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The theory of signal detectability typically tits data from Yes-No detection experiments by 
assuming a particular form for the noise and signal plus noise distributions of the Observer. 
Previous work suggests that estimates of the Observer’s sensitivity are little affected by small 
discrepancies between the assumed distributions (usually Gaussian) and the Observer’s true 

underlying distributions. Possibly for this reason, estimates of the Observer’s choice of 
criterion or likelihood ratio suggesting suboptimal performance have also been taken at face 
value. It is, for example, commonly accepted that human Observers are conservafive: They are 
said to choose criteria corresponding to likelihood ratios that are closer to 1 than the ratios 
produced by optimal criteria. We demonstrate that estimates of likelihood ratio can be 
markedly biased when the distributions assumed in estimation are not the Observer’s true 
distributions. We derive necessary and sufficient conditions for an optimal Observer to appear 
conservative when fitted by distributions different from those governing his choices. 

These results raise a fundamental question: What information about the Observer’s under- 
lying noise and signal plus noise distributions does the Observer’s performance in a Yes-No 
detection task provide? We demonstrate that a small number of isosensitivity (ROC) curves 

completely determines the Observer’s underlying noise and signal plus noise distributions for 
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1. INTRODUCTION 

The theory of signal detectability (TSD), in its simplest form, summarizes an 
Observer’s decision-making under uncertainty via two parameters. One parameter, 
d’, measures the Observer’s sensitivity or capacity, and the other parameter, /?, is 
a criterion that indexes the effect of motivational factors on the Observer’s perfor- 
mance. Since the original presentation of TSD by Tanner and Swets (1954) various 
aspects of the theory have been examined, including (a) optimal statistical methods 
for estimating the two parameters (e.g., Altham, 1973; Dorfman, Beavers, & Saslow, 
1973; Grey & Morgan, 1972; Ogilvie & Creelman, 1968), (b) the effects of varying 
the form of the probability distributions of noise and signal plus noise (Egan, 1975; 
Green & Swets, 1966/1974; Lockhart & Murdock, 1970; Morgan, 1976; Pollack & 
Hsieh, 1969; Swets, 1986a, 1986b), and (c) the effects of the subject’s use of sub- 
optimal decision rules on the parameter estimates (Creelman & Donaldson, 1968; 
Thomas & Legge, 1970). 

A general conclusion from studies under (a) and (b) is that estimates of the 
sensitivity parameter are quite robust under various distributional assumptions 
(e.g., Morgan, 1976). Possibly for this reason, estimates of the Observer’s criterion 
or likelihood ratio have also been taken at face value. These estimates, generally 
obtained under the assumption of Gaussian equal-variance distributions of noise 
and signal plus noise, constitute the focus of many studies under (c). The estimated 
criterion is often found to be less extreme than the value that is optimal for the 
decision, a type of suboptimality that has been labeled “conservatism”. One of the 
issues considered in the present article is the robustness of such conservatism under 
various distributional assumptions. 

Human judgment and decision-making have been found to be suboptimal in a 
variety of contexts. While these findings are important as descriptions of behavior, 
they also provide the impetus for studies of the nature and causes of suboptimal 
behavior. For example, studies showing that judgments of event likelihood some- 
times violate the axioms of probability theory (Kahneman, Slavic, & Tversky, 1982) 
are invoked to explain why judgments between complex gambles can be suboptimal. 

Other studies attempt to account for suboptimality by identifying a rule or 
heuristic to which the data seem to conform. In the case of conservatism, sub- 
optimality has been attributed to (a) a decision-making heuristic that fails to 
maximize expected payoff, or (b) an unstable criterion. Much attention has been 
given to probability matching as a heuristic leading to conservatism (Creelman & 
Donaldson, 1968; Parks, 1966; Thomas & Legge, 1970). Or, if the Observer varies 
the criterion from trial to trial but the data is fitted with the assumption that the 
criterion is fixed, the estimated criterion will differ from the optimal for many 
choices of sensory distributions. Attention has centered on whether there are 
plausible rules for this trial-by-trial variation such that the Observer’s overall data 
conform to probability matching or some other heuristic. (See, for example, Dusoir 
(1974) and Thomas (1975) for discussions of the adequacy of the probability 
matching heuristic and other rules for criterion adjustment.) 
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In all these discussions, it is assumed that the experimenter knows the sensory 
distributions of the Observer. Laming (1986), however, has raised doubts 
concerning the use of Gaussian distributions for certain kinds of tasks. Studies of 
detectability, based on stimulus energy (or amplitude) in vision and audition lead 
to a variety of distribution forms: non-central x2, non-central F, and others. While 
Swets (1986b) finds that Gaussian TSD fits data from several different kinds of 
discriminative and diagnostic tasks well, at least one of his data sets seems to 
exhibit patterned deviations from the Gaussian model (his Fig. 6c, d). 

If the distributional assumptions underlying data reduction are incorrect,- it is 
possible to construct another account of observed suboptimal behavior. According 
to this alternative account, behavior might be optimal in reality but appear to be 
suboptimal only because the experimenter has incomplete information about the 
Observer. Such an account, originally suggested by Laming (1973, p. 95), would be 
a corrective to the prevailing view that human Observers are far from ideal, even 
in simple perceptual tasks (compare Healy & Kubovy, 1981; Kubovy, 1977). 

In this article, we present two sets of mathematical results concerning the 
distributional assumptions commonly made in fitting empirical data via TSD. We 
first characterize precisely how choice of distribution influences parameter estimation 
for a broad class of TSD models. These results permit us to state necessary and 
sufficient conditions for an optimal Observer erroneously to be labeled conservative 
as a consequence of incorrect assumptions concerning the Observer’s underlying 
distributions. 

Second, we demonstrate that much weaker distributional assumptions than those 
commonly used suffice, in principle, to permit estimation of the Observer’s 
sensitivity and criterion. We do so by characterizing what information about the 
Observer is available in the Observer’s performance summarized as a small number 
of isosensitivy (ROC) curves. 

In combination our results indicate that conventional distributional assumptions 
made in fitting Observer’s data in signal detection tasks are (a) potential sources of 
error, and (b) unnecessary. 

2. THE TSD OBSERVER: DEFINITIONS 

The TSD Model. TSD provides a model of the Observer’s signal detection 
behavior based on two assumptions. The first is that the sensory information 
available to the TSD Observer is a random variable X. On trials where the signal 
is absent, X has the cumulative distribution function (cdf) FN(x), called the noise 
distribution. On trials where the signal is present, X has the cdf F&x), the signal 
plus noise distribution. These two distributions are the sensory distributions. When 
the corresponding probability density functions (pdf’s) exist, they will be denoted 
fN and fSN, respectively. 

The second assumption is that the Observer has a decision rule used to decide 
whether noise alone or signal plus noise was present on a given trial. A decision 
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rule is a function D(X) that specifies “Yes” or “No” for each value of X. For 
example (iff is an abbreviation for “if and only if”), 

D(X, c) = YES iff X>c 

is a decision rule based on a sensory criterion: The Observer establishes the sensory 
criterion, c, and responds Yes (signal) or No (no signal) accordingly as the sensory 
information X is greater than or less than the criterion. Each possible choice of 
FN, FsN, and D is a candidate model for a TSD Observer. We will sometimes refer 
to such a model as a “TSD model,” or as a “TSD,” or as a “model Observer.” 

