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Abstract-If database management systems are to play an important role in CAD/CAM technologies. 
building engineering indices must be a primary task even though it is beyond conventional database 
practice. Information regarding design semantics or functionalities is often embedded in the geometric 
description of design objects, and is therefore not directly available for indexing. Presented in this paper 
is an efficient and flexible indexing mechanism for retrieving design objects that possess similar design 
features as described by the user. The underlying database is composed of rotational objects represented 
by constructive solid geometry (CSG). Although domain-specific representation schemes and algorithms 
are involved, the main objective of this paper is to emphasize the importance of engineering indices and 
to illustrate the effort required to build as well as to use such indices. 
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1. INTRODUCTION 

To support efficient retrieval, a successful database 
usually relies heavily on a proper indexing mechan- 
ism. While selecting an adequate set of indexing 
attributes for a conventional business database is 
rather straightforward [I+], it is unfortunately very 
difficult for an engineering database. Often, values 
chosen for indices in an engineering database are 
simply not directly available and must be, if possible, 
reasoned or computed. 

1. I. Importance of engineering indices 

Arguably, design retrieval by names or identifiers 
should not be the only way for a user to locate an 
existing design object from a database. A more useful 
retrieving facility should allow its user to retrieve the 
designs for all engineering objects which satisfy a 
given set of descriptive measures, be they quantitat- 
ive. qualitative, or both. W/I_Y are such queries import- 
ant? There are many different aspects of concerns 
associated with each existing design. The database of 
existing designs is always so important that consult- 
ing with it would eliminate a great deal of duplication 
effort and thus enhance the design productivity, 
quality, manufacturability, etc. 

However, if there exists no index built on these 
descriptive measures, the database management sys- 
tem must perform an exhaustive search through the 
entire database to locate all desirable objects. Such an 
exhaustive search is even worse if those descriptive 
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measures must be matched against each existing 
design, those values for these measures are yet to be 
computed. 

1.2. Problems in constructing engineering indices 

There are in fact many problems involved in 
building up such indices. First, what are these 
descriptive measures to be indexed? For a new design, 
a designer usually starts with some rough ideas in 
mind. These rough ideas may be an approximate 
global shape, some significant secondary shapes, or 
some qualitative or quantitative feature descriptions 
that are associated with part shapes or design func- 
tions. An even more challenging problem is: “How 
can these measures be made directly available for each 
existing design in the database?” An obvious answer 
is to precompute them, or to ask the designer to 
assign them when the database is first created. Cer- 
tainly, there are problems of efficiency and flexibility. 

As far as efficiency is concerned, its solutions are 
mostly available through database technologies. 
However, if queries are to be specified in various 
input formats such as textual descriptions or graphi- 
cal sketches, the capability to efficiently compute 
index values so as to utilize existing indices become 
a new issue related to pattern recognition or, specifi- 
cally, feature extraction [5,6]. With regard to flexi- 
bility, the question is “How flexible are the existing 
indices in adapting to newly defined measures? ” A new 
index, once defined, should be constructed automati- 
cally. Again, when techniques such as feature extrac- 
tion are required to compute index values, multiple 
representations may have to be derived in advance 
from the principal representation. And, the flexibility 
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will rely heavily on how these representations facili- 
tate the extraction of index values [7,8], Figure 1 
highlights these two concerns. 

This paper consists of tive sections. Described in 
Section 2 are the database we have been concerned 
with and its problems in supporting engineering 
indices. In Section 3, we will describe the various 
representation schemes and algorithms that are 
needed to build indices based on feature extraction 
techniques. Section 4 presents a global view of the 
indexing mechanism so as to illustrate how the whole 
retrieving mechanism works through the proposed 
methods. Section 5 concludes this paper. 

