn~f$yT(DXDT)-‘y (2.4) 

and X is the unique positive definite solution of 

AX+XA7‘+CCT=0. (2.5) 

The constant p(Y) is referred to as the logarithmic residence time in Y. 

2. Residence Time Controllability 

Consider now a system with control u E KY”, 

dx = (Ax + Bu) dt + EC dw, 

y=Dx. 
(2.6) 

Assume it is desired to select the control u = Kx such that ziy,(K, x,,) 3 T, 
where z”,,,(K, x0) is the mean first passage time from Y of the closed loop 
system with the indicated control, T>O is some prescribed constant, and 
XOEQ,, where 52, is a subset of 52, which contains no boundary points 
of sz,. 

It was shown in [l] that, provided E is small enough, the above problem 
is equivalent to the problem of selecting K such that p(K) > 0, where p(K) 
is given by 

AK) = ,~n$ i vTNK) Y, (2.7) 

N(K) = (DX(K) DT)-‘, (2.8) 

(A+BK)X(K)+X(K)(A+BK)T+CCT=O. (2.9) 

DEFINITION 2.1. (i) System (2.6) is said to be y-wrt controllable if for 
any bounded Y, with 0 in its interior, there exists a control u = Kx such 
that p(K) > 0. 

(ii) System (2.6) is said to be y-srt controllable if for any bounded If-’ 
(0 E !P) and p> 0 there exists a control u = Kx such that p(K) > p. 

In [I, 21 conditions for y-wrt and y-srt controllability were discussed. 
One of the main results of [2] is the following. 

THEOREM 2.2. Assume (A, [B C] ) is controllable and (0, A) is detec- 
table. Then 

(a) (2.6) is y-wrt controllable if and only if (A, B) is stabilizable; 
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(b) $ (A, B) is stahilizuhle, then (2.6) is y-srt controllable if und only 
(f there exists u rational m x p matrix U(s), with no poles in Re s > 0, such 
that 

D(sZ- A)~-‘[BU(s) + C] =O. 

3. Systems with Noisy Measurements 

In the above discussion attention was restricted to state feedback control 
laws. This implies, of course, that it is assumed that all states are available 
for control purposes. In many situations this is not the case, but rather, 
measured output is available for control. Moreover, in many instances this 
output is perturbed by additive noise. In the present paper we will assume 
that this is the case and investigate what effect this restriction has. 

We will assume that the measured output is perturbed by small, additive 
white noise, i.e., 

dz=Ezdt+cFdw,, (2.10) 

where z, wi E [WY and 0 <E @ 1, and analyze the achievable logarithmic 
residence time using direct (static) output feedback and state estimator 
feedback. 

In order to avoid trivial situations and to simplify the discussion we 
make the following assumptions: 

Al. w(t) and w,(t) are independent standard Brownian motions and 
FFT>O. 

A2. (A, C) is completely disturbable. 
A3. D has full rank, i.e., rank D = p d n. 

3. DIRECT OUTPUT FEEDBACK 

In this section we will discuss the achievable logarithmic residence time 
using control laws of the form u = Gdz in system (2.6). 

The closed loop system with this control is 

dx=(A+BGE)xdt+E[CBGF]dw,, 

y=Dx, 
(3.1) 

where wl= [w’wr]. Let G = {GE (Wmxy 1 (A + BGE) is Hurwitz} and 
define the maximal logarithmic residence time in Y as 

pi+== SUP P(G), 
GEG 

(3.2) 

where p(G) is the logarithmic residence time of (3.1). 
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1. An Upper Bound 

In the following theorem we given an upper bound for (3.2). 

THEOREM 3.1. Assume that G is nonempty. Then 

cl?< min 4 yr(DpDT)-IL', ?E?Y (3.3) 

where P is the unique positive definite solution of 

AP+PAr+CCT-PE=(FF=)-‘EP=@ (3.4) 

ProoJ: See the Appendix. 

It follows, in particular, from Theorem 3.1 that the logarithmic residence 
time of any system of the form (3.1) is bounded. Thus, even if (2.6) is y-srt 
controllable, the measurement noise results in a bounded logarithmic 
residence time. 

The following theorem characterizes for which systems the upper bound 
(3.3) can be attained for some GE G. 

