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Abstract-Certain classes of problems in optimal structural design lead naturally to the introduction 
of periodic microstructured media as the basis material for the construction of a mechanical element. 
The unit cell size of these microstructures cannot be arbitrarily small, as suggested by the pertaining 
optimization analyses up to date, and has to be related to the structure’s overall dimensions. 
One physically important mechanism that provides such microstructure size limitations is elastic 
buckling. 

An analytically tractable model of an infinite periodic rectangular planar frame with axially 
compressed beams is used to study the optimal buckling loads. For any given design, one can find 
a critical stress above which buckling instability occurs. In addition one can also find the region in 
the design space for which the optimal critical mode is a global one, i.e. its characteristic length is 
much larger than the unit cell size. In this region of the design space one can safely use the 
homogenized material properties to describe the medium, for they provide all the information needed 
to predict a global buckling instability. In addition to the detailed parametric study for the model 
problem investigated here, implications for the optimal design against buckling of more general 
structures are also briefly discussed. 

I. INTRODUCTION 

A very interesting feature of structural optimization is that in certain cases the optimal 
solution to the problem involves microstructures. Some of the best known examples of this 
behavior include the compliance optimization of plates under bending, where the optimal 
solution involves stiffeners, or bars under torsion, where the optimal solution generates a 
porous material (for further details see the comprehensive review article by Olhoff and 
Taylor, 1983). Moreover, microstructured optimal solutions are also found in the general 
shape optimization problem (see for example Kohn and Strang, 1986 ; Bendslae and Kikuchi, 
1988). 

For optimization purposes it is usually sufficient to consider only composites with 
periodic microstructures (see Kohn, 1988). A consistent way to obtain the macroscopic 
properties of such periodic materials is by using the theory of homogenization (see 
Bensousson, ef al., 1978 ; Sanchez-Palencia, 1980). For as long as the governing equations 
are linear and elliptic, the homogenization method predicts the macroscopic properties of 
the medium based on calculations involving only the solid’s fundamental cell (see Boccardo 
and Marcellini 1976 ; Bensousson et al., 1978 ; Kesavan, 1979 ; Sanchez-Palencia, 1980). 

In the majority of the optimization problems investigated so far that lead to micro- 
structures, there is no way of predicting the size of the microstructure relative to the 
strucure’s overall dimensions. The reason is that some fundamental physical phenomena 
have been omitted from the corresponding models. One such important physical mechanism 
that places limits on the size of the microstructure, or equivalently on the allowable stress 
levels, is buckling instability in elastic solids. For example in the optimal plate design 
problem mentioned before (see Cheng and Olhoff, 1982) the stiffeners cannot be arbitrarily 
thin for they will buckle under compressive stresses. 
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In this work attention is focussed on the optimization of microstructured solids against 
buckling, with particular emphasis on the implied cell size limitations mentioned above. 
The difficulty of including the possibility of buckling into the modeling of the problem is 
that the governing equations are inherently nonlinear. Consequently, as shown by Miiller 
(1987), the results of homogenization theory which are based on calculations involving one 
unit cell break down and the whole medium has to be considered. The reason for this 
phenomenon is internal buckling which, as discussed in Triantafyllidis and Maker (1985), 
breaks the fundamental unit cell symmetry of the structure and leads to more complicated 
equilibrium paths. As shown in Triantafyllidis and Maker (1985), the standard homogenized 
model based on one cell cannot predict any of the local instabilities, i.e. instabilities of length 
scale comparable to the unit cell size. but only the global ones, i.e. the instabilities whose 
characteristic length is much larger than the unit cell dimension. Moreover, the critical 
stress levels that trigger the local instabilities can be considerably lower than the ones 
corresponding to the global instabilities. It should also be mentioned at this point that the 
issue of optimization of microstructured solids against buckling has also been considered 
by Mignot, et al. (1980) ; Suquet (1981) for the case of plates. However, due to the 
approximations involved, a local buckling instability is impossible in their models which 
consequently do not exhibit any scale effects. 

The model problem to be studied here is that of an infinite periodic plane rectangular 
beam frame whose members are subjected to compressive axial forces. Depending on 
geometry and material properties the buckling mode can be either a local one or a global 
one. Of particular interest is the range of parameters for which the buckling mode is a 
global one, for in this case the instability can be predicted by studying the homogenized 
solid. The advantage of this model is that the critical loads corresponding to the local 
and global buckling modes can be found analytically, thus considerably simplifying the 
optimization calculations. 