2. A CONSTRUCTIVE SOLID 
GEOMETRY (CSG) DATABASE 

OF ROTATIONAL PARTS 

The database considered in this paper is a data- 
base of rotational parts described by CSG. The 
CSG scheme is one of the prevailing solid modeling 
techniques which completely represents objects as 
constructions or combinations, via the regularized 
set (Boolean) operators, of solid components [9]. 
Unfortunately, while the Boolean operations are 
concise and flexible in constructing and verifying 
objects, they also lead the CSG scheme to an un- 
evaluated and nonunique representation scheme. 
The CSG scheme is unevaluated in the sense that 
geometric entities such as vertices, lines and sur- 
faces are not explicitly represented and must be 
computed by traversing the whole CSG tree. It is also 
nonunique in the sense that a physical object might 
be represented by two or more distinct CSG trees. 
Consequently, rather sophisticated methods are re- 
quired to rebuild CSG trees so as to extract specific 
features [ 10, 1 f J. 

2.1. The principal axis representation (PAR) scheme 

Recognizing the above problems, an internal rep- 
resentation scheme PAR for rotational parts has been 
proposed as an internal representation scheme for 
CSG [ 121. The idea of the PAR scheme is to uniquely 
represent a rotational object by its principal axis 
along with a set of boundary curves. As an internal 
~presentation scheme, it is basically a derived data 
structure which is more efficient in computing various 
geometric properties of objects. In order to justify the 
correctness of its derivation from CSG, the PAR 
scheme has also been proved to be equivalent to the 
CSG scheme as far as rotational objects are con- 
cerned. A simple example of PAR will be presented 
in the next section. 

A slight modi~cation of Fig. 1 is shown in Fig. 2 
to highlight this particular environment where a 
derived PAR database also exists in parallel to the 
CSG database. It is hoped that indices will be built 
more efficiently and flexibly from the PAR database. 
Yet, there remain problems in using shape features 
for the indexing purpose. In the following, a simple 
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Fig. 1. Basic diagram for design retrieval. 

example is given to describe the PAR scheme and to 
illustrate why PAR is still not an adequate scheme for 
specifying or extracting shape features. 

2.2. Querying rhe CSG database through PAR 

In Fig. 3, (a) shows a half circle curve c,,, which 
is defined as a shape feature to be indexed. Its 
corresponding PAR is (S,, {tit , c,: )I. where Si is the 
principal axis segment and ci, and ci! together are 
a pair of boundary curves associated with S,. The 
PAR repre~ntation for the more complicated object 
in Fig. 3(b) is ((S,, fc ,,.c,,3)*& (c:,*c,,c*,,c,‘i). 
(S,, {c,,,e,*rc,,,cU))r (S,, fc‘,,cJZ,c,,.c,}). (S,. 
(cSI,e52r%e$4)). (S,. {%*%f). G7* IC,,rC7?~)~- 

While the half circle in (a) is completely represented 
in one segment, the corresponding one in (b) has been 
decomposed into four sections, each being associated 
with one segment. The reason for different PAR 
repre~ntations of the same feature (the half circle, in 
this case) is that the set of principaf axis segments are 
determined by all the intersecting points between 
boundary curves and lines. 

To match the half circle in (b) against the one in (a) 
for the purpose of feature extraction, we need to scan 
through several segments and connect the four pieces 
of curves for comparison. Clearly, this complexity in 
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Fig. 3. The problem of matching two PAR‘s. 

matching features at the PAR level arises directly 
from the fact that a feature may be decomposed and 
represented in several segments. Yet, such a de- 
composition is caused by the shape of other portions 
which are irrelevant to the feature itself. To overcome 
this problem, we need a representation scheme which 
can isolate a local feature and prevent it from being 
decomposed due to the shape of neighboring por- 
tions. Furthermore, it seems quite obvious that, in 
each pass, only one feature can be extracted if a direct 
match is performed on PAR. It becomes very ineffi- 
cient and less desirable when a set of features are to 
be extracted for the indexing purpose because mul- 
tiple passes of scanning the object’s PAR would be 
required. 