THEOREM 3.2. Let L = - PET(FFT) ~ ’ and let 

n- I 

N(D, A + BGE) = f7 Ker(D(A + BGE)‘) 
i=O 

be the unobservable subspace of (D, A + BGE). Assume there exists G* E G 
such that 

Im(BG* -L) E N(D, A + BG*E). (3.5) 

Then the upper bound (3.3) is attained at G*. 
Conversely, if the upper bound (3.3) is attained at some G* E G, then there 

exists a y* E d!P such that 

Im(BG*-L)cN((y*)‘D,A+BG*E). (3.6) 

ProoJ See the Appendix. 

Remark 3.1. It is easy to see from the definition of N(D, A + BGE) that 
for y E RP, 

N(D, A + BGE) c N( y TD, A + BGE). (3.7) 

Furthermore, if A + BGE is cyclic then equality holds in (3.7) for almost 
any YEW’ [3]. Thus, for almost any system, (3.5) is a necessary and 
sufficient condition for the upper bound (3.3) to be attained. 
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We will not explore in detail under which conditions on system (2.6) 
there exists G* E G such that (3.5) is satisfied. However, to illustrate the 
situation, we will consider a special case which is quite often encountered 
in practice. Assume that the measured output is a linear combination of 
noisy measurements of the controlled output, i.e., 

dz= Rydt+EFdw,, 

where R is a q x p (q Q p) matrix. Define 

(3.8) 

COROLLARY 3.1. Assume (D, A) is detectable and Im M(D, B)? 
Im M(D, L). Let G* be defined by M(D, L) = M(D, B) G* and assume 
that (A + BG*E, C) is disturbable. Then G* E G and p(G*)= p: = 
min(fyT(DPDT) ’ y( YE~Y}. 

Proqf: See the Appendix. 

2. The Optimal Solution 

We now turn to the solution of (3.2) for systems for which Corollary 3.1 
does not apply. In order to simplify the discussion, we will concentrate on 
the special case when the domain Y is the ellipsoid Y = (v E RP) 
y’Sy<r*j, S=ST>O, r > 0. Let W be any nonsingular p x p matrix such 
that S= W7‘W. 

THEOREM 3.3. Assume that for each integer I>, 1 the set of equations 

(A+BG,E)X,+X,(A+BG,E)7+CC7+BG,FFTG;B’=0, (3.9) 

(A+BG,E)?S,+S,(A+BG,E)+IDTW7(WDX,DTW’)’ ‘WD=O, 

(3.10) 

G, = - (BTS,B) ’ BTS,XIET(FFT) ‘, 

has positive definite solutions X, and SI. Then G/E G and 

(3.11) 

lim p( G,) = /*:. (3.12) 
(-7 

Proof: See the Appendix. 

The system of equations (3.9)-(3.11) is a system of coupled, nonlinear 
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matrix equations and is in general, very difficult to solve. Moreover, it is 
equally difftcult to find sufficient conditions that guarantee the existence of 
a positive definite solution of (3.9)-(3.11). However, as the following 
corollary shows, there are special cases in which such conditions can be 
found. 

COROLLARY 3.2. Assume G is nonempty, (D, A) is observable, and 
rank D = 1. Then for any I > 1, (3.9)-( 3.11) has positive definite solutions X, 
and S, (independent ?f I) and G, is a stabilizing control, 

ProoJ: See the Appendix. 

3. A S&optimal Solution 

Due to the difficulty of solving (3.9)-(3.11) for p > 1, it seems advan- 
tageous to derive a suboptimal solution to (3.2) for which a solution 
method exists. One such suboptimal solution can be found using the 
following considerations. Note that 

3 i %,i”(N(G)) min y’v= minyEdy Y’Y 
I’ E P Y Wn,,(DX(G) DT) 

(3.13) 

We will derive a suboptimal solution by maximizing the lower bound v(G) 
over GE G. 

THEOREM 3.4. Assume G is nonempty and (D, A) is observable. Then the 
set of equations 

(A+BG”E)X”+X’(A+BG”E)T+CC=+BG”FFTG”TBT=O, (3.14) 

(A + BG”E)T s” + SS(A + BG”E) + D=D = 0, (3.15) 

G” = - (B’S’B) -‘BTSSX”ET(FFT) -‘, (3.16) 

has positive definite solutions X” and s” and 

p( G”) = max v(G). 
GtG 

Proof. See the Appendix. 