For a given mass per unit area of the frame and fixed ratio of applied normal stresses 
one seeks the optimal design of the unit cell (i.e. beam cross sectional properties and sizes) 
that maximizes the minimum buckling load. All the optimization calculations reported here 
were carried out numerically for a wide range of design parameters. It is found that for 
small densities of the solid and for slender beams the optimal solutions correspond to a 
local mode while for higher densities or stubby beams the global mode is optimal. 

For every set of cell design parameters one can thus establish a dimensionless critical 
stress per unit cell length ratio above which a buckling instability will occur, thus providing 
a critical size for the unit cell in the case of given applied stress. Moreover one can also 
determine the part of the design space for which the global mode is the optimal one against 
buckling, thus providing a safe region in which homogenization theory results can be 
employed. In the calculations reported here the aforedescribed boundary in design space 
between global and local modes is almost independent of the ratio of the applied stresses. 
This encouraging result suggests that it is perhaps possible to compute relatively simple 
design requirements that need to be satisfied in order to avoid local buckling when averaged 
material laws are used in optimizing composites with microstructures. 

2. MODEL DERIVATION 

The structure to be modeled here is the infinite rectangular planar frame shown in Fig. 
la. It consists of horizontal and vertical planar beams, i.e. allowed to deform only in the 
x,, x2 plane, which are welded together at the vertices of an infinite rectangular grid pattern 
of unit cell dimensions 2a, x 2a2. 

All the beams in the x,t direction have axial stiffness EA, and bending stiffness EZ= 
where E is the material’s Young modulus, while A, and Z, are the cross sectional areas and 
moments of inertia corresponding to the beams in the x, direction respectively. The structure 
is deforming under the action of compressive forces N, as shown in Fig. la. Assume that 

t Note : from here and subsequently all Greek indices range from 1 to 2. 
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Fig. I. (A) Schematic diagram of the periodic infinite planar frame. (B) Schematic diagram of the 
frame’s unit cell. 

the compressive forces N. are increasing in proportion to a scalar factor rt., which will be 
specified in the sequel. For low values of the compressive forces, i.e. for II near zero, the 
beams remain straight and the corresponding unique solution in which all the beams are 
loaded axially and have zero moment and shear resultants is termed principal solution. 

As L keeps increasing away from zero, it reaches a particular value I,, at which a 
bifurcation buckling instability occurs. Unlike the principal solution, nonzero shear forces 
and bending moments are developed in the bifurcated equilibrium path and the structure’s 
deformed configuration is no longer rectangular nor (in general) periodic. 

The critical load 1, can be found as follows. At the onset of bifurcation, incremental 
equilibrium for the unit cell (see Fig. lb) implies, using the standard matrix method for 
nodal force equilibrium (see for example Livesley, 1968), the following relations between 
the force and displacement increments i and a at the five nodes of the cell : 

(1) 
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Here the elements of the nodal force vector f are the X, and x2 components of the 
nodal force plus the nodal moment. The corresponding elements of the displacement vector 
d are the work conjugate components of the nodal displacement plus the nodal rotation. 
Moreover, (K,,), are the incremental stiffnesses corresponding to the beam element e, where 
e stands for AC, BC, A’C, B’C. The indices 1 and 2 correspond to the two ends of the 
member in question and should not be confused with the corresponding directions in the 
lattice. The calculation of (K,& for the structure and the loading in Fig. lb follows a 
procedure exposed in detail by Livesley (1968) and hence need not be repeated here. For 
reasons of continuity of the presentation as well as for reference purposes all the necessary 
formulas for the calculation of (K,,&. are given in the Appendix (see (A3-A5)). 

Note that the infinite frame is a two dimensional elastic structure. Hence at bifurcation 
it has to satisfy a homogeneous linear equation of the type (Llls&J.Jti,,a),s = 0 (see for 
example the chapter on stability in Ogden, 1984). Here &&lc) is the structure’s incremental 
moduli tensor evaluated at the onset of bifurcation and ti, is the corresponding eigenmode. 
Following Geymonat er al. (1989), one can show that the mode &(x1, x3 is of the form : 
ti, = exp [i(w,x, +02x2)]u1(x,,x2), where u,(x,,x~) is a periodic function of x,, x2 with the 
same periodicity as that of the structure’s Consequently, for the beam model employed here, 
one can deduce the following relations for the unit cell at bifurcation : 

dAp = exp (2io,a,);lA, it, = exp (2h2a2)d, 

iAS = - exp (2io,al)fA, fE = -exp (2i02a2)iB. (2) 