3. INDEXING BASED ON FEATURE 
EXTRACTION 

Thus, as indicated that neither CSG nor PAR are 
representation schemes at the right level for support- 
ing engineering indices, we need to identify yet 
another representation scheme which satisfies the 
following: 

(I) allows shape features to be properly 
defined; it implies that, perhaps, the 
new representations should be as close 
as possible to profiles; 

(2) allows shape features to be efficiently 
extracted; it would be best if an efficient 
algorithm already exists and is appli- 
cable to the new scheme; 

(3) as a derived one, the new scheme can be 
efficiently transformed from either CSG 
or PAR. 

Described first in this section is the scheme of 
pattern string representation (PS). which we believe 
qualifies the criteria above. The PS scheme relies 
heavily on Aho and Corasick’s string matching aigor- 
ithm (121, which not only extracts desirable features 
efficiently but also constructs the pattern matching 
machine (i.e. feature extractor) automatically. We 
will describe this algorithm only briefly and focus on 
how it can be used to extract shape features from a 
pattern string. Lastly, we will present an algorithm 
which converts a PAR into a pattern string. By then. 
all the proposed representation schemes and algor- 
ithms are complete and ready for the indexing 
purpose. 

3.1. Pattern string representation 

In the following, the pattern string representation 
for rotational parts is defined. The I6 pattern primi- 
tives which compose pattern strings are shown in 
Fig. 4. Each p~mitive is denoted by a character. and 
stands for either a line or an arc segment with a 
starting point, an ending point and a direction label. 
The first eight primitives (a-h) are line segments. 
Except for the horizontal (a and e) and the vertical 
(c and g) primitives, each of the rest line segments 
(b, d, f and b) may represent any vector (rooted at the 
origin) in that quadrant. This leaves room for an 
inexact match which will be explained later. However 
if two line segments of the same primitive type are 
head-to-tail connected, they are treated as two differ- 
ent primitives unless they are of the same slope. 
In that case, the two line segments are merged 
together and treated as one primitive. Accordingly, 
the length of a primitive is immaterial, and this leaves 
additional room for an inexact match. The other 
eight primitives are circular arc segments; rotational 
parts constructed from cylinders, cones, and tori have 
only circular arcs in their profiles. Similarly, each 
primitive may represent any circular arc within a 
specific quadrant. Unlike those primitives defined in 
Ref. [14] which may be arcs of half circle, all arc 

a 

d ; b 

Fig. 4. 16 Pattern primitives. 
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I 

no I 
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Fig. 5. Pattern string representation. 

primitives defined here do not cover more than one 
quadrant because a feature or an object may be 
otherwise coded by different pattern strings. 

A pattern string representation for a rotational 
part is defined as a string of pattern primitives which 
describes the upper half of the object’s 2-D profile in 
a clockwise order starting from the leftmost segment 
of the profile. The word clockwise means left-to-right 
for external boundary and right-to-left for internal 
boundary of the profile. If there is more than one 
leftmost segment, the one closest to the principal 
axis is selected as the starting segment. Figure 5 
illustrates how to derive a pattern string from an 
object’s profile. Starting from the leftmost segment g 
and proceeding around the upper half of the profile 
in a clockwise order, a pattern string “gacopgacace” 
can be identified for the object. 

Unlike PAR, the pattern string representation is 
not intended to completely represent the object’s 
geometry. Instead, simplifications are made for the 
purposes of efficiency, simplicity and inexact match. 
After all, design retrievals are to locate similar 

objects. The detailed information associated with 
each primitive is, however, recoverable if needed. 
Later, in the algorithm which transforms PAR into 
PS. such information is used to determine if two 
primitives should be merged into one and how two 
intersecting edges should be split. 