The goal of estimation is to identify the empirical Observer, to match the 
Observer’s behavior to a specific model Observer. This goal is not achievable 
without drastic restrictions on the possible distributions FN, FsN (see Laming, 1973, 
pp. lO&lOl; Marley, 1971). The conventional approach to estimation is to assume 
that we know the Observer’s distributions except for a small number of parameter 
values. FN and FsN are commonly assumed to be Gaussian distributions with the 
same standard deviation 0 and with means at 0 and d, respectively (See Fig. 1). 

Location TSDs and S3. We next define two subsets of all the possible TSD 
model Observers which we refer to as location TSDs and S3. Both classes are 
natural generalizations of familiar equal-variance Gaussian TSD where the 
Gaussian is replaced by some other distribution. S3 is a subset of the location TSDs 
which we use to explore the distributional robustness of TSD in the first part of this 
paper. We use the broader class of location TSDs when we determine what infor- 
mation about the Observer is contained in the Observer’s behavior in a signal 
detection task. 

DEFINITION 2.1. A TSD model is a location TSD if and only if F&X) = 
FN(x - d), d 2 0: the signal plus noise distribution is a copy of the noise distribution 
shifted by d. 

FIG. 1. The sensory distributions for two location TSDs, the first based on the Gaussian (solid 
lines), the second based on the Laplacian (dashed lines). 
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As noted above, Fig. 1 shows the pdf’s of the sensory distributions for two exam- 
ples of location TSDs. The first is equal-variance Gaussian shown in solid lines. The 
second is similar, but the Gaussian distribution has been replaced by the Laplacian 
distribution shown in dashed outline. The sensory distributions of a location TSD 
are always identical except that FSN is shifted by a distance d. To specify a location 
TSD we need specify FN, the parameter d, and the parameters specifying the deci- 
sion rule. In the case of the sensory criterion rule above, there is a single parameter 
c. A location TSD with a sensory criterion is completely specified by FN, d, and c. 

For convenience, we shall usually assume that the noise distribution FN is nor- 
malized so that the median of FN is at 0, and the upper quartile (75th percentile) 
of FN is at 1. This normalization is the analogue of using the unit-variance, zero 
mean Gaussian as the noise distribution in fitting equal-variance Gaussian TSD. 
Since at least one of the distributions that interests us does not have a finite mean 
or variance, we normalize to the median and upper quartile. Also, for convenience, 
we sometimes restrict attention to those cdf’s that have corresponding pdf’s. This 
assumption reduces the size of the class of location TSDs, but not in any empiri- 
cally significant way, since any cdf without a pdf can be approximated arbitrarily 
closely by cdf’s that do have pdf’s. 

Next we define S3. S3 is a subset of the location TSDs chosen because of its 
convenient mathematical properties. The assumptions made in delimiting this class 
are technical in nature and some of them could easily be dropped without affecting 
the conclusions drawn. However, the results of the next section would not be 
appreciably strengthened by increasing the size of S3, and doing so would reduce 
the readability of the proofs offered. 

DEFINITION 2.2. A TSD model is in S3 if it is a location TSD whose sensory 
distributions further satisfy 

(a) the cdf, F(x), can be differentiated (except possibly at a finite number of 
points) to yield a probability density function f(x) that is unimodal (has a single 
maximum), and 

(b) the pdf’s fN(x) =f(x) and f&x) =f(x- d) have support everywhere; 
i.e., &(x) > 0, and j&(x) > 0, for all x. 

(c) the pdf,f(x), is symmetric about its median. 

The initial letters of the three conditions (Support, Smoothness, Symmetry) give 
us the notation S3. Only the last assumption, symmetry, and the assumption of 
unimodality, are empirically significant restrictions. Any locations TSD can be 
arbitrarily well approximated by location TSDs that are smooth and have support 
everywhere. We speak of model Observers (or TSDs) as being in S3 and we will 
also refer to distributions as being in S3. The Gaussian and Laplace distributions 
(Fig. 1) are members of S3. 

Figure 2 summarizes the classes of TSD models we use. In addition to S3 and the 
location TSDs, we have diagrammed the class of location-scale TSDs which we 
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FIG. 2. The classes of model TSD Observers discussed. The small circle represents the equal-variance 
Gaussian TSD Observer. 

touch on briefly in a later section. They are model TSDs that generalize Gaussian 
TSD where the assumption of equal variance has been relaxed. 

The Sensory Criterion Decision Rule. If the distributions of a TSD are smooth 
enough to have probability density functions, we may define the likelihood ratio b 
corresponding to a given sensory criterion c to be L(c) =fsN(c)/fN(c). For a loca- 
tion TSD, this simplifies to L(c) = f(c - d)/f(c) where f = fN. For many location 
TSDs, including the Gaussian, the likelihood ratio, /I, is a monotonic function of 
c. For this class, the x-axis is monotonic with the likelihood ratio axis and the 
isosensitivity curve is concave everywhere. Our Observer, who uses the x-axis as the 
decision axis, would then be the ideal Observer of TSD for whom the decision axis 
is the likelihood ratio axis. 

Throughout the analyses following we assume that the model Observer uses a 
sensory criterion rule, X> c. This assumption accords with observed human perfor- 
mance in signal detection tasks. When the TSD has the monotone likelihood ratio 
property (that the likelihood ratio /I is a monotone increasing function of the 
sensory criterion c), this rule coincides with the likelihood criterion rule L(X) > fl. 
Because of our interest in the biasing effects of distributional assumptions, we did 
not want to restrict the location TSDs considered to have the monotone likelihood 
ratio property. We have chosen instead to consider, at least initially, distributions 
“resembling” the Gaussian, in the sense that the corresponding isosensitivity curves 
are symmetric about the negative diagonal and are concave in the middle region 
where most task outcomes lie. These are the distributions that can be distinguished 
from the Gaussian family only with much difficulty. They include some, like the 
Cauchy family, that are not monotone likelihood ratio families. All of the proofs 
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below are valid when we restrict ourselves to the members of S3 and location TSDs 
exhibiting the monotone likelihood ratio property. 

The Zsosensitivity Curve. Last, we define the isosensitivity curve (receiver 
operating characteristic) representing the part of the TSD model that is observable 
empirically. The outcome of a Yes-No task is usually characterized by a false alarm 
rate, pFa, and a hit rate, mu, determined by equations pFA = 1 - FN(c), and pH = 
1 -F,,(c). If the Observer is induced to vary c, with d held constant, across 
experimental conditions (say, by varying the payoffs for responses), the point 
( pFA, pH) traces out the isosensitivity curve introduced above. 

Conservatism. For any combination of payoffs and prior odds on the presence 
or absence of the signal, there is an optimal value of /I maximizing payoffs to the 
Observer. This value can be computed without knowledge of the sensory distribu- 
tions. An optimal Observer will select a point along his or her isosensitivity curve 
corresponding to this optimal p. A conservative Observer shows a characteristic 
departure from optimal /I: 

DEFINITION 2.3. An Observer is conservative iff he or she consistently chooses 
values of /I closer to 1 than the optimal value of /l for the given payoffs and prior 
odds. 

Green & Swets (1966/1974) exhibit data where optimal likelihood ratio ranges 
from l/9 to 9/l yet Observers’ estimated be’s range only from l/2.20 to 2.17/l. 
Green & Swets conclude that: “[Tlhe observer tends to avoid extreme criteria: 
when the optimal fl is relatively large, his actual criterion is not so high as the 
optimal criterion, and when the optimal b is relatively small, his criterion is not so 
low as the optimal criterion (p. 91).” 