Introducing (2) into (1) one finds that, for (o,a,, 02a2) # O,O), a nontrivial solution & 
to (l), (2) exists when : 

det (K) = 0 (3) 

The components of the stability matrix K are found from (3) by substituting the 
expressions for (K,,), in (A3-A5) and subsequently carrying out the required matrix inver- 
sions and multiplications. The results are : 

&I = 2E[m,a, sin’ (0, a,) +~~(rn~)~a~(F~- B,) sin2 (w2a2)] 

K,2=K2, =0 

K,x = K3, = 2E[c2(m2a2)2F2 sin (02a2) cos (02a2)] 

K22 = 2E[m2a2sin2 (u2a2)+c,(m,)2a,(F, -B,) sin’ (o,a,)] 

Kz3 = K,, = 2E[c,(m,a,)2F, sin (u,a,)cos (w,a,)] 

K33 = 2E{c,(m)2(a,)3[F, -G I sin2 (~,~,)1+~2(~2)~(~2)~[~2-G2 sin2 @2a2)1) (4) 

where for convenience the following notations have been employed : 

m, = &l&)2, c, E 121,/(AJ2, 

F. = K~J2-(~d21/12~,, B, = (AJ2/12 = WEc,(m,a,)2, 

G, = ~[(~,+~,)21/[2(~,+~,)-~(B.)21-[(51)2/~,l}/12. (5) 

The functions of u,(/3J, and r&3,) are given in the Appendix (see (A4)). 
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From (3-5) it is observed that for given dimensionless wave numbers w,u, of the 
bifurcation eigenmode, geometric parameters ax, m,, c, (or equivalently for given dimensions 
of the unit cell 24, moments of inertia Z, and cross sectional areas A, of the beams) and 
modulus of elasticity E, one can find the axial forces N, at the onset of buckling. The 
compressive loads N, are assumed to be applied in proportion to a dimensionless load 
factor 1. which for convenience is defined by : 

i.cos0[(a,)*+(a2)*]‘~‘E = NI/2a,, 

i.sin 0[(a,)*+(~,)‘]“~E = N2/2a,. (6) 

Here N,/2a?, N2/2a, represent the average compressive stresses on the frame along the 
x, and .Y? directions, respectively. In a loading process the angle 8 (or equivalently the ratio 
of the average stresses in each direction) is considered fixed while i. increases away from 
zero. 

If I*(o,a,) denotes the minimum positive root of (3), then the critical load i., of the 
structure is the minimum root over all the possible modes, i.e. 

i,,. = min 04m,u,~R,‘?[~*(~xal)l where&t WV*)1 = 0. (7) 

Here only the interval w,a, E [0, 421 x [0,42] needs to be considered since the form of 
K implies that det [K] is a polynomial in sin* (o,a,) = S, (det [K] = X [&(i.)s,sp 
+A,,,(i.)s,s,s,.], where summation is implied for repeated indexes from I to 2. The 
coefficients A,(;.) are given in (8)). 

Two typical L*(s,) surfaces are plotted in Fig. 2. More specifically Fig. 2a gives I.*@,) 

(8) 

Fig. 2. (A) Typical critical load ;.C as a function of the mode’s wavenumber parameters s, = sin’ (op,) 
for a frame with slender beams. (B) Typical critical load A, as a function of the mode’s wavenumber 

parameters S, E sin’(op,) for a frame with stubby beams. 
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for relatively slender beams while Fig. 2b shows the surface i.*(s,) for stubby beams. Notice 
that the critical load i., (the minimum of i* accordin g to (7)) occurs near the origin 
SI = S? = 0. This property has been verified numerically for a great number ofcombinations 
of the various geometric parameters of the frame and is consequently assumed to be a/~+ 
true. The fact that the surface i*(s,) is singular at the origin s, = sz = 0 comes as no 
surprise, as this point corresponds to two different bifurcation modes : On one hand, observe 
from (2) that s, = 0 (or equivalently o,a, = nn for n E Z) corresponds to a mode that is one 
cell periodic in the X, direction. On the other hand, by taking the limit w,n, --, 0 along 
different lines in the op, plane (i.e. assuming that o,n, = EQ, with E + 0 but 
(Q,)‘+ (@) = 1) one finds by using (3) and (4), that at the limit E -+ 0, j.*(&,) tends to 
the minimum positive root of: 

(n,)4At,(3.)+2(If,n2)2A1*(;1)+(fZZ)4A?t(A) = 0 

It can be seen, by calculating for the above root of (8) the corres~nding eigenmode 
of K(l*), that the resulting beam defo~ations are long waveIength modes, i.e. modes with 
characteristic wavelengths A\, = 2x/o, >> 2u, (since o,u, + 0), which exceed by far the unit 
cell size. The coexistence of these two different types of modes at the neighborhood of the 
origin explains the resulting singularity. 