3.2. Extracting features from PS 

As indicated earlier, extracting features from PS 
becomes an extremely efficient and flexible task due 
primarily to the availability of Aho and Corasick’s 
string matching algorithm (131. The Aho and 
Corasick’s string matching algorithm consists of two 
parts. The first part constructs a finite state pattern 
matching machine from a set of keywords (in this 
case. a set of features to be extracted). The second 
part of the algorithm runs the pattern matching 
machine against the input string (in this case, the 
pattern string of an object) to locate keywords. The 
machine signals whenever it has found a match of a 
keyword. All keywords embedded in the input string 
are located in a single pass of reading the input string. 

3.1.1. Constructing a pattern matching machine. The 
Aho and Corasick’s algorithm has been well docu- 
mented in Ref. (131. In the following. we will briefly 
review it through an example constructed by our own 
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(d) OutPul function 

Fig. 6. Pattern matching machine: an example. 

implementation. In Fig. 6, (a) shows the four features 
“acop”, “op”. “aca”, “oap”, and (b) shows the goto 
graph (goto function) g that is constructed from 
the four given keywords. Each circle in this graph 
represents a state and each edge denotes a state 
transition as the associated input symbol occurs. 
Note carefully that each path in this graph spells out 
a keyword. Shown in (c) and (d). respectively, are 
the failure f and the output i. functions for each 
state i, both computed from the goto function in 
(b). The output function for some states (i.e. states 
0, I, 2,3,5,8) are missing from (d) because no out- 
puts should be generated at those states. From the 

Table I. State transition function of the machine in 
Fig. 6 
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Algorithm. Pattern Matching (Feature Extractor). 
Input. An input string 2 = ~,~~...a,, where each a; is an 

input symbol and a pattern matching ma&ii M with 
state tmnsition function 6 and output fimcti~n X. 

Output. Locations at which keywords occur in z. 
Method. 

begin 
stale - 0; 

for i - 1 until n do 
begin 

state c C(sia!e,ai); 
if X(dafe) # 4 then 

begin 
print i; 
print X(slote): 

end 
end 

end 

Fig. 7. The feature extractor. 

goto and the failure functions, the state transition 
function S can be computed as shown in Table 1. The 
pattern matching machine is thus constructed. Of the 
most importance is the fact shown in Ref. [13] that 
the cost of computing g, j, 1 and 6 together requires 
an amount of time linear to the sum of keyword 
lengths. 

3.2.2. Extracting features by the pattern matching 
machine. As features and objects are now represented 
as keywords and strings, respectively, extracting 
features from an object is equivalent to locating 
all keywords in an input string. Figure 7 shows in 
principle how a pattern matching machine, or a 
feature extractor, works. The machine consists of 
a finite set of states. Starting at the start state, the 
machine processes the input string by successively 
reading input symbols in the input string, making 
state transitions and producing output. At each new 
state, if the output function is not empty, the output 
and the position of the current input symbol are 
reported. The machine terminates when there is no 
symbol left. Overall, the machine makes n state 
transitions in processing an input string length n, 
which is independent of the number of keywords 
as well as the size of each keyword. All keywords 

(a) an input object 

input sving: hacopgacaco 
state transitions: 001234012720 

(b) a ssquoncs of state transitions 

Maitian sata 
5 4 woP0 oP) 
9 7 law 

(c) features eairwted from input string 

Fig. 8. Feature extraction using the machine in Fig. 6. 

(i.e. features) are identified and located in a single 
pass of processing the input string. 

In Fig. 8. (a) shows a rotational object by its upper 
half profile, whose pattern string is “hacopgacace”. 
(b) Shows the sequence of state transitions as each 
input symbol is consumed. (c) Shows the features 
extracted and their positions after the input string is 
processed. 

3.3. Deriving pattern strings from PAR 

Remember that one of the criteria for the new 

representation scheme is to be derivable from either 
CSG or PAR. Described in this section is a one-pass 
algorithm which efficiently converts a PAR into a 
pattern string. The conversion algorithm consists of 
two main steps: first, convert each layer in the PAR 
into a pattern substring, and second, merge these 
substrings into a complete string. 