We introduce the notion of a radical Observer as well: 

DEFINITION 2.4. An Observer is radical iff he or she consistently chooses values 
of fi that are further from 1 than the optimal value of /I for the given payoffs and 
prior odds. 

Note that the conservative, radical, and optimal Observers all coincide in the 
special case where the optimal value of /I is in fact 1. 

3. CONSERVATISM: AN EXAMPLE 

Overview. Can an experimenter’s assumptions concerning the Observer’s dis- 
tributions lead him or her incorrectly to label an optimal Observer conservative? In 
this section, we demonstrate, by example, that failure to recognize the Observer’s 
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actual distributions can produce biased estimates of p. Apparent deviations from 
optimal performance are large, and very similar to the deviations exhibited by 
human Observers. 

Suppose that the noise and signal plus noise distributions that are used by the 
Observer are f,(x) and f,(x - d,), respectively, and that the Observer’s sensory 
criterion is c,, with corresponding likelihood ratio B, = fO(c, - d,)/f,(c,). An 
experimenter wishes to use the Observer’s false alarm and hit rates to estimate d, 
and PO and, for this purpose, assumes that f,(x) is the Observer’s noise distribution. 
The triple, bFA, PH? f,(.)l, would then yield estimates, d, and b,, of d, and b,, 
respectively. If f,( . ) = f,( . ), then the experimenter’s estimates would be accurate. If, 
however, f,( .) # f,( .), the question arises as to whether there may be systematic 
deviations of /3, and d, from &, and d,, respectively. In the next section, we offer 
a complete characterization of the patterns of failures to be expected. In this sec- 
tion, we demonstrate, by example, that such systematic deviations can produce the 
appearance of conservatism in /3, when the Observer is in fact choosing optimal /?,. 

Assume that the Observer’s true noise distribution is the Laplace distribution, 
f,(x) = i e-l”’ (Johnson & Kotz, 1970, Chap. 23), but that the distribution, ye(x), 
used in fitting the data is the familiar, unit-variance Gaussian distribution. Let us 
assume also that the signal plus noise distribution (for both the true distribution 
and the distribution used in fitting) differs from the corresponding noise distribu- 
tion by only a location transformation. Figure 1 contrast the Observer’s actual dis- 
tributions and the experimenter’s assumptions concerning the Observer. We do not 
intend to recommend the use of a TSD based on the Laplacian distribution. The latter 
is instead a device for illustrating how estimates of the criterion parameter c, and 
likelihood ratio /?, can be affected by choice of distribution. Such demonstrations 
motivate the results of the next section where we derive necessary and sufficient 
conditions that an incorrect choice of distribution mimic conservative behavior. 

For a given value of d,, say d, = 1, each choice of c,, generates values for pPA and 
PH. These values, in turn, can be inserted into the formulae for the Gaussian, 
unit-variance model yielding estimates, /3, and d, (usually called d’). 

Figures 3a and 3c show plots on logarithmic axes of the estimated criterion, fl,, 
versus the true criterion, p,, for d, = 1 and 3. (Figures 3e and 3f are discussed in 
a later section.) The estimates, a,, lie above the 45” line for B, < 1 and below it for 
8, > 1. Estimates depart less from 1 than the true criterion values, a pattern 
indicating conservatism if the true values are optimal. Compare Fig. 4-3 in Green & 
Swets (1966/1974, p. 92). 

It is interesting to note that, in an experimental situation, it would be difficult to 
determine that the Laplacian and not the Gaussian is the true underlying distribu- 
tion. Figures 3b and 3d plot the residual estimated location parameter (the nor- 
malized difference between each d, and the mean d,) versus true log fi,. Note that, 
in comparision with the magnitude of the mean d,, the estimates vary only slightly, 
though systematically, as the value of fl, varies. It would be difficult to reject 
Gaussian theory TSD on the grounds that the estimated separation parameter 
varies with the choice of b,. 
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FIG. 3. (a) and (c): Plots of log /?, estimated vs true log 8, for d, = 1 and 3, with true distribution 
the Laplacian. (b) and (d): Plots of residual d, estimated vs true log /?,, for the same two distributions 
as in (a) and (c). (e) and (f): The same as (a) and (b), except that the true distribution is the hyper- 
normal. The distribution assumed in fitting is always the Gaussian. 

Figure 4 plots pFA versus pH as isosensitivity curves when f, is Gaussian, 
Laplace, and Cauchy. They are fairly similar across the middle range of outcome 
values, and the shape of the contour provides few clues as to which of them best 
describes experimental data. Swets (1986a) makes a similar point concerning the 
isosensitivity curves of Gaussian TSD and TSDs based on other distributions. 

DEFINITION 3.1. We call the distribution f, locally conservative with respect to 
the distributionf, if Observers having the first distribution appear conservative for 
particular values of do and criterion c, when responses are fit usingf,. 
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FIG. 4. Isosensitivity (ROC) curves for Gaussian, Laplace, and Cauchy location TSD models, 
constructed to pass through (0.3, 0.7): for the Gaussian, d= 1.048, for the Laplace, d= 1.022, and for 
the Cauchy, d= 1.453. 

DEFINITION 3.2. We call the distribution f, everywhere conservative with respect 
to the distribution f, if Observers having the first distribution appear conservative 
for all values of d, and criterion c, when responses are lit using f,. The meaning 
of the term conservative used without qualification should be clear from context as 
in “f, is conservative with respect to f, when do is greater than 2.” 

In the next section, we derive necessary and sufficient conditions that a distribu- 
tion f, be conservative with respect to a second distribution f, either over the entire 
real line or any specified subinterval. We restrict attention to location TSDs with 
distributions drawn from S3 for the duration of the following section. 

4. EVERYWHERE CONSERVATIVE RELATIONS 

Overview. In this section we introduce the quantile map $ and demonstrate that 
it completely characterizes biases introduced by the fitting process when the dis- 
tribution assumed is not the Observer’s true distribution. In particular, we state in 
terms of $ the condition under which an optimal Observer will erroneously be 
judged conservative, as in the example of the last section. We demonstrate that the 
results of the last section are not a special property of the Laplacian equal-variance 
TSD. In fact, the results of this section permit us to “manufacture,” using +, an 
indefinitely large number of model Observers who behave normatively and 
optimally in actuality, but who will be judged conservative by an experimenter 
assuming the Gaussian equal-variance Observer. The same construction allows us 
to generate Observers exhibiting radical (anti-conservative) behavior. 
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The conclusion we draw is that estimates of likelihood fl and, to a lesser extent, 
estimates of sensitivity d, are not distributionally robust. Without knowledge of the 
Observer’s true distributions, estimates of /I should not be used to label an 
Observer conservative. 

Throughout this section, we assume that all distributions are drawn from S3, as 
defined above. We intend to show that, within the class S3, there exist model 
Observers that will be diagnosed as behaving conservatively when in fact they are 
in fact behaving optimally. If we were to expand the class of model Observers to 
all location TSDs or even larger classes of TSDs, this problem of misdiagnosis 
would only worsen. Consequently, it sufftces to develop the results below in the 
constricted, but mathematically tractable, class S3. 

DEFINITION 4.1. Define $ = F; ’ 0 F0 to be the quantile map between F, and F,. 