Finding the bifurcation load i.*(O,O) at the origin itself requires special care as rigid 
body modes can appear since for all loads d,. = [x, y, 0] is an eigenvector (with arbitrary 
x, y) for the corresponding K(A). In this case it is not difficult to see that il*(O, 0) is the 
solution of li: 33 = 0 (see (4), (5)) and the corresponding mode is obviously the mode which 
is one cell periodic with respect to both directions. In all the numerical calculations L*(O, 0) 
is found to be considerably larger than I,. 

According to our (numerically validated) assumption, 1, is always found near the 
origin of the w,u, plane. Thus 1, is the minimum possible root of (8) over all R, with 

v4)2+(~2)2 = 1. A simple inspection of (8) gives two possible cases : either (i) R,Q = 0 
at 1, or (ii) R,R2 # 0 at &. 

l When case (i) occurs & satisfies A, 1(&) = 0 if R2 = 0, or A,,(&.) = 0 if Q, = 0. 
l When case (ii) occurs 1, satisfies A, ,(~=)A2,(1,)-(A,z(n,))’ = 0 with A, ,(&), jiZ2(j.J > 0 

and A, ,(A,) < 0. 

The interpretation of the bifurcation mode for each case is of interest. In case (i), since 
a, = 0, the minimum I occurs along one of the S, axes. This means that the eigenmode is 
one cell periodic with respect to one of the X, axes with corresponding wavelength A, = 2a,, 
and that it has an infinitely long wavetength in the other direction. For the case (ii), since 
!& # 0 but o&, = E.& + 0, the wavelength of the corresponding critical mode is infi~te~y 
long in both the x1 and x2 directions. 

Consequently case (i) is identified with the occurrence of a local mode while case (ii) 
corresponds to a global (long wavelength) mode. At this point one should also remark that 
had 1, occurred at any other point but the origin of the [0, l] x [0, I] interval in the (s,, s2) 
plane, the corresponding mode would have been local in nature as both wavelengths in that 
case are finite. The fact that for the frame in question the minimum J*(s,) occurs in one of 
the comers of the [O, I] x [O, l] interval of the (s,,s& plane is due to the s~et~ of the 
unit cell with respect to the X, axes. For such a symmetric cell, and under the assumption 
that the critical eigenmode is unique, it can be shown that each w,u, has to be either 0 or 
n/2, i.e. s, = 0 or I, and this justifies that 1* is minimal at one of the comers of the 
[0, I] x [0, I] interval in the (s,,s~) plane. For an asymmetric unit cell the lowest critical 
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mode is most probably local in nature and the s*‘s corresponding to i., are in general 
expected to be interior points of the [0, l] x [0, l] interval. 

3. FORMULATION OF THE OPTIMIZATION PROBLEM 

In the previous section the governing equations for the buckling of the infinite periodic 
frame have been established. The next step is to formulate a structural optimization problem 
for maximizing the critical buckling load of the frame. This problem is stated in the standard 
max/min form : 

For fixed 8, find : 

subject to a constraint on the given mass per unit area, p. 
The solution to the minimization part of the problem, i.e., the determination of i.,, is 

already found in the previous section and corresponds either to a local or global buckling 
mode depending on the values of p, 6 and the point of the design space D. To simplify the 
task at hand, the design space is reduced by assuming A, = A2_ Moreover, by defining the 
cell aspect ratio r by r m al/a2 and the dimensionless mass per unit area of the frame p by 
(unit density of the beam material is tacitly assumed) : 

P = (2alAI+2a2A2)/{(2a1)(2a2)[(al)2+(a2>’l”2} (10) 

one can rewrite the parameters m, in (5) as : 

ml = 2p(l +r2)‘j2/r(1 +r), m2 = 2pr(l +r2)‘12/(1 +r). (11) 

In addition one can introduce the angle C$ to be tan 4 = Z2/I,. From (5) and in view 
of the assumption A, = A2 one obtains that the beam shape coefficients c, take the form 

Cl = ccos4, c2 = csinf#J (12) 

where the beam shape coefficient c E ((c,) 2+ (c2)*) ‘I2 will be considered fixed during the 
optimization process. 