The first step is to scan through each axis segment 
of the PAR and convert every layer associated with 
that segment into a pattern substring. Each layer in 
the PAR is defined by a pair of curves and bounded 
by two vertical line segments (may degenerate to a 
point in some cases) at the bound points of that seg- 
ment. Thus, the pattern substring for a layer, which 
consists of no more than four pattern primitives, can 
be easiIy derived according to the types of the curves. 
For example, the two layers in Fig. 9(a) can be 
converted into two substrings “ghce” and “gice”. 

The second step is to, for those neighboring layers 
(or compositions of layers) that have intersecting 
edges, insert the right pattern substring into the 
left one at the position where their edges meet. In 

h 

B cl C =zt> ghce 

e 

I 

I cl C =I, gice 

e 

(a) convetl each layer into a pattern string 

gice 

f-v ==, ghgiceu, 

ghcs 

W insrrl the right panem wing into the 

left one at the position of interssdion 

Fig. 9. Two major steps in the pattern string conversion. 
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(4) ou1put- SCZT (5)otiput- SZT (5) anput- Sorr 

(71 oulprr= ScZgl (8) cwtwt- SZOT (9) artput- sorOT 

Fig. 10. Nine cases of inserting a pattern substring. 

Fig. 9(b), for example, the edge c of the left sub- 
string meets the edge g of the right substring. The 
pattern string for the composition of these two layers, 
“ghgicece”, can be generated by inserting the right 
substring “gice” into the left one “ghce” at the 
position c. Note that the two intersecting edges must 
be split appropriately. In general, there are nine cases 
in total that must be resolved. Figure 10 shows these 
nine cases as well as their solutions. Note that, in 
Fig. 10, a left substring is represented by “ScT” and 
a right substring is represented by “gz”, where c 
(pointed downward) and g (pointed upward) are the 
two intersecting edges. The capital letters S, T, and 
Z are pattern substrings. 

A one-pass conversion algorithm based on the 
above two steps is presented in Fig. 1 I. Assume that 
a given PAR has n segments and, within each segment 
S, (1 ,< i <n), there are m, layers. The algorithm 
proceeds as follows: first, each layer in Segment 1 
is converted into a pattern string and its rightmost 
edge is stored into a queue, called NexrEdgeQueue 
(because it may intersect the leftmost edges of the 
layers in the next segment); then the algorithm goes 
iteratively to the next segment, converts each layer, 
stores the rightmost edge, and inserts the pattern 
string just converted into the pattern string according 
to the cases shown in Fig. IO. As each layer and each 
segment is processed only once, the conversion algor- 
ithm is a one-pass algorithm. 

We have implemented all the representation 
schemes and algorithms described in this section. The 
next section will illustrate them in terms of several 
CSG objects. 

4. DESIGN RETRIEVAL THROUGH 
MULTIPLE ENGINEERING INDICES 

Presented in this section is the proposed mechan- 
ism for retrieving CSG objects using multiple 

Algorithm PNUPS. CUWeIIPARlOPIUcmSlklg. 
Input. a PAR. which has n ~C@WXIU and uch r-1 Si 

ha9 Wli layen. 
Oulput. 8 paItcm string PS. 
Method 

Wn 
NerlEdgcQucuc - nil; 
for j - I until ml do 

convett the layer L*j 10 8 pattern nring and 
SLOE its righmost edge ttj into Ne+fEdgeQuew: 

fur i c 2 until n do 

Wn 
CurrentEdgcQueue - NetlEdgeQueUe; 
NetlEdgcQueue - nil; 
z c gel an edge from Curtcn~EdgeQueue; 
for j +- 1 until mi do 
begin 

cawcrl the layer Lij 10 a pattern suing and 
store iu righ~nost edge rij into NeztEdgrQueue: 
y c the lefunoa edge Of Lij; 
while (z.head.height > y.head.height) and 

not cmply(CurreniEdgeQueue) do 
t c get an edge fmm Curren,EdgcQwue: 

if (t n u) # 0 then 
insert rhe paucm suing of L,, inlo rhc suing 

containing 2: 
end 

md 
PS c the rcmaining pauem suing; 

end 

Fig. 1 I. A one-pass algorithm which converts PAR lo P!3. 