Let f* refer to either f. or f,, and let us adopt a similar notation for other quan- 
tities. Then since we are working in S3, pFA = l-F,(c,)andp,=l-F,(c,-d,). 
Therefore, F,(c,) = FJc,). F, is invertible (it is a cdf in S3). Hence we have 

c, = F,-’ 0 FJc,) = $(c,). (1) 

A similar argument gives us 

c, - d, = F,’ 0 F,(c, - d,) = $(c, - d,), (2) 

expressing c, and d, as functions of the true parameters of the Observer. 
The map $, the quantile map, is readily interpretable. It maps the quantiles of 

the distribution f, to the corresponding quantiles of the distribution f,. The median 
off, is mapped to the median off,, and so forth. (Q-Q plots, used to test whether 
a given sample of data is drawn from a hypothesized distribution, are related to the 
quantile map. See Gnanadesikan, 1977, pp. 198-199). For example, the map 
It/(x) = ax + b transforms a distribution f,, to f,, which is just a shifted, scaled copy 
of itself. Since we required above that all noise distributions be normalized to have 
median 0 and upper quartile 1, we can easily show 

PROPOSITION 4.2. If II/ is a linear quantize map between normalized distributions, 
then t,+(x) =x. 

Proof Substitute $(O) = 0 and +( 1) = 1 in $(.u) = ax + b. 1 

That is, the only linear map $ between normalized distributions is the identity x. 
Nex we summarize some properties of II/: 

PROPOSITION 4.3. Suppose that F, and F, are both drawn from S3. Assume both 
distributions to be normalized with medians at 0 and upper quartiles at 1. Let 
$=F,‘oF,. Then 
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(a) tj is continuou.s. 

(b) ic/ is strictly increasing (i.e., $’ > 0), and therefore invertible. 

(c) tj is an odd function: II/(-x) = -+(x); $(O) = 0. 

(d) V(x) =f,(x)/!Lo$(x) 
(e) $’ is an even function: $‘(x) = $‘( -x). 

Proof. (a) We defined S3 so that F0 and F, are differentiable and therefore 
continuous. Their composition, $, is also continuous. 

(b) F, and Fe are both strictly increasing because the corresponding pdf’s 
have support everywhere. As Fe is continuous and strictly increasing, so is F;‘. 
Then I,+ is the composition of strictly increasing functions and therefore also strictly 
increasing. 

(c) The symmetry assumption (evenness) in the definition of S3 permits us to 
write 

‘++x)=F,-~~F,(-x)=F~-~(~-F,(x))= -F,-‘(F,(x))= -1,9(x). (3) 

(d) This result follows from differentiation of $ using the chain rule and 
inverse function theorem (See Apostol, 1967, pp. 174176, 252-253). 

(e) Apply the chain rule to II/(-x) to get (d/dx) $(--x) = -II/‘( -x). Then 
differentiate both sides of (c) to get (d/dx) Ic/( -x) = -$‘(x). Equate the two expres- 
sions. 1 

Next we express conservatism in terms of I++. The likelihood ratio is 

p =f*(C*-d*) 
* f*(c*) . 

We have the following series of equivalences: 

P,<B” 

iff 

fedce-de) <f&J 
fo(c,-4) fo(co) 

iff substituting from Eqs. (1) to (2), 

&co - 4) < e(c,), 

(4) 

(6) 

(7) 

where 

,(x)_feo~(x) -=- 
fob) Ax,. 
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Equation (7) is a necessary and sufficient condition that /?, < p,. Rewriting Eq. (7) 
in terms of $’ (recalling that II/’ > 0), 

P,<P* iff $‘(c,) < Il/‘(c, - d,). (8) 

Because of the iff condition in Eq. (8), our argument also gives necessary and 
sufficient conditions that 8,=/I, and that j,</?,; i.e., the series of iff’s (Eqs. 
(5t(8)) above go through with the inequalities reversed (or replaced by equalities). 
Consequently, we have proven 

PROPOSITION 4.4. For TSDs drawn from S3, the quantile map II/ determines the 
relation between true and estimated fi. 

We next formulate conservatism in terms of tj. 
Since the pdf’sf, drawn from S3 are unimodal and even, we can prove 

LEMMA 4.5. 

B*>l zjjf c* > 2. 

Proof: (We suppress the subscript * in the subsequent proof for clarity’s sake.) 
Since each of the noise and signal plus noise pdf’s, f(x) and f(x - d), has a single 
mode at 0 and d, respectively, the difference f(x) -f(x - d) is positive when x = 0, 
and negative when x = d. Therefore, since f is continuous, there is a value x,,, with 
0 < x0 < d, such that f(xO) =f(x, -d). Therefore, B = 1 when c = x0. We now show 
that fl2 1 iff c>x,. 

By the unimodality off, for x0 < c < x0 + d, f( c - d) > f(xO) > f(c), which implies 
that /I > 1. For c > x,, + d, c - d > x,, > 0, and f(c - d) >f(c), again implying that 
fi > 1. A similar argument shows that /I < 1 if c <x,,. This concludes the proof that 
/3 2 1 iff c 2 x,,. Since f is even, x0 = d/2. 1 

The definition of local conservatism for a particular c, and d, can be restated as 

8SBO 
d 

iff c,>O. 
2 

Recall that $ is strictly increasing and, therefore, $‘>O. 
Merging Eqs. (8) and (lo), we get 

@(co) < @(co - 4) 
d 

iff c,>~. 
2 (10) 

Equation (10) is a necessary and sufficient condition for local conservatism framed 
only in terms of 1+9, c,, and d,. In particular, local conservatism depends on the 
underlying distributionsf, only through the quantile mapping II/. 
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The following theorem gives a necessary and sufftcient condition on II/ guaran- 
teeing that f0 be everywhere conservative with respect to f,. Before turning to the 
theorem, however, we rewrite Eq. (10) in a more convenient form. Making the 
substitutions x = c, - d,/2 and A = d,/2, we have the following characterization of 
local conservatism: 

+‘(x+A)<+‘(x-A) iff x>O. (11) 

Note that A > 0 always since d, > 0. Therefore, f, will be everywhere conservative 
with respect to f, precisely when Eq. (11) holds for all x and all A > 0. 

Begin with a brief lemma that says, in effect, a smooth non-increasing function 
whose derivative is non-zero almost everywhere is actually a strictly decreasing 
function. This result is a technical result needed to state the subsequent theorem in 
its strongest possible form. 

LEMMA 4.6. Let h: R + R be a continuous, differentiable function and let A be an 
open interval of R. Suppose that, for x E A, h’(x) d 0 with h’(x) = 0 on a subset of A 
with Lebesgue measure 0. Then x, y E A with x < y implies h(x) > h(y). 

Proof. If h(x) < h(y) then, by the mean value theorem, there is x < [ < y Lith 
h’(i) = (h(y) - h(x))/( y - x) > 0 contrary to the given. So h(x) 2 h(y). Suppose 
h(x) = h( y). Then h(x) = h(c) = h( y) for any [E (x, y). Consequently h’(i) = 0 for 
[E (x, y). But then h’ is zero across an open interval (x, y), a set of positive 
Lebesgue measure. Contradiction. Therefore, h(x) > h(y). 1 

THEOREM 4.7. Assume that the quantile mapping, I+?, is twice differentiable, i.e., 
that tiC2’ exists everywhere. Then f, is everywhere conservative with respect to f, zff 
+“‘(x) < 0 for x > 0, with equality occurring on a set of Lebesgue measure 0. 

Proof: (The second derivative of $ need not be negative everywhere in order to 
be conservative. If II/ (2’ is negative except at a few points where it takes on the value 
0, conservatism still holds.) Assume, first, that 11/“‘(x) ~0 for x > 0, with equality 
occurring on a set of Lebesgue measure 0. We show that fO is everywhere conser- 
vative with respect to f, by showing that Eq. (11) holds for all values of A and x. 