Taking into account the parameters introduced above, the optimization problem in 
(9) can be recast in the following form : 

Find : 

maxA {A,} for given p > 0, c > 0 and 0~ [0, a/2] 

A={$~,r]O<$<rr/2,r>O} (13) 

where A is the new design space and 1, is the lowest positive root of: 

A,,(4A,@M4 = 0 (14) 

A,, E Hcos4[-F,B,cos4+rF2(FI-B,)sin4] 

Ai2 m {F,cos~+rF2sin~-H2sin~cos~[F,B,(F2-B2)cos~+rF2B2(F,-B,)sin~])/2 

At2 = Hsin4[-rF2B2sin4+F,(F2-B,)cos&] 

A = (AH)~-A,,Ax, HE 2pc[(l+r2)“*]/(1+r). 

In the expressions above F. are still given in terms of a,(/$), r,(fiJ by (5), while in 
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view of (6), (11) (12) B, in (5) take the form : 

B, = E.cos&l+r)/Hpcos4, Bz = i.sinB(l + l:r),‘Hpsin@. (15) 

Finally, N4h 7&U are given in terms of /IX by (A4) while /I1 are still given in terms 
of B, by (5). 

The optimization problem is thus completely specified by (13)-( 15). If for a given mass 
per unit area p, given beam shape parameter c and given load angle 8, the optimal buckling 
load 1, satisfies A, ,(A,) = 0 or A,,(&.) = 0, then according to the discussion of Section 2, 
the critical mode is local in nature. If on the other hand, A(&) = 0 (assuming of course 
A, ,(L,) < 0) the corresponding critical mode is global in nature. 

4. COMPUTATIONAL RESULTS 

It is noted that the symmetry properties of planar frame model imply that only loading 
angles 8 between 0 and n/4 need to be considered, as designs for n/4 < 0 < rt 2 are covered 
by a switching of axes. The optimal design for a loading angle n/2 - 8 (0 E [O. 7t/4]) is then 
given by (l/r”P, n/2-cpoP), where (rap, ~JJ”~) is the optimial design for the loading angle 8, 
while the corresponding modes are obtained by symmetry with respect to the X, = x2 line. 

The optimization of buckling loads is complicated by the fact that the smallest positive 
root of a nonlinear function may have nondifferentiable and even discontinuous dependence 
on parameters in the function. For linear, elliptic eigenvalue problems the smallest eigen- 
value is differentiable when the root is simple and the eigenvalue has generalized gradients 
when it is multiple (see Haug, et al., 1986). Numerical experiments indicate that A,,, the 
local buckling load for the present problem (i.e. the lowest positive root of A, ,(A) = 0, see 
(14)) is differentiable as a function of r and cp, while the global buckling load Jglo (i.e. the 
lowest positive root of A@) = 0 for which also A,2(i.) < 0, see (14)) is discontinuous at 
some values of r and cp. However, the critical load. i.e. the minimum of the local and global 
buckling loads, is found to be continuous and has subgradients at points of non- 
differentiability. These properties mean that the optimization problem formulated in (13) 
can conveniently be solved by a sequential quadratic approximation algorithm. 

The results presented here are computed by employing the program MINCF developed 
by Madsen and Tingleff (1986). Some typical results from the dependence of the critical 
load I, on the aspect ratio r calculated for different values of the mass per unit area p and 
the beam shape parameter 4 (and for fixed values of the beam shape parameter c and the 
load angle 0) are depicted in Fig. 3. In Fig. 3a (4 = 0.4842 rad) the beams in the _yI direction 
are stiffer, in Fig. 3b (4 = 0.7842 rad) the beams in the X, and x2 direction are identical and 
in Fig. 3c (4 = 1.0842 rad) the beams in the x, direction are weaker. In all cases the critical 
load is found to depend continuously on the design parameters. Additional calculations, 
not shown here, gave similar results for the critical load as a function of the parameter 4. 
However, it is interesting to note that, although the local buckling load i.,, is always a 
continuous function of the design parameters, tbis is not generally true for the global 
buckling mode A,,. 

The dependence of the local and global critical load on the aspect ratio r for different 
mass per unit area p (and for fixed values of the beam shape parameters c, 4 and the load 
angle 8) is depicted in Fig. 4. The lowest mass per unit area (log p = - 1.00) corresponds 
to Fig. 4a, the intermediate mass per unit area (log p = -0.54) corresponds to Fig. 4b, 
while the highest mass per unit area (log r = -0.35) corresponds to Fig. 4c. Note from 
Fig. 4a and Fig. 4b that for the lower mass per unit area the global buckling load is a 
discontinuous function of the cell aspect ratio. For a mass per unit area high enough as to 
ensure that the global load is the critical one the situation reverses itself as one can see in 
Fig. 4c. Notice that as expected in all cases the critical load is a continuous function of 
r thus justifying the numerical algorithm adopted for the solution of the optimization 
problem. 