indices. Although some aspects of this mechanism 
are rather domain specific, it is in general of interest 
to most engineering database management systems. 
We will first present a number of test examples 
to illustrate all the algorithms and representation 
schemes described earlier. We will then explain the 
indexing mechanism through a detailed block dia- 
gram. Finally, the related issue of multiple-key access 
will be discussed. 

4. I. illustrative examples 

In the following, a number of CSG objects are used 
to test the algorithms developed thus far. The profiles 
of these examples are shown in Fig. 12. A summary 
of various results is listed in Table 2. All examples 
follow the same assumptions and procedures listed 
below: 

1. 

2. 

3. 

All CSG objects are constructed by set 
operators union and dtfirence from 
primitives including cylinders, cones and 
tori. These CSG objects are axis-symmet- 
ric and of single principal axis. 
The algorithm UC-m-PAR is applied 
to each CSG object to generate a PAR. 
For an illustrative purpose, some 
geometric properties that can be easily 
derived from PAR such as length, maxi- 
mum diameter and profile are computed. 
The algorithm PAR-to-PS is applied to 
transform each PAR into a pattern 
string. 
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(a) T30 Shaft 

(c) Disk01 (d) Disk02 

(b) Bottle 

(e) Disk03 

Fig. 12. Illustrative examples: (a) T30 shaft [14]; (b) bottle; (c) DiskOl; (d) Disk02 and (e) Disk03 [13]. 

4. Independent of objects, a set of 13 
features is defined, as shown in Fig. 13. 
These features are fed into Aho and 
Corasick’s algorithm to construct a pat- 
tern matching machine. 

5. The pattern matching machine is used 
to process the pattern string associated 
with each object. The extracted features 
are reported with their positions on the 
pattern string. 

4.2. The indexing mechanism 

There are two major tasks the indexing mechanism 
must achieve: building indices off-line and computing 
index values on-line for accessing the database. With 
all algorithms ready, let us examine how they can be 
used to accomplish these two tasks. A block diagram 
is shown in Fig. 14. 

To build indices off-line, each CSG object in the 
database is processed first by the algorithm CSG-ro- 
PAR. From PAR, geometric properties which are to 
be indexed are computed. Meanwhile, the algorithm 
PAR-to-PS is applied to convert each PAR into a 
pattern string, from which shape features previously 
defined are extracted. Indices are then built on these 
shape features. 

To use indices on-line, all index values must be 
on-line evaluated regardless of the input format. As 
discussed earlier, a user, namely, a designer, could 
have asked any of the following: 

(1) a simple textual query such as “retrieve 
all design objects that have length-to- 
diameter ratio between 0.1 and 1 and 
possess features pgm and nco “; 

(2) a more complicated textual query such 
as “retrieve all design objects that pos- 
sess similar features as the object 
specified in the CSG data file template”; 

(3) through some interface such as a draw- 
ing pad, the query is to locate all design 
objects that possess similar feature as 
the object just sketched by the user. 

As indicated in Fig. 14, textual input of shape 
features and geometrical properties can be used di- 
rectly as index values for access; input CSG trees 
must go through exactly the same route that builds 
indices off-line; and, graphical sketches must be con- 
verted into pattern strings before feature extraction 
can be performed. 