Recall that since f, is an even function, $ is odd, Ic/’ is even, and I++“’ is odd. 
Therefore, e”‘(x) 2 0 for x < 0 iff $“‘(x) Q 0 for x > 0. It suffices to derive the 
condition of Eq. (11) for x > 0. (As mentioned above, A is positive.) Then, for any 
x > 0, A > 0, we wish to show that Eq. (11) holds. We distinguish two cases: 

(a) O<x<A. Then O<A-x<A and 

$‘(x - A) = $‘(A -x) > $‘(A) > $‘(x + A), (12) 

the last two inequalities following from two applications of the lemma with $’ 
replacing h. 

(b) O<A<x:Then x-A>0 and t/‘(x-A)>$‘(x+A) by the lemma. 
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We have shown that $“)(.x) d 0 for x > 0, with equality only on a set of measure 
0, implies that f, is everywhere apparently conservative with respect to fe. Next we 
prove the converse. 

If f, is apparently conservative with respect to f,, then Eq. (11) is valid for any 
x and A > 0, and it can be shown that $‘*‘(x) ~0 for x> 0 by letting A + 0. We 
need only shown that I(/(” is not zero across some open interval. But then $’ would 
be constant across an open interval, which contradicts Eq. (11). This proves the 
converse. 1 

A simple consequence of Theorem 4.7 is 

COROLLARY 4.8. Assume that the quantile mapping, $, is twice differentiable, i.e., 
that $(*) exists everywhere. Then if~,/~‘~‘(x) < 0 for x > 0, then f, is everywhere conser- 
vative with respect to f,. 

Failure to identify the correct distribution underlying the Observer’s performance 
results in biased estimates of B, that can mimic conservatism. The quantile mapping 
1+5 determines whether or not conservatism appears. If the relevant properties of $ 
can be computed from the Observer’s performance, this potential source of 
apparent conservatism can be identified and then removed. One obvious place to 
look for information about II/ is in the estimates d, of a fixed d,, as c, varies. 

From Eqs. (1) and (2), d, can be written as a function of c, (d,, fixed): 

de = $(c,) - Il/(c, - do), (13) 

which, after differentiating with respect to c,, and changing variables, yields 

d:,=$‘(x+A)-t,V(x-A). 

Comparing this last equation with Eq. (11). we see that, for fixed d,, conservatism 
occurs precisely when 

d:<O iff c, > (dJ2). (14) 

But since f, and f, are even and unimodal, 8, and /?,a 1 for c, 3 (d,/2). 

THEOREM 4.9. The distribution f, is everywhere conservative with respect to the 
distribution f, iff, as j10 varies, the estimate, d,, of a fixed d, is a maximum when 
8, = /I0 = 1, and decreases monotonically on both sides of this maximum. 

The slight bow in Fig. 3b and 3d illustrates Eq. (14) and this theorem. In 
principle, the systematic variation in d, as 8, varies is perfectly diagnostic of the 
conservatism that is introduced by a failure to choose the proper distribution for 
the Observer. These figures also suggest that the variation in d, may be slight and 
correspondingly difficult to detect in the data. 

Further, to vary p0 in practice requires altering the conditions of the experiment 
(vary payoffs, prior odds). It is commonly assumed that such manipulations do not 

480’35 4.4 
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affect d, but perhaps they do. Any systematic change in d,, then, may diagnose a 
failure of the distributional assumptions-or may diagnose a failure of the assump- 
tion that d, is independent of payoffs, etc. 

The conditions derived from Theorems 4.7 and 4.9 can be readily modified to 
predict what we called radicalism above, i.e., pairs of distributions, f, and f,, where 
the fitted b, is consistently more extreme than the true PO. A cursory examination 
of several commonly encountered distributions (e.g., the Laplace, Lute, and Cauchy 
distributions) discloses that all are conservative with respect to the Gaussian over 
the range of parameter values examined. Analogues of Theorems 4.7 and 4.9 of the 
previous section are easily proven for radicalism: 

THEOREM 4.10. Assume that the quantize mapping, $, is twice differentiable, i.e., 
that $‘*’ exists everywhere. Then f, is everywhere radical with respect to f, iff 
rc/“‘(x) z 0 for x > 0, with equality occurring on a set of Lebesgue measure 0. 

THEOREM 4.11. The distribution f, is everywhere radical with respect to the 
distribution f, iff, as /I, varies, the estimate, d,, of a fixed d, is a minimum when 
/?, = B, = 1, and increases monotonically on both sides of this minimum. 

The results of this section are strong enough to permit computing a distribution 
that is everywhere conservative or everywhere radical with respect to any 
cumulative distribution function in S3. We need only pick a odd, increasing, 
continuous function II/ with 11/‘*‘(x) < 0 for x > 0. Since, by definition, tj = F;’ 0 F,, 
we have F, = F, 0 $. Applying Theorem 4.7, we have shown 

PROPOSITION 4.12. Let F, be any cdf in S3. Let $ be any odd monotone increasing 
function with Ii/‘“‘(x) < 0 for x > 0. Then F, = F,o II/ is a cumulative distribution 
function that is everywhere conservative with respect to F,. When F, is the 
Gaussian cumulative distribution function, denoted @, then F0 = CD 0 $ is a cumulative 
distribution function that is everywhere conservative with respect to the Gaussian. 
l)(x) = x113 satisfies the proposition, and therefore @(x113) is a distribution everywhere 
conservative with respect to the Gaussian. 

The implication of the proposition is that, from the experimenter’s point of view, 
there exist an infinitude of possible Observers F, that are optimal but appear 
conservative, as many as there are strictly increasing, odd functions concave on the 
positive reals. The example of the previous section is not an isolated property of the 
Laplace distribution. Given the results above, we can manufacture any number of 
examples by choice of $. 

Similarly, to create a distribution that is everywhere radical with respect to the 
Gaussian, we need only pick a odd, continuous function $ with I,@(X) > 0 for x > 0 
such as x3. 
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5. A NECESSARY CONDITION FOR CONSERVATISM/RADICALISM 

Overview. In this section, we obtain a simple necessary condition for apparent 
conservatism based on the curvature at 0 of the two distributions. This condition 
permits rapid screening of distributions for possible radicalism/conservatism and 
allows us to exhibit a distribution that is locally radical with respect to the 
Gaussian. It also gives some insight into which distributions are not conservative 
with respect to the Gaussian. The conditions on $ above are currently the only 
necessary and sufficient conditions for radicalism/conservatism. 

We also demonstrate that an index of the curvature off, at 0 must be greater 
than that off, if f, is to be everywhere apparently conservative with respect to f,. 
The reverse inequality is a necessary condition for radicalism. As above, we are con- 
cerned with location TSDs for which the pdf’s are drawn from S3. In addition, we 
now assume that the second derivatives, fc', are defined in a neighborhood of 0. 

The index we use is 

gf)= lf'*'wl 
f(O)' ' 

(15) 

an inverse measure of the “flatness” of the pdf, f(x), near 0. A low value of rcO( f) 
indicates that f(x) is relatively flat near its mode, and a high value of Ko(f) 
indicates that f(x) is sharply peaked. We continue the notation of the previous 
section. 