It turned out that the buckling optimization problem treated here is of such a nature 
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Fig. 3. (A) Critical load & as a function of the cell aspect ratio r for different mass per unit area 
parameters p. Results calculated for c = 30, Q = 0.4842, 0 = 0.5236. (B) Critical load 1. as a 
function of the cell aspect ratio r for different mass per unit area parameters p. Results calculated 
for c = 30, $ = 0.7842, 0 = 0.5236. (C) Critical load li, as a function of the cell aspect ratio r for 
different mass per unit area parameters p. Results calculated for c = 30.4 = 1.0842,B = 0.5236. 

that multimodality generically does not occur. Thus, one can find a curve in the c-p plane 
which separates the sets of beam shape parameters c and densities p that correspond to 
local modes and global modes. These curves are of particular interest and they will be 
discussed subsequently in more detail. 

The computer time used for the parametric study of the optimization problem (13) 
can be reduced considerably by noting that for the local buckling load Al=, the quantity 
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Fig. 4. (A) Local dI, and global ;cdo buckling loads as functions of the cell aspect ratio r. Results 
calculated for p = cxp (- 1.00) c = 30, $ = 0.7842, 9 = 0.5236. (8) Lwal 5, aad global liL, 
buckling loads as functions of the cell aspect ratio r. Results calmdated for p = cap (-0.54) c = 30, 
4 = 0.7842, B = 0.5236. (C) Local i,, and global J& buckling loads as functions of the all aspect 

ratio r. Results calculated for p = exp (-0.35) c = 30, q!~ = 0.7842, ti = 0.5236. 

A&q2 is a constant, say r,,, independent of c and p. Thus, the optimal local root a and 
hence rg is computed for one choice of c and p, with optimal design r$, &. From this, 
the optimal local buckling load AZ is given by 4ys = cp2P& for all values c and p while 
the corresponding optimal design is the same for all values of c and p. This information 
can then be used to reduce the number of times the minimization problem (13) has to be 
solved. For given values of c and p the global buckling load Ati,, is computed for the optimal 
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design parameters rg, z-& and if A*P c A ioc . gto one immediately ensures that the solution to 
(13) is given by (P toe, rg, cpg). If this inequality is not satisfied for the specific choice of c 
and P, the global buckling load is the critical one and (13) has to be solved. 

The derivative info~a~on needed for the iterative solution procedure used to solve 
the optimization problem (13) was obtained by numerical diffe~ntiation. This requires a 
high precision in the computation of the roots of A 1 &I], A& and R(d), and hence it is 
very time consuming However, in view of the algebraic complexity of the aforementioned 
quantities in terms of the design variables (see (141, (U)), the straightforward numerical 
d~e~~a~on seems to be the only viable method. 

The roots of A,@), A&) and A(A) are computed by direct search followed by a 
bisection method, For every value of c and p the optimization is carried out using several 
different starting points for the iterative procedure. Interestingly, all starting points give 
rise to the same optimal designs indicating the existence of only one local maximum which 

x 7.4 ,4.- 

Fig. 5. (A) Optimal critical load & as a function of the mass per unit area (y = log p) and the beam 
shape parameter (x = c/100) for a load angle 8 = 0.7854. (B) Optimal aspect ratio r as a function 
of the mass per tit area (y = bg p) and the beam shape parameter (x = c/100) for a bad an& 
B-0.7%44.(~Optimalbcemshapeparamtt+r~asafunctionofthemasaperana~-to2Jp) 

and the beam shape parameter (x = c/100) for a Ioad angle B = 0.7854. 
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is also the global maximum. The stopping criteria for the optimization is either a requirement 
that the Kuhn-Tucker conditions for an optimum are satisfied to a certain precision or that 
the relative improvement in the objective is below some low value (< iOm6}. it turns out 
that the optima for the problem are “ffat”, so that it is extremely time consuming to obtain 
very high precision in the determination of the resulting optimal designs. This insensitivity 
of the optimal load on the values of r and 4 explains the “asperities” of the corresponding 
optimal surfaces (see Figs. 6b-8b and Figs 6&c). 