Again, let us examine why Fig. 14 indeed suggests 
an efficient and flexible indexing mechanism. The 
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TaMe 2. PS and extracted features of test objecis 

Resign mjecl 

CSG tree (#nodes) 

CSG primitives 

Dimension (fenglh) 

Dimension (diameter) 

Pattern Suing 

Features (positions) 

7-30 Shaft f Bottle Diskut 

53 53 55 

27 27 28 

Disk@2 

79 

40 

St0 

980 

8%P=P- 
gefgagega- 

Cdt%ZXOaC- 

encegmncc- 

cemedcfe 

pm 6) 

WffU 

age (16) 

cnc (30) 

cmed (41) 

efficiency is in part attributed to Aho and Corasick’s 
algorithm. Based on this a~go~thm, the feature 
extractor extracts all the features in an object in a 
single pass. The efficiency is also dependent on how 
indices are maintained. Although not the focus of this 
paper, we wiil briefly discuss this issue as a problem 
of multiple-key access in the next subsection. As for 
the flexibility, note that defining a new feature will be 
accommodated by simply reconstructing the feature 
extractor and then rebuilding the indices; both may 
require sjgni~ca~t ~ornpu~tjo~ effort but can be 
automati~a~fy done without human intervention. 

Most queries refer to an arbitrary number of 
geometric properties andjor features. Therefore, this 

we e8gh 

th 

. . , . 
nco COP@ enc %m8d 

Fig, 13. A set of I3 features. 

Uisk03 

115 

58 

510 

980 

gaMweg- 

apgmefgap- 
gegacdenc- 

oacoacenc- 

egmncecem- 

edefe 

P= (71 

Pgm 03) 

enc (27) 

nce (28) 

enc (36) 

emed (47) f 

section deals with the problem of muitiple-key access, 
as far as the indexing strategy in concerned. 

While g~metricai properties are usually associ- 
ated with a range of values, shape features are 
not necessarily described quantitatively or quahtat- 
ivefy. At least within our current focus, queries 
are mainly to locate design objects that possess 
certain features. In other words, an index on a 
particular feature is to determine if the feature 
appears in each design object. The index value is 
either yfs or no. 

A straighforward way to maintain all these 
indices is presented in Fig. IS. For each shape feature 
index, there are two entries; one points to a bucket 
containing the identifiers of those designs which 
possess the specific feature white the other points 
to a bucket for those objects not possessing the 
specitic feature. Some may argue that the ntt 
bucket should not exist because of space efficiency. 
However, it deserves to be there if queries that refer 
to nonexistency of features also happen quite fre- 
quently. For each geometric property index, there 
are multiple entries, each carrying a value or a 

f Build in&w f 
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Fig. I4 Detailed block diagram of the indexing m~hanis~. 
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Fig. 15. Multiple indices structures. 

range of values and pointing at a bucket which 
stores the identifiers of those qualifying objects. 
Given a query, the access strategy is then to collect 
all qualified buckets and perform adequate set oper- 
ations (e.g. intersection, union, not) on their identifier 
sets. For simplicity, the intersection might be the only 
operation needed. 

The operations on identifier sets sometimes 
cause great concern on efficiency, particularly when 
some of the identifier sets are overwhelmingly 
larger than others. The grid structure [3] provides 
one of the solutions to this problem by nstruc- 
turing the indices. A grid structure is in general 
an n-dimensional array with each dimension corre- 
sponding to an index. The subscript range of each 
dimension is the range of the index values in each 
index. Each entry of the array (i.e. the grid structure) 
contains identifiers of those objects whose index 
values are consistent with the subscript values ad- 
dressed to it. For example, if there are two indices 
A and B with the possible index values ut , a,, a3 for 
A and bl , b,, b3, b4 for B, the corresponding grid 
structure is a 2-D array with 3 x 4 = 12 elements. For 
the query “find records with A = a2 and B = b,“, the 
qualified records can be accessed by the identifiers 
stored in the grid element grid (a,, 6,). 

Assume that there are n feature indices defined 
in the database. Because each feature index has 
only two index values, the grid structure for all n 
feature indices requires only an n-bit addressing 
vector, each bit corresponding to an index, to access 
the 2” buckets that are needed. Given a query, 
the access strategy is to determine the n-bit address 

according to the features specified or extracted. 
The advantage is that the retrieval is speeded up 
because there are no intersections performed at run- 
time. The disadvantage, on the other hand, is the 
space overhead attributed to the 2” buckets that 
are needed. But, if necessary, the techniques used 
in dynamic hash functions [3] that split and 
coalesce buckets as the database grows and shrinks 
can be adopted to alleviate the problem of space 
overhead. 