Numerical methods for solving equations of the form (3.14)-(3.16) have 
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been discussed in [4, 51. Thus, Theorem 3.4 gives a computable suboptimal 
solution to (3.2). 

4. Relationship with Optimal Output Control 

The optimization problem (3.2) i.e., max(p(G)(G E G} subject to 

(A+BGE)X(G)+X(G)(A+BGE)T+CC”+BGFF7’GTBT=0, (3.17) 

is closely related to the optimal output control problem introduced in [6] 
and further analyzed in [S-7]. Indeed, in the optimal output control 
problem one considers the deterministic system 

I=A,x+ B,u, 40) =x0, 

.v=D,x, 
(3.18) 

and seeks an output control law u = K, 1’ so as to minimize the cost 

J(u)=!-- (x’(t) Qx(t)+u’(t) Ru(t))dt, 
0 

(3.19) 

where Q>O and R>O. 
It is well known that (3.19) can be written as 

J(K, I= x,TwG) x0, (3.20) 

where 

(A,+B,K,D,)TS(K,)+S(K,)(A,+B,K,D,)+Q+D:KfRK,D,=0. 

(3.21) 

The similarity between (3.17) and (3.21) is now apparent. Indeed, if let 
Al=AT, D,=BT, B,=ET, Q=CCT, R=FFT, and K,=GT, then 
S(K,)=X(G). Thus, if (3.18) and (3.19) are defined in the dual fashion 
described above, then (3.2) and the optimal output control problem are 
related in the sense that both involve the optimization of a quadratic 
functional in X(G). 

It can be shown that the optimal solution (if it exists) to the optimal 
output control problem depends on the initial point x0. However, in 
general x0 is unknown and, therefore, the optimal control is not completely 
defined. To eliminated this difficulty suboptimal solutions have been 
proposed. In [S-7] a suboptimal solution was constructed by assuming 
that x0 is a random variable with covariance X0 = E[x,x~] and a new 
cost index was defined as Jave(K,) = E[J(K,)] = Tr S(K,) X0. In [8] the 
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dependence on x0 was eliminated by considering the worst case cost 
J&K,) = sup(x&s(K,) x0 1 x,‘xo = I}. 

The suboptimal solution discussed in [8], i.e., min{J,,,(K,)IIC~E G} 
subject to (3.21), is exactly the dual of the optimal solution to (3.2) 
discussed previously in this section, i.e., if W = I and (3.18) and (3.19) are 
defined as before, then the optimal K, which minimizes J,,,(K,) is equal 
to the transpose of the optimal solution described in Theorem 3.3. Further- 
more, if we choose X0= DDT then the suboptimal solution of the optimal 
output control problem discussed in [557] is the dual of the suboptimal 
solution to (3.2) discussed previously in this section. 

4. STATE ESTIMATOR FEEDBACK 

In this section we assupe that the control law u is based on an estimate 
of the state x and study the achievable logarithmic residence time using 
control laws of this form. In particular, let the estimate x, of x be generated 
by the estimator 

dx, = (Ax, + Bu) + L(dz - Ex, dt) (4.1) 

and consider control laws of the form 

Define 

u=Kx IZ’ 

K= (KE~FF” 1 (A + BK) is Hurwitz}, 

L= {LEIR”~“[(A-LE) is Hurwitz} 

(4.2) 

and let ,u(K, L) be the logarithmic residence time in Y of the closed loop 
system with control u = Kx,, KE K, L E L. Define the maximal logarithmic 
residence time in Y as 

1. An Upper bound 

THEOREM 4.1. Assume that (A, B) is stabilizable and (E, A) is detectable. 
Then 

& < min $yr(DPDT)-’ y, (4.4) J'EPY 

where P is the unique positive definite solution of (3.4). 
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Proof: See the Appendix. 

The upper bound (4.4) is the same as the bound in (3.3). Therefore, for 
systems for which the bound (3.3) can be attained by a choice of controller 
GE G, nothing is gained by using the more complex controller (4.1)-(4.2). 
Note, however, that typically the class of control laws (K, L) is much larger 
than the class G. 

Define 

G,(s) = D(sl- A) -‘B, 

G,(s) = D(s- A) IL*, L* = PET(FF7) I 

The following theorem gives conditions under which the upper bound (4.4) 
is attained. 