The results of the parametric study are shown in Figs 5-8, where optimal critical loads 
R, and corresponding designs r and cp are shown as functions of the beam shape parameter 
c and the mass per unit area p. More specifically Figs 5-8, give the optimal solution of the 
frame buckling problem for load angles 6 = n/4,0 = a/6, B = z/ 12 and 6 = 0 respectively ; 
parts A, B and C of each one of these figures depict the dependence of the optimum critical 
load &, the optimal cell aspect ratio r and the optimal beam shape parameter 4 as functions 
of the mass per unit area parameter p and the beam shape parameter c. Note that for very 

0.6 

Fig. 6. (A) Optimal critical load 5 85 a function of the mass per unit area ty a log p) and the beam 
shape parameter (x =c/lOO) for a load angle ff = 0.5236. (B) Optimal aspect ratio I as a function 
of the mass per unit area (y - log p) and the beam shape parameter (.r = c/100) for a load angle 
B = 0.5236. (C) Optimal beam shape parameter I$ as a function of the inass per unit area (2 = log p) 

and the beam shape parameter (x = c/100) for a load angle 8 = 0.5236. 
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stubby beams (i.e. for high densities p or high beam shape parameters c) the optimal critical 
load corresponds to a global mode. For slender beams (i.e. for low densities p and low 
beam shape parameters c) the optimal design corresponds to a iocal mode. It is interesting 
to note that for aI1 loading angles and all parameters c and p, the optimaf design is not far 
from the completeIy symmetric design of r = I and rp = n/4, while the most unsymmetrical 
designs are obtained for a loading angle SI = 0, as is to be expected. Obviously the flat part 
of the r versus c, p and the (p versus c, p surfaces in parts B and C of these figures 
corresponds to the case where the local mode is the optimal one as it has been previously 
explained. 

The values of the beam shape parameter c and the density p for which the optimum 
critical buckfing solution shifts from local to global modes are shown in Fig. 9. Notice that 
this boundary is surprisingly insensitive to variations of the loading ratio angle 0. Most 
important, the curves in Fig. 9 in conjunction with Figs. %&a contain the sought after size 
effect of buckling on the microstructure. Since the dimensionless critical load 2, is by 

(A) 

Fig. 7. (A) Optimal critical load &as a function of tbe mass per unit area (Y = log p) and the beam 
shape parameter (x = ~$100) for s load angle 0 = 0.2618. (B) Optimal aspect ratio r ss a function 
of the mass per unit area 0, = log p) and the beam shape parameter (x = c/100) for a load angle 
8 = 0.2618. (c) Optimal beam shape parameter + as a function of the mass per unit area (y = log p) 

and tbe beam shape parameter (x = cj100) for a load angle 6 = 0.2618. 
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definition (see (6)) a critical stress, as a fraction of the Young’s modulus E, divided by half 
the unit cell diagonal [(a,)‘+(~~)‘]’ ’ one determines from the surfaces in Figs 5a-8a the 
critical unit cell dimensions below which buckling will occur for a given stress level. In 
addition the curves in Fig. 9 determine the critical unit cell parameters below which a local 
buckling will occur for a given stress level. 

Hence, for a given unit cell size, a standard homogenization theory approach can be 
safely used to describe the properties of this medium only for dimensionless stress levels 
remaining below the surface of optimal i., for the corresponding values of p and c. Moreover, 
if for the cell size in question the dimensionless density p and corresponding beam shape 
parameter c are in the global mode region of Fig. 9 then a homogenized model can be 
employed irrespective of the applied stress levels since it can predict the global instability 
as discussed in Triantafyllidis and Maker (19S5). 

(A) 

(Cl 

0.00 

#J 0.75 

0.700 
1.4 .qp 

Fig. 8. (a) Optimal critical load & as a function of the mass per unit area (y = log p) and the beam 
shape parameter (x = c/100) for a load angle 0 = 0. (B) Optimal aspect ratio r as a function of the 
mass per unit area (y = log p) and the beam shape parameter (x = c/100) for a load angle 0 = 0. 
(C) Optimal beam shape parameter 4 as a function of the mass per unit area (y = log p) and the 

beam shape parameter (x = c 100) for a load angle 0 = 0. 
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Fig. 9. Boundaries in the mass per unit area p versus beam shape parameter c separating the region 
where the critical mode is a local one from the region where the critical mode is a global one. 

Boundaries calculated for various values of the load angle 6. 

5. CONCLUSIONS 

The purpose of the present work is the study of size effects in optimization problems 
involving microstructure, an issue of practical interest that has not been addressed thus far. 
One important physical mechanism on which attention is focussed in this study and which 
relates the size of the unit cell with the applied stresses is elastic buckling. 