5. CONCLUSIONS 

While selecting an adequate set of indexing attri- 
butes for a conventional business database is rather 
straightfo~ard, it is unfortunately very different and, 
in fact, difficult for an engineering database. Often, 
values chosen for indices in an engineering database 
are simply not directly available and must be, if 
possible, reasoned or computed. The objective of this 
paper is to illustrate the effort required to build as 
well as to use engineering indices in a CAD/CAM 
database management system. 

Using a CSG database as an example, this 
paper identifies the need for deriving intermediate 
representation scheme and for extracting shape fea- 
tures. Both efficiency and flexibility have been taken 
into account when building and using indices. 
Regarding efficiency, the pattern matching machine 
extracts all features from an input pattern string in a 
single pass (independent of the total number of 
predefined features), and the algorithm deriving a 
pattern string from PAR has a linear time complexity 
with respect to the number of axis segments in PAR. 
As for the flexibility, Aho and Corasick’s algorithm 
automatically constructs the pattern matching ma- 
chine for any new features, and the pattern matching 
machine extracts multiple features and builds mul- 
tiple indices automatically. Accordingly, the indexing 
mechanism proposed in this paper is both efficient 
and flexible. 

There are a number of limitations specifically 
related to the representation schemes and algorithms 
described in this paper for the CSG database. 
The CSG database is composed of 3-D, rotational 
design objects. The database stores nothing but part 
geometries in CSG representations. The objects 
shown in this paper are constructed by cones, 
cylinders and tori only. As such, their derived, 2-D 
representations consist of straight line segments and 
circular arcs. Obviously, other CSG primitives such 
as blocks or more complicated free-form solids can 
not be handled directly. To overcome such limi- 
tations, many algorithms are needed and some of 
them have recently been described elsewhere [l I]. 
Note, however, that the proposed feature extraction 
techniques are much more suitable for rotational 
parts than those based on boundary representations 
(B-reps). First, deriving from CSG to B-rep is very 
time-consuming and, second, extracting arbitrary 
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features from B-rep, if possible, is not trivial at all 
[8, IS]. As for the features illustrated in this paper, 
we have made no attempt to select them from a list 
of most commonly used features. Nevertheless, if any 
feature is to be used in a database, the same indexing 
mechanism can be adopted. As long as the desirable 
features are specified in CSG trees, sketches or even 
pattern strings, their corresponding indices will be 
efficiently and automatically constructed against 
the whole database. It is also not mentioned in this 
paper whether the database should be a relational 
database or an object-oriented database. We would 
rather consider this issue less significant because the 
main difficulty lies in the unavailability of design 
semantics rather than in the way each design object 
is physically stored and managed. 

The proposed mechanism employs Aho and 
Corasick’s string matching algorithm to construct 
feature extractors. Although this algorithm is very 
efficient, there is still room for impro~ng its perform- 
ance. Algorithms presented in Refs [16, 171 are 
such examples. However, the performance gains in 
Ref. (161 (with the same order of time complexity as 
Ref. 113) are compromised by the more complex and 
larger (feature extractor) construction algorithm. 
And the algo~thm in Ref. [lfl does not allow the 
modification of keywords (i.e. features) and, thereby, 
results in the loss of flexibility in accommodating new 
features. 

The retrieving mechanism described, albeit 
domain-specific, suggest in general how feature ex- 
traction and multipIe-key access can be brought 
together for more efficient and flexible design re- 
trieval. Though beyond the practice of conventional 
database design, building engineering indices is an 
important task in engineering database design. 

Ac&nowIedgemenrs-Many thanks to the referees for their 
useful suggestions. 
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