THEOREM 4.2. Assume (A, B) is stabilizable and (D, A) and (E, A) are 
detectable. Then the upper bound (4.4) is attained if and only if there exists 
a rational m x q matrix W(s), with no poles in Re s > 0, such that 

G,(s) + G,(s) W(s) = 0. (4.5) 

Proof. See the Appendix. 

In order to compare Theorem 4.2 with Theorem 3.2, which gives the 
analogous conditions for direct output feedback control laws, we state the 
following corollary. 

COROLLARY 4.1. Assume that there exists a GE IJYXy such that 

Im(BG-L*)cN(D, A). (4.6) 

Then the upper bound is attained. 

ProoJ See the Appendix. 

It follows, in particular, from Corollary 4.1 that the class of systems for 
which the upper bound (3.3) is attained belongs to the class of systems for 
which (4.4) is attained. 

2. The Optimal Solution 

What remains to be solved is to evaluate the maximal logarithmic 
residence time pz. In order to simplify the discussion, we assume in the 
remainder of the section that y is a scalar. 
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THEOREM 4.3. Assume (A, B) is stabilizable, (D, A) and (E, A) are 
detectable, and Y = ( -a, b), a, b > 0. Then 

(min(a, b))’ 
” = 2 Tr(CTQ,C+ K,PK,T)’ (4.7) 

where P is given by (3.4) and 

(4.9) 

ATQ,+Q.~A+DTL+Bl?‘Q.~=O. 

ProoJ: See the Appendix. 

(4.10) 

5. EXAMPLE 

Consider the second-order system 

[:;I=[-; ;][::jdt+[;](udt+rdw). (5.1) 

Let dz = Ex dt + Fdw, be a measured output and assume it is desired to 
select the control u = u(dz) such that the residence time of y(t) =x,(t) in 
the interval (- 1, 1) is maximized. Note that the system transfer function 
for (5.1) is 

G,(s)=D(sI-A)- Ill=-&. 

Therefore, since G,s(s) has no finite zeroes, it follows from Theorem 4.2 that 

1 
pL: = 2~f, DT’ (5.3) 

Below we consider three cases of a measured output dz and compare the 
achievable logarithmic residence time using the control laws discussed in 
the previous sections. 

1. dz=x, dt+&dw,. In this case E= [l 0] and it is easy to see that 
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G is empty. On the other hand, since (A, B) is controllable and (E, A) is 
observable. the control 

L*= PE’(FF”) ‘= (5.4) 

results in a logarithmic residence time, p(P, L*), which converges in the 
limit y -+ 0 to 

1(2* = 0.549. (5.6) 

2. dz=x,dt+Edwl. In this case E = [0 l] and it G is nonempty. 
Furthermore, for any G, the pair (D, A + BGE) is observable. Thus, by 
Theorem 3.2, the upper bound (3.3) is attained if there exists a G* such 
that BG* - L = 0. A simple calculation shows that L = -[0 l] ‘. There- 
fore, the control law u = G*z = --z results in a logarithmic residence time 

/l( - 1) = /L1* = 0.5. (5.7) 

Note that in order to achieve the logarithmic residence time (5.7) using a 
state estimator feedback requires infinite control gains. Thus, in this case, 
the advantage of the direct output feedback is considerable. 

3. dz = Ix dt + EZ dw, (I= 2 x 2 identity). Obviously, G is nonempty. 
The pair (D, A + BGE) is observable for any G. Thus, the upper bound 
(3.3) is attained for some G* E G if and only if BG* - L = 0. However, it is 
easy to see that L = -P; thus, there exists no G* such that (3.3) is 
attained. Solving (3.9)-(3.11) for the optimal control gives G, = 
- [ 1 0.7071. The logarithmic residence time with this control is 

p(G,)=p;=O.707. (5.8) 

Solving (3.4) for P gives 

P= 
0.560 -0.172 

-0.172 0.792 1 
(5.9) 

and the upper bound (3.3), (4.4) is 

,u; = 0.893. (5.10) 

Note that the largest achievable logarithmic residence time pf is only 25% 
improvement over PT. However, in order to obtain a logarithmic residence 
time which is larger than pj+ requires a large control gain. 
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6. CONCLUSION 

In this paper we considered the problem of residence time control for 
linear systems perturbed by small input and measurement noise. It was 
shown that, due to the measurement noise, the maximal residence time is 
always bounded. This phenomenon can be explained as being result of the 
amplification of the measurement noise by the control “gain.” 