Suppose that the Observer sets the decision criterion c, at the median of the 
(symmetric) signal plus noise distribution. Then c, = d,, pFA is 1 - F,(d,), and the 
hit rate pH is p.5. The likelihood ratio at criterion is 

(16) 

The Observer’s responses are fitted by assuming a second even distribution f,. By 
symmetry, the decision criterion c, must be placed at the median of the signal 
distribution since pH = 0.5; also, the estimated likelihood at criterion would be 

f,(O) 
pe=fe(cJ 

(17) 

Since the modes off, are at 0, both likelihood criteria, /I,, exceed 1, and conser- 
vatism would not be observed if p, > /I,. Let 

y,(d )=fAcA4)) 0 
f,(O) ' 

the reciprocal of 8,. (Note that we have made explicit the dependence of c, on d,.) 
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Let 

i.e., the reciprocal of /I,. Since zero is a mode of both distributions,f,, yy’ are both 
negative at 0. Further y, (0) = 1, y;(O) = 0, and 

(18) 

y’2’(o) = f~2’wcfo(w2 e c.Lw13 . 

Consequently, y, would be less than y, for some range of d about 0, if yy’(O) < 
y:*‘(O) GO. This last inequality implies (substituting from Eqs. (18) and (19)): 

f:‘(o) fb2W 
c.m)1’ < cml’; 

(20) 

that is, 

Kdf, 1’ Ko(fo). (21) 

We have proven 

THEOREM 5.1. If K~ for the true model is less than K~ for the fitted model, the 
estimated likelihood criterion would be more extreme than the true likelihood 
criterion for at least some (pFA, pH) pairs. 

Consequently, 

COROLLARY 5.2. Zff, is everywhere conservative with respect to f,, then KO(fO) > 
Ic,-,( f,), a necessary condition for conservatism. 

EXAMPLES. Let f, be the unit-variance Gaussian distribution. It can be shown 
that the value of K,, for the Gaussian is 27~. K~ for the Laplace distribution discussed 
previously is co > 271, consistent with our conclusion above that the Laplace dis- 
tribution is apparently conservative with respect to the Gaussian. K~ for the Logistic 
distribution is 8 and for the Cauchy distribution is 2~‘. Hence these two distribu- 
tions cannot be everywhere radical with respect to the Gaussian. Analyses similar 
to those performed for the Laplace distribution (not reported here) indicate that the 
Logistic and Cauchy are conservative with respect to the Gaussian. We next use 
the K~ criterion to provide an example of a pdf that is radical with respect to the 
Gaussian over at least part of its range. 

The pdf, f,(x) = A exp[ - ( IxI/B)~], A zz 0.315, B x 1.68, which we call the hyper- 
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FIG. 5. Plots of the quantile functions ((I between three distributions (Gaussian, Laplacian, and 
hypernormal) and the Gaussian distribution. See text for details. 

normal distribution, has a mean of 0 and a variance of 1. For this pdf, ICY is 0, 
implying that this pdf would not be everywhere conservative with respect to the 
Gaussian pdf. Indeed, Fig. 3e shows the radicalism of the distribution f, with 
respect to the distribution f, for this choice of distributions. Figure 3f shows that 
the estimate, d,, has a local minimum when /I0 = 1, consistent with Theorem 2. 

For the purpose of comparison, we have plotted in Fig. 5 the quantile mapping, 
@, for f, Gaussian, Laplacian, and hypernormal, and f, Gaussian. As expected from 
Theorem 1, the first function is linear, the second is concave, and the third is not 
concave for all x. Other calculations show that when, for example,f, is the Cauchy 
pdf and f, is, in turn, Gaussian, Laplacian, and hypernormal, Ic/ is always convex 
increasing, suggesting that these choices off, are radical with respect to the Cauchy 
pdf. This convexity of +, coupled with the fact that rcO is greater for the Laplacian 
pdf than for the Cauchy pdf, demonstrates that the above condition on rcO is not 
sufficient even for local conservatism. The condition on rcO is necessary for $ to be 
concave as we prove below. The usefulness of this condition stems from the fact 
that the shape of the pdf is more easily interpretable than the curvature of II/. So 
far we have been unable to obtain a sufficient condition that is as easily inter- 
pretable as the condition on K~. 

PROPOSITION 5.3. If II/ is concave, then rc,(f,) > fcO(fO). 

Proof: From the definition of II/, F, 0 rj = F,. On differentiating this equation 
twice, we get $‘(x) =fJx)/f, 0 $(x), and 

f&Y t-b(x) s:(x) 
+‘2’(x) = f,o l/b(x) [ f,(x)’ f,(x)” 1 . 
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Since 0 is the median of the pdf’s, e(O) = 0. Therefore, for x close to 0, 

f,(O) W) = Ic/'(Ob = x f,(o)' 

Also, since f, are even and unimodal, f;(O) = 0, and f'*'(O) GO. Now t,b'*'< 0 
implies that 

fbb) f:(x) - - 
f,(x)* < f,(x)” 

On expanding each side of the inequality in a Taylor series about x = 0, substituting 
for I&X), and f i(O), and noting that ff) ~0, we get 

dfo) > %(fc), 

as required. 1 

6. DISTRIBUTIONAL INFORMATION IN THE OBSERVER'S 
ISOSEN~ITIVITY Cu~va 

In the preceding sections, attention is confined to the subset S3 of the full set of 
location TSDs. We now drop that restriction and consider all location TSDs. 

Biases introduced by incorrectly specifying the Observer’s underlying distribution 
have led us to examine what can be inferred about the Observer’s underlying 
distribution from detection data. It is often stated or implied that an isosensitivity 
curve completely characterizes the Observer’s performance. (See, for example, 
Coombs, Dawes, & Tversky, 1970, p. 175). We believe that the meaning of this 
statement is that, once a given f, is assumed, the isosensitivity curve is uniquely 
determined by do. Each isosensitivity curve corresponds to exactly one value of do. 
However, one can inquire after a deeper meaning to the statement and ask, for 
example, “What information about the underlying pdff, is available in the subject’s 
performance as summarized by the isosensitivity curve?” 

It is known that a given isosensitivity curve can be generated by infinitely many 
pairs of stimulus distributions, FN(x), and FSN(x) (Laming, 1973, pp. lO&lOl; 
Marley, 1971). Marley (1971) also provides necessary conditions for a set of isosen- 
sitivity curves to be generated by a location TSD. In this section, we consider the 
simpler question of whether two distinct location TSDs can generate the same set 
of isosensitivity curves. The stimulus distributions are not assumed to be even (sym- 
metric about the median). We show, after some intermediate results, that, given two 
isosensitivity contours, there is at most one location TSD that could generate them 
both. We also show that the isosensitivity contour generated by a given location 
TSD can be generated also by at least one other location TSD. This last result 
implies that the minimum number of isosensitivity contours required for the charac- 
terization of a location TSD is two. 
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Levine (1970) provides necessary and sufficient conditions for the existence of 
transformations that render curves parallel. Location TSDs have cumulative dis- 
tribution functions that are parallel curves in Levine’s sense and the requirement 
that there be only one location TSD generating a given set of isosensitivity curves 
can be construed withing Levine’s framework as an assertion concerning the 
uniqueness of the transformation rendering certain cumulative distribution 
functions parallel. Levine’s necessary and sufficient conditions must, of course, be 
equivalent to the necessary and sufficient conditions we derive below, but we have 
found no direct path from his result to ours. Since Levine’s results may extend to 
the location-scale TSD case discussed in the dnext section, while our results, so far, 
cannot, it would be desirable to express Levine’s results in terms appropriate 
to TSD. 