In order to avoid boundary effects, an infinite periodic structure is considered. More- 
over, the structure’s unit cell consists of axially compressed elastic beams thus greatly 
facilitating all the pertaining buckling load calculations that can be carried out analytically. 
By optimizing the aforedescribed periodic medium against buckling. i.e. by searching for 
the maximum possible minimal buckling load over a set of designs, one can come up 
with maximum allowable stresses for a given cell size or equivalently with minimum size 
requirements for a given stress state. 

In addition, one can also identify the regions in the design space that correspond to a 
local or a global optimal buckling mode. When a global mode is the critical one, i.e. when 
the wavelength of the buckling mode is much larger than the cell size, the global instability- 
unlike the local one-can be predicted by studying the homogenized properties of the 
structure. Consequently one can provide safe regions in the design space for which a 
homogenization theory can be employed. Such information is of significant help for micro- 
structure related optimization analyses with respect to different criteria, for all the infor- 
mation they use are the homogenized properties of the solid without any idea about their 
range of validity. 

The methodology presented here for the determination of the critical loads and modes 
is applicable to arbitrary periodic microstructures. The only difference with the general case 
is that the solution to the linearized stability equations with the o, dependent boundary 
conditions will require finite element techniques, thus making the optimization problem 
much more time consuming. In principle the local-global boundary in design space can 
also be found numerically. 

The issue of microstructure size effects in optimal design is a very important one for 
it provides with realistic information about the proper size of the microstructures. The 
present analysis provides a methodology tom design the microstructure safely against 
buckling. Important questions that still remain to be solved are the influence of the bound- 
aries of the macroscopic structures or the study of other mechanisms that also determine 
size such as stress concentrations. 
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APPENDIX A. INCREMENTAL STIFFNESS MATRICES OF A PLANAR FRAME 

The derivation of the incremental stiffness matrices for a planar frame with axially prestressed members has 
already been presented in the literature and the interested reader is referred to the very readable book by Livesley 
(1968) for further details. For reasons of completeness of the presentation, however, all the appropriate formulas 
for the incremental stiffness matrices of the pusstressed frame that were employed in Section 2 will be recorded 
here. 

The starting point for the derivations is the potential energy for a beam of length u, cross sectional area A, 
moment of inertia I and Young’s modulus E which is taken to be 

E= (l/2) 
s 

~{EZ(w,)2+EA[u,+(1/2)(w,)~2}~+BounduryTerms 
0 

(Al) 

where u(x), w(x) are the axial and normal deflections of the beam. Assuming that the beam is subjected to end 
displacements and rotations : 

d, = MO), w(O). w,(O)l, 62 = b(a), w(a), w,(a)] 

one can with the help of the quilibrium quations 6E = 0 express the potential euergy in terms of the imposed 
end conditions. The incremen tal stiffness matrices relating the increments of the force vectors ii and tz at x = 0 
and x = u respectively to the corresponding work conjugate increments of the displacement vectors d, and dz, are 
given by : 

(A2) 

For the case of a beam pmtressed by a compressive axial force N, the derivatives of the potential energy 
shown in (AZ) evaluated at the (straight) principal solution in which u(x) = -xN/EA+const, w(x) = 0 give the 
following results : 



-EA - 
a 

K,,= ’ 

0 
6EI 
.zh2 qh, 0 

6EI 4EI -- az hz $3 
J 

- EA -- 
a 
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K,r = K:, = 
0 

0 

0 0 

12EI 6EI -- a, hi 92 

6EI 2EI -- (12 hz ah. 
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(A3) 

where the coefficients h,, h,, h,, h, depend on the axial force N via : 

h, 5 (a+~)/6-B’/12, h2 = (u+r)/6, h, = u/4, h, = r/2 

d s j?(sin/3-/3cosB)/[2(1-cos/?)-~sin/3] 

r = ~(jJ-sinB)/[2(1 -cosj!?)-/?sinS] 

I?‘= Na’/EI. (A41 

The above results hold for the case of the xi axis aligned with the axis of the beam. If, as in the case of the 
application considered in Section 2, the axis of the member in question forms an angle $ with respect to the xi 
axis (recall that all the nodal forces and displacements of the entire structure are resolved with respect to the same 
frame xi, x2) then the K, in (A2) are replaced by : 

kAmv = W&T7 (A3 

T=[;;” i;; ;] 

where the (KJti are the stifl’nesses with respect to the local system of the member in question given by (A3). 