In conclusion, even if a system is y-srt controllable, i.e., any residence 
time is achievable by a state feedback control law, any amount of measure- 
ment noise will result in a bounded residence time. Therefore, measurement 
noise has greater limiting effect than input noise on the achievable 
residence time. 

APPENDIX 

Proof of Theorem 3.1. The logarithmic residence time of (3.1) is given 
by (for GEC) 

(A+BGE)X(G)+X(G)(A+BGE)T+CCT+BGFFTGTB77=0, (A.1) 

N(G)=(DX(G)DT)-‘, (A.21 

P(G) = yt& tvTNG) Y. (A.3) 

Note that (3.4) can be rewritten as 

(A + BGE) P+ P(A + BGE)T+ CCT 

-PET(FFT)-l EP-BGEP-PETGTBT=O. (A.4) 

Subtracting (A.4) from (A.l) gives 

(A + BGE)(X(G)- P) + (X(G) - P)(A + BGE)T+ BGFFTGTBT 

+PET(FFT)-’ EP+BGEP+PETGTBT=O. (A.51 

The last four terms in (AS) can be rewritten as 

W= (BG+ PET(FFT)-‘) FFT(BG+ PET(FFT)-I)=. (A.6) 

Obviously, W3 0. Therefore, since (A + BGE) is Hurwitz, it follows from 
a standard Liapunov theorem that X(G) - P2 0. This implies that 
DX(G) DT> DP DT and since (A, C) is disturbable we have P > 0 and thus 
DP DT> 0. Therefore, (DP DT)-’ 3 (DX(G) DT)-’ and (3.3) follows. 

Q.E.D. 
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Proof’ of‘ Thmwn 3.2. First note that (A.6) can be written as 

W=(BG-L) FF’(BG-L.)‘. (A.7) 

From (AS) and (A.7) it follows that for any G E G 

D(X(G) - P) 0’ 

= 
c 

x Dr’A+B~~)~(BG_L)FFT(BG-L)TelA+BGE)JtDTdf~ (A.81 
0 

Assume now that (3.5) is satisfied for G* E G. Then it is easy to show 
that 

D(A + BG*E)’ (BG* - L) = 0, i=o, 1, . ..) n- 1, 

and, in particular, 

D~(A + BG*U~(BG* - L) = 0, t 3 0. 

Whence, the integrand in (A.8) is identically zero and, therefore, 
DX(G) DT= DP DT. This completes the proof of the first part. 

To prove the second part of the theorem assume that (3.3) is attained at 
some G* E G. Then there exist points y, and y, belonging to cYY such that 

min yT(DX(G*) DT) ’ y = yT(DX(G*) D’).-’ y, 
.st?Y 

= y:(DP D’)--’ y, 

= m;?; yr(DP DT) ~~’ I’. (A.9) 

Furthermore, 

y:(DX(G*) DT) -’ y, f y7(DX(G*) D’)- ‘y (A.lO) 

for all YECYY. Thus, by (A.9))(A.10) 

y;(DX(G*) DT)-‘y2>, y;(DP DT)-‘y,. 

From the proof of Theorem 3.1 we know that 

[(DP DT)-’ - (DX(G*) 0’) -‘] 20. 

From (A.ll) and (A.12) we conclude that 

yf(DX(G*) DT)-‘y, = y;(DP DT) -‘y>. 

(A.ll) 

(A.12) 

(A.13) 
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Next we will show that there exists a point y* such that 

y*7[DPD7-DX(G*)D7] y*=O. (A.14) 

The matrix (DP D7)--l is positive definite. Thus, there exists a nonsingular 
QGWXP such that (DPDT)-’ =QTQ. From (A.12) we get 

Q’[Z-Q-T(DX(G*) D’)-‘Q-‘-j Q>/O. (A.15) 

The matrix QeT(DX(G*) D7)-‘Q-’ is positive definite. Thus, there exists 
a unitary matrix U which diagonalizes it, i.e., 

Q-T(DX(G*) D=)-IQ-‘= U7XJ, (A.16) 

where S = diag(s, , s2, . . . . s,,). Equations (A.15) and (A.16) give 

Q’U’[I- S] UQ 2 0. (A.17) 