An isosensitivity curve for a location TSD is determined by specifying the under- 
lying distribution, fi, and the location parameter, d,, separating the noise and 
signal plus noise distributions. Each value of d, generates a distinct isosensitivity 
curve. Let us denote the set of isosensitivity curves generated by a particular loca- 
tion TSD based on fi as I(fi). Let f2 be a second distribution such that I(fi) = 
I(f2). That is, for any isosensitivity curve generated by f, with location parameter 
d,, there is d, such that f2 with location parameter d, sweeps out the same isosen- 
sitivity curve. Let F, and F2 be the cdfs of fi and fi, respectively, and suppose that 
both distributions have been normalized to have a median of 0 and a semi- 
interquartile range of 1. We next show that fi and f2 are identical: The full set of 
isosensitivity curves produced from a location TSD determines the underlying 
family distribution. 

THEOREM 6.1. I(f,)=I(fi) ifffi =f2. 

Proof: The isosensitivity curves can be ordered monotonically with respect to d, 
(for the location TSD based on f,) and with respect to d2 (for the location TSD 
based on f2). Therefore, two distinct values of d, correspond to distinct isosen- 
sitivity curves and, therefore, to distinct values of d2. This shows that d2 is a well- 
defined function of d, . But these two variables can be interchanged in the argument 
to show that d, is a continuous surjective (onto) function of dS. This implies that 
there is a monotonic function m such that d, = m(d, ). Then Eqs. (1) and (2) imply 

vQ(x - 4) = WI - m(d, 1, (22) 

where $ = F;lo F,. Setting d, = 0 in the previous equation gives us m(0) = 0, and 
it can be shown that J/(O) = 0. On putting x = 0 in Eq. (22) we have 

@Cd,)= -d-4), (23) 

so that m(x) = -$(-x). Therefore, substituting y = -d, and substituting for m in 
Eq. (22) we obtain 

Ii/(x + Y) = rc/(x) + $(YL (24) 
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and, consequently, +(x) = ux for some constant u (Aczel, 1966, pp. 31,32). Since f, 
and fi are normalized to have the same semi-interquartile range, u = 1 (shown 
above), $ is the identity, and fi = fi as desired. i 

This result can be strengthened considerably. Next we demonstrate that as few as 
two isosensitivity curves, corresponding to appropriate choices of the parameter d 
for a location TSD Observer, completely specify that Observer. (In the next section, 
we demonstrate that three isosensitivity curves s&ice to determine a particular type 
of location-scale TSD Observer.) In practice, then, a small number of isosensitivity 
curves, corresponding to different location parameters d, for a TSD Observer, 
determine the Observer. All location TSDs share the degenerate isosensitivity 
contour corresponding to d= 0. For convenience in the presentation below we 
ignore this contour: “isosensitivity contour” means “non-degenerate isosensitivity 
contour.” 

Also, in stating the theorems below, it is convenient for us to refer to the zero 
function as a “periodic function.” 

First we prove a simple lemma. 

LEMMA 6.2. Let g be a real-valued function, and suppose g(x + a) = g(x) + b, for 
all x, where a and b are constants. Then g is the sum of a linear function, g,, and 
a periodic function, g,, either of which may be zero. Further, ifhL and hp are a linear 
and a periodic function that also sum to g, then hL = g, and h, = g,: the decomposi- 
tion is unique. 

Proof Aczel proves this result in his discussion of Abel’s Equation (Aczel, 
1966). Let 

&b) = $ x + g(O), (25) 

gdx) = g(x) - tcL(X). (26) 

Then g, is either periodic, with a being a multiple of the period, or zero, because 

&a + a) = gb + a) - g,b + a) = gp(x). (27) 

To prove uniqueness, one can evaluate g,+ g, and h,+ h, at a and 2a. Both 
periodic functions vanish, g, = h, necessarily, and uniqueness follows. 1 

Now suppose that there are two isosensitivity curves that are generated by (a) 
the sensitivity parameter values d, and d; within the location TSD, fi, and also by 
(b) the sensitivity parameter values d2 and d; within the location TSD, fi. Let ci 
and c2 denote criterion values within the models fi and f2, respectively. 

Let F, and F2 be the cdf’s corresponding to fi and f2, and let I,$ = F; ’ 0 F, be the 
quantile function mappingf, to f2, where it is assumed that the distributions have 
been normalized to have median 0 and semi-interquartile range 1. We denote by 
I[f, d] the isosensitivity curve within a location TSD,f; generated by the sensitivity 
parameter d, 
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DEFINITION 6.3. For two positive real numbers, x and y, we say that x and y 
are relatively prime if there is no real z with x/z and y/z both integers. 

Some illustrations of relative primeness: The real numbers 3.2 and 1.6 are not 
relatively prime; the numbers 1 and rc are. If two numbers are picked independently 
at random from the uniform distribution on [0, 11, they will be relatively prime 
with probability 1. If two numbers are picked from any smooth joint distribution 
on R2, the real plane, they will be relatively prime with probability 1. 

Next we show that, if two location TSDs share two isosensitivity curves, then the 
two TSDs are identical. 

THEOREM 6.4. Zf I[fi, d,] =I[f2, d2] and I[fi, d’,] =I[f2, d;], where d, and 
d; are relatively prime, then f, = f2. 

Proof: As in an earlier section, it can be shown, for the first isosensitivity curve, 
that 

*(cl) = c2, (28) 

and 

+(c,-d,)=c,-4, (291 

so that 

ti(c,-dl)=$(c1)-4. (30) 

Applying the lemma, we see that I) = $r + tip, where either lclP is zero or d, is an 
integral multiple of its period. Repeating the above construction for the second 
isosensitivity curve, we conclude that either $P is zero or else both d, and d; are 
integral multiples of its period. Since dI and d; are relative prime, i+QP must be zero 
and I) must be a linear transformation. Sincef, andf, are noth normalized, $ must 
be the identity: fi = fi as desired. u 

As part of the proof of Theorem 5, we proved a result required for the next 
theorem. 

LEMMA 6.5. Zf I[f,, d,] = I[f2, d2], then the quantile map $ relating fi and f2 
can be decomposed into the sum of a linear and a periodic map of period d,. 

We next show that the number of isosensitivity curves specified in the conditions 
of Theorem 6.4 cannot be reduced to one: There are isosensitivity curves generated 
by two distinct location TSDs. 

THEOREM 6.6. There are distinct location TSDs generating the same isosensitivity 
contours. 

Proof: We need only construct distinct distributions f,, f2, with parameters 
d,, d2, respectively, having the same isosensitivity curve: I[fi, d,] = I[f,, d,]. Let 
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e(x) = x + (1/47r) sin(2nx). Note that + is odd, continuous, and increasing. II/ is also 
the sum of a linear and a periodic function of period 1. For any normalized F,, let 
F, = F2 0 $. Let d, = d, = 1. Note that F, is also normalized. The two distributions 
are distinct as both are normalized yet F,( l/4) # F2( l/4). 

Now we want to show that if (pFA, mu) is on the isosensitivity curve I[fr, d,], 
then it is also on the isosensitivity curve I[fi, d2] and conversely. If (pFA, mu) is 
on the isosensitivity curve I[fi, d,], then there is an x with 

and 

F,(x-1)=1-p,. 

But then, substituting F, = F2 0 $, 

and 

Fz;(vG--1))= 1-P,. 

Since $(x - 1) = Ii/(x) - 1, the second equation becomes 

FAti( I)=1 --PHI 

and, substituting y = tj(x), we see that (p FA, pH) is on the isosensitity curve 
ICY., d2]. Since I,+ is invertible, we can reverse the roles of the two distributions and 
prove that every point on I[fi, d2] is on I[fi, d, J as well. The two isosensitivity 
curves coincide, yet fi is distinct from fi. 1 

The construction used in the previous theorem proves the stronger result, 

THEOREM 6.7. If I is an isosensitivity curve generated by a location TSD, then 
there are infinitely many location TSDs that also generate the contour I. 