Thus, s, 6 1, i= 1, . . . . p. Let z2 = UQy,, where yZ is given by (A.9), (A.13). 
Then it follows from (A.13) and (A.17) that 

z;[z-s] z,=o. (A.18) 

Therefore, for each i we either have (1 - si) = 0 or zi = 0, i = 1, . . . . p. We 
know that for some j, z’, # 0 (since y, # 0 and UQ is nonsingular). Next 
note that DP DT= Qp’QdT. Therefore, 

DPDT-DX(G*)D’=Q-‘Q-‘-DX(G*)D7 

= Q-‘[I- Q DX(G*) D’QT] Q-’ 

= Q-‘[Z- (QpT(DX(G*) D’)-‘Q-‘-‘-J QpT 

= Q-‘[Z- (UTSU)-‘1 Q-7 

=Q-‘u-‘[I-S-‘] U-7Q-7. (A.19) 

We want to find y* so that (A.14) is satisfied. Equivalently, we want to find 
z* such that z*=[I- S’] z* =O. Note that zf[Z- S-‘1 z2 =O. Define 
y* by z~=U-~Q-=Y*. Then y* = Q7U7z2 = Q7UTUQyZ = QTQyz = 
(DP DT)-‘y, satisfies (A.14). The equality (A.14) implies that (by (A.8)) 

0 = jam y *=D~‘A+BG*E”(BG*_L)FF=(BG*-L)=~(A+BG*E)~’DT~*~~. 
(A.20) 

The integrand in (A.20) is nonnegative; therefore, the integral can be zero 
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if and only if the integrand is identically zero. Furthermore, since FF’ is 
positive definite this implies that 

which in turn implies (3.6). Q.E.D. 

Proof of Corollary 3.1. It is not difficult to show that if M(D, L) = 
M(D, B) G*, then N(D, A) 2 Im(BG* - L). Furthermore, since E = RD, it 
follows from the definition of N(D, A) that N(D, A) = N(D, A + BG*E). 
Therefore, under the stated assumptions, 

Im(BG*-LjcN(D,A+BG*E), (A.22) 

and by Theorem 3.2, if G* E C, then the upper bound (3.3) is attained at 
G*. Thus, the proof is complete if we can show that any G* which satisfies 
(A.22) belongs to G. 

From (AS), (A.7) and [9, pp. 6031 there follows that for 0 d t < c/s 

D[J’(G*)-p] DT=De(A+BG’E)r[X(G*)_P] e(A+BG*E)‘lD? 

+jl’De (A + BG*E).! we(A + BG’E)‘., DT &, (A.23) 

From (A.22) it follows that the integral term in (A.23) is identically zero. 
Thus, for any 0 < t < 00 we have 

D[X(G*) _ p] DT= D~‘A + BG*E)l[X(G*) _ p] e(A + BG*El’r DT, (A.24) 

Equation (A.24) can be true only if both sides are identically zero. There- 
fore, DX(G*) DT=DPDT>O, and since (D, A) is detectable and 
(A + BG*E, C) is disturbable it follows from [lo, Corollary l] that 
G*EG. Q.E.D. 

Proof of Theorem 3.3. When Y is an ellipsoid the logarithmic residence 
time can be written as 

p(G)= min )‘Tsyz,2 ww) L’ 

= =m.““; $zrWeTN(G) W ‘Z 
b-r 

= =min $T( w DX(G) DTwT) ‘2 
I-r? 

= $imln(( WDX(G) DTWT)-‘) r* 

r* 
= 2&,,,,( W DX(G) D*W=)’ 

(A.25) 
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It follows from (A.25) that (3.2) is equivalent to the minimization problem 

~jg A,,,( WDX(G) DTWT). 

It can be proven that [S] 

(A.26) 

It is straightforward to show (using, e.g., the techniques of [ll]) that 
(3.9)-(3.11) is a necessary condition for G, to minimize Tr( WDX(G) 
D’W)‘. Next, it follows from a standard Liapunov type theorem [12] 
that the positive definiteness of X, and the disturbability of (A, C) imply 
that G/E G. Finally, (3.12) follows from (A.27). 

Proof of Corollary 3.2. In the case p = 1, Eq. (3.10) becomes 

(A+BG,E)TS,+S,(A+BG,E)+lW2(WDX,DTW)’-1 D’D=O. 

Thus, 

Q.E.D. 