ProoJ: The $ used above may be used to generate a second location TSD. 
There is a distinct location TSD for each of the infinitely many possible choices of 
IJ~ that is the sum of a linear and periodic function of period 1, that is odd and 
monotone increasing, and that carries normalized distributions into normalized 
distributions. 1 

7. AN EXTENSION TO LOCATION-SCALE TSDs 

The class of location TSDs is a generalization of equal-variance Gaussian TSD 
relaxing the assumptions on the form of the underlying distributions. We can 
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similarly generalize unequal-variance Gaussian TSD to the class of location-scale 
TSDs defined by the requirement that 

where d is as before a location parameter and s is a scaling parameter. 
When the range of permissible TSDs is expanded to include a particular type of 

location-scale TSDs with possibly asymmetric distributions, a result analogous to 
the previous theorem can be proved given three isosensitivity curves. Let d ;, etc., 
denote the parameters corresponding to the third isosensitivity curve; otherwise the 
notation is as in the previous theorem.f, andf, are now location-scale TSDs with 
fixed scale parameters s 1 and s2. It should be noted that the more typical location- 
scale assumption is that the scale parameter varies with separation between the 
stimulus distributions. However, we have not had much success in studying this 
larger class of location-scale TSDs. The next result concerns a location-scale model 
that is, therefore, more restrictive than is generally assumed for location-scale 
models. 

THEOREM 7.1. Suppose that 

ICfi> 313 d’,“] = I[f2, s2, d:“], i= 1, 2, 3, 

where di2) - d i” and d \“I - d \” are relatively prime. Then f, = f2. 

Proof: For the location-scale case, 

lj(c:“) = cp, 

for the first isosensitivity curve. Consequently, 

(31) 

(32) 

(33) 

where x(l) = c(l’) - d\” For the second isosensitivity curve we obtain an analogous . 
equation in x (*I = ~(12) - d(,Z’. By varying c(lz) we can set x(l) = .xc2) = x, so that 

=tj(x+d;)-d;. (34) 

Then, equating (33) and (34) and setting z=x+d(l’), a=d\“-d’,“, and h= 
d$*‘- d$“, we have, 

i)(z) = I,+ + a) $ b. (35) 

The remainder of the proof involves retracing the above steps for the first and third 



468 MALONEYANDTHOMAS 

isosensitivity curves, obtaining a second equation involving $ analogous to (35), 
and then applying the lemma as in the previous theorem. 1 

Levine (1970, 1972) examines the groups of transformations rendering curves 
parallel or rendering curves into a common shape. As noted above, the problem of 
the uniqueness of the location TSD generating a given set of isosensitivity curves 
can be expressed in Levine’s framework as an assertion concerning the uniqueness 
of a specific transformation. It may be possible also to state the problem of the 
uniqueness of the location-scale TSD that generates a given set of isosensitivity 
curves within this same framework, but we have been unable to do so. 

8. CONCLUDING REMARKS 

The model of the Observer in a Yes-No detection task provided by the theory 
of signal detectability consists of three functions: (a) the distribution of the sensory 
information X available to the Observer on trials where the signal is absent (FN), 
(b) the distribution of X on trials where the signal is present (FsN), and (c) a 
decision rule D( .) that, when applied to X on a given trial, produces a Yes or 
No response. The experimenter’s task is to determine these three functions 
(FN, FSN, D), given the Observer’s hit and false alarm rates. Without some further 
restriction on distributions and decision rules, the experimenter cannot succeed in 
identifying the Observer from the data available. 

In practice, then, the missing information specifying the Observer is assumed. In 
the most familiar case, FN is assumed to be Gaussian with mean 0 and unit 
variance, and FSN is assumed to be Gaussian with unknown mean d’ and unit 
variance. The decision rule D is taken to be Yes iff X> c, in which the only 
unknown is the criterion parameter c. The analytical task is to estimate the free 
parameters remaining in the model of the Observer and use these as indices of the 
Observer’s performance. In particular, estimates of the criterion for human 
Observers that are less extreme than the value that is optimal for the decision are 
taken as evidence that human Observers behave conservatively. 

The predominant response in the literature to this finding of suboptimal behavior 
has been a search for heuristics accounting for the behavior. In contrast, the 
concern in this paper has been to question whether the “finding” might be due to 
suboptimal model-fitting by the experimenter, rather than suboptimal behavior by 
the Observer.’ We have found this to be the case. A discrepancy between assumed 
and true sensory distributions can result in labelling as conservative behavior that 
is in fact optimal. The appearance of conservatism is governed by the curvature of 
the function mapping the quantiles of the true distribution into the quantiles of the 
assumed distribution. 

’ As noted above, findings of suboptimality in human judgment and decision-making also have 
prompted an examination of whether suboptimality inheres in the model-fitting rather than in the 
Observer’s behavior. For example, Kahneman et al. (1982) suggest that the model of probability 
theory used by the Observer may be different from the classical model that is typically used by the 
experimenter. 
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This result led us to investigate ways in which distributional information might 
be extracted from the Observer’s responses. In the weak form of this invesdgation, 
we looked for indications within the data that particular distributional assumptions 
might be in error. We showed that slight, but systematic variations in the estimate 
of sensitivity, as the Observer varies c, can be adequately diagnostic of an incorrect 
distributional assumption. In a similar vein, it is not difficult to show that there are 
slight, but systematic changes in the shape of the isosensitivity curve as we go from 
one family of location TSDs to another (Laming, 1973, pp. 122-124). For example, 
the slope of the isosensitivity curve near the origin depends on the distribution: it 
is 1 for the Cauchy, finite and greater than 1 for the Laplacian, and infinite for the 
Gaussian (see Fig. 4). However, since the estimation of the slope of the isosen- 
sitivity curve in this region is unreliable, it would be difficult to use this feature of 
the curve to test the adequacy of a distributional assumption. (Swets (1986a) 
discusses the problems of diagnosing distributional failures.) 

The strong form of our investigation of distributional information focused on the 
isosensitivity curve and resulted in Theorems 4 and 5. These results show that, in 
location TSD models, distributional information is fully contained in the isosen- 
sitivity curve, and that, in principle, no further assumptions about the Observer’s 
underlying distributions are necessary. Rather surprisingly, the data summarized in 
as few as two isosensitivity curves from a location TSD specify the underlying 
distributions completely. 

In practice, it is unlikely that distributional information can be extracted from an 
isosensitivity curve in a transparent or tractable form until a tractable (non- 
parametric) representation of the isosensitivity curve (or, equivalently, of the 
sensory distributions) is posited. However, our results suggest that there is a cost 
associated with constraining the set of possible isosensitivity curves too severely (for 
example, to the parametric Gaussian or Laplace families of curves). An inter- 
mediate approach would be a semi-parametric one (Bloxom, 1985) in which an 
isosensitivity curve is characterized by (a) a parameter specific to that curve and (b) 
a function that is the same for all isosensitivity curves but not specified a priori. 
This invariant function could be drawn from a prespecified class of splines. Then, 
given a set of empirical isosensitivity curves and the invariant function, the 
parameters for the curves could be estimated by, e.g., methods used by Bloxom 
(1985). It is likely that this approach would reduce significantly the bias in the 
criterion estimates, and further work in this direction seems warranted. 
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