(A.28) 

S,=l(WDX,DTW)‘p’S*, 

where S* satisfies 

(A.29) 

(A + BG,E)TS* + S*(A + BG/E) + W= DTD =0 (A.30) 

and (3.11) becomes 

G,= - (BTS*B)p’ B=S*X,E’(FF’)-‘. (A.31) 

Note that the system of equations (3.9), (A.30), and (A.31) is independent 
of 1 (this is easily seen by substituting (A.31) into (3.9)). Finally, it follows 
from the results of [7] and the observability of (D, A) that the system 
(3.9), (A.30) and (A.31) has positive definite solutions X, and S, and G, 
is a stabilizing control. Q.E.D. 

Proof of Theorem 3.4. The proof of this theorem follows directly from 
the results of [7] and the observability of (D, A). Q.E.D. 

Proof of Theorem 4.1. The logarithmic residence time of the closed loop 
system with control (4.1)-(4.2) is (KEK, LEL) 

p(K, “,=J~$y yT(DXW, L) DT)-‘Y, (A.32) 
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where 

A BK 

IL 

X(K, L) T(K, L) 
LE A+BK-LE T’(K, L) X,(K, L) 1 

XW, L) T(K L) A I[ BK 
T7‘(K,L) X,(K,L) LE A$BK-LE 1 

CCT 0 
+ 0 LFFTLT 1 

= 0. (A.33) 

It is straightforward to show (e.g., [13]) that for any KEK and LEL, 
X(K, L) > P, where P is given by (3.4). Furthermore, under the stated 
assumptions P > 0 and, thus, (4.4) follows. Q.E.D. 

Proof of Theorem 4.2. In a system with the estimator gain L* and any 
control gain K E K we have 

X(K, L*)=X,(K, L*)+P, (A.34) 

where X,(K, L*) is the positive definite solution of 

(A + W X,(K, L*)+ X,(K, L*)(A + BK)7+ LL*‘=O. (A.35) 

It follows from (A.34) that the upper bound (4.4) is attained if and only if 

inf Tr X,(K, L*) = 0. 
KEK 

(A.36) 

Finally, it was shown in [2] that (4.5) is a necessary and sufficient 
condition for (A.36) to be satisfied. Q.E.D. 

Proof of Corollary 4.1. If (4.6) is true then 

DA’(BG - L*) = 0, i=o, 1, . ..) n- 1, (A.37) 

and, in particular, 

D(sZ- A)- ‘(BG- L*)=O. (A.38) 

It follows from (A.38) that (4.5) is satisfied with W(S) = G = const. Q.E.D. 

Proof of Theorem 4.3. In the scalar case the logarithmic residence time 
in the interval Y = ( -a, h), a, b > 0, is 

AK L) = 
(min(a, b))’ 

2DX(K, L) 0” 
(A.39) 
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It is easy to see that the supremum over Kin (4.3) is not attained at any 
KEK (due to the fact that (A.33) is linear in K). To overcome any 
difficulty we regularize (A.39) in K. Define a regulariied “cost” as 

p;,(K, L) = 
(min(a, b))’ 

2(DX(K, L) Dr+ y Tr KX,(K, L) KT)‘ 
(A.40) 

We will maximize p,(K, L) over K E K and L E L and then take the limit 
y -+ 0 and show that the optimum value of p;,(K, L) converges to ~7. 

Note that maximizing pL,(K, L) is equivalent to minimizing 

J;,(K, L) = DX(K, L) DT+ y Tr KX,(K, L) KT. (A.41 ) 

It is well known from the theory of optimal control (e.g., [ll]) that 
J,,(K, L) is minimized by 

p”= -‘B’Q,, ATQi+QyA+DTD-;Q,BBTQy=O. (A.42) 
Y 

L* = PET(FFT)-I, AP+ PAT+ CCT- PET(FFT)---’ EP=O. (A.43) 

Furthermore, it can be shown that [13] 

J,.(K;‘, L*) = Tr(CTQj,C+yKI’PXI’T). (A.44) 

As y + 0, J&K“, L*) converges to C TQoC + K,PKT (the existence of the 
limits is proven in [14]). 

What remains to be shown is that y Tr(K’X,(K’, L*) KpT) converges to 
zero as y -+ 0. The proof of this is a minor modification of the main 
theorem in [14] and is omitted. Q.E.D. 
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