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Abolraet--We present a new, accurate method for determining the properties of defects in alloys at finite 
temperature, including equilibrium segregation. This method is based upon a point approximation for the 
configurational entropy, an Einstein model for vibrational contributions to the free energy and may be 
employed with any type of description of atomic interactions. The atomic struclure, segregation and 
thermodynamics of a defect in an alloy is determined by minimizing the free energy with respect to atomic 
coordinates and composition of each site at constant chemical potential. In order to test the accuracy of 
this approach, we compare our results with accurate Monte Carlo determinations. Overall, very good 
agreement for segregation to free surfaces and grain boundaries in Cu-Ni alloys is obtained. One of the 
main advantages this new method enjoys over other methods such as Monte Carlo, is the e~iciency 
with which the atomic structure of a defect, segregation and thermodynamic properties can be determined. 
This e~iciency is obtained in the framework of a very straightforward method and with little loss in 
accuracy. 

R4mr,,~ Nons pr6sentons une m6thode nouvelle et pr6cise pour d6terminer les propri~t6s des d6fauts clans 
les alliages ~ une temp6rature donn6e, y compris la s6gr6gation d l'6quilibre. Cette m6thode est bas6e sur 
une approximation par points de l'entropie de configuration, un mod61e d'Einstein pour les contributions 
vibrationnelles ~ i'6nergie fibre, et elle peut 6tre utilis~e pour n'importe quel type de description des 
interactions atomiques. La structure atomique, la s6gr6gation et la thermodynamique d'un d6faut clans 
un alliage sont d6termin6es en minimisant l'6nergie fibre par rapport aux coordonn6es atomiques et/t  la 
composition de chaque site ,i potentiel chimique constant. Pour tester la pr6cision de cette approche, nous 
aeons compar6 nos r6sultats/k des d6terminations de Monte Carlo pr6cises. L'accord est tr6s bon pour 
la s6gr6gation vers les surfaces libres et les joints de grains dans les alliages Cu-Ni. L'un des principaux 
avantages offerts par cette nouvelle m6thode, par rapport ~, d'autres m6thodes telles que celle de Monte 
Carlo, est l'eflicacit6 avec laquelle on peut d6terminer la structure atomique d'un d6faut, la s6gr6gation 
et les propri6t6s thermodynamiques. Cette efficacit6 est obtenue dans le cadre d'une m6thocle tr6s directe 
et en perdant peu de pr6cision. 

Z ~ m m w ~ a m m g ~ W i r  stellen eine neue genaue Methode zur Bestimmung der Defekteigenschaften in 
Legierungen bei endlichen Temperaturen einschlieSlich der Gleichgewichtssegregation vor. Dieses Ver- 
fahren beruht auf einer Punktwlherung ffir die Konfigurationsentropie, einem Einstein-Modell der 
Schwingungsbeitrage zur freien Energie, und kann bei jeder Beschreibungsart der atomaren Wechsel- 
wirkung benutzt werden. Atomare Struktur, Segregation und Thermodynamik eines Defektes werden 
durch Minimalisierung der freien Energie hinsichtlich der Atomkoordinaten und der Zusammensetzung 
jedes Ortes bei konstantem chemischen Potential bestimmt. Um die Genauigkeit dieser N~herung zu 
bestimmen, vergieichen wir unsere Ergebnisse mit genanen Monte-Carlo-Simulationen. lnsgesamt stim- 
men die Ergebnisse ffir Segregation an freie Oberitichen und an Korngrenzen in Cu-Ni-Legierungen sehr 
gut fiberein. Einer der Hauptvoneile dieser neuen Methode gegenfiber anderen, wie etwa der Monte-Carlo- 
Rechnungen, ist die Effektivitit, mit der die atomare Struktur eines Defektes, die Segregation und die 
thermodynamischen Eigenschaften bestimmt werden kann. Diese wird im Rahmen eines sehr einfachen 
Verfahrens ohne gro~n Genauigkeitsverlust erreicht. 

I. INTRODUCTION 

Interfaces in solids are known to play crucial roles 
in a wide variety o f  physical phenomena. Grain 
boundaries in polycrystalline materials, for example, 
influence such properties as strength, toughness, 
electrical resistivity, band structure, diffusivity, etc. 
The properties of free surfaces control phenomena 
such as catalysis. Small changes in the composition of 
a material are known to produce large changes in 

those physical phenomena which are controlled by 
interfaces. This magnification effect can be attributed, 
in many cases, to interracial segregation, which 
results in very different bulk and interface concen- 
trations. Segregation to grain boundaries can era- 
brittle a material, change its ditfusivity, modify its 
resistance to stress corrosion resistance, etc. Segre- 
gation to free surfaces can produce devastating 
or  highly beneficial effects in catalysis. Since inter- 
granular fracture in brittle materials replaces a grain 
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boundary with free surfaces, both the tendency of an 
impurity to segregate to grain boundaries and free 
surfaces dictate impurity effects in fracture. Impuri- 
ties that segregate to grain boundaries but not to 
free surfaces tend to enhance fracture resistance. An 
understanding of such interfacial phenomena thus 
requires a knowledge of not only the structure of the 
interface, but the degree of  compositional change due 
to segregation and, in turn, the effect of that change 
on the thermodynamics of the interface. The focus 
of  the present work is the development of simple, 
yet accurate, theoretical techniques to calculate the 
structure, composition and thermodynamics of inter- 
faces in alloyed materials. 

A number of different simulation techniques have 
been developed to determine the structure of inter- 
faces in pure materials and in situations where the 
composition does not change. For these cases at 0 K, 
static relaxation techniques can be used by minimiz- 
ing the internal energy with respect to atomic coordi- 
nates to obtain the stable interfacial structure and 
energy at T -- 0 K. At T > 0, molecular dynamics 
(MD) and Monte Carlo (MC) methods may be 
employed to determine interfacial structure in these 
compositionally fixed structures. Recently, we intro- 
duced an alternative approach [1], based on a simple 
description of the free energy of the material, for 
finite-temperature simulations of interfacial structure 
and properties that requires a simple energy relax- 
ation, instead of a full-scale simulation. This method, 
called the local-harmonic (LH) model, is based on a 
simple harmonic description of the atomic vibrations, 
and has proven quite successful [2, 3] in describing the 
finite-temperature structure and thermodynamic 
properties of grain boundaries. Additionally, this 
method is computationally efficient compared with 
other finite temperature simulation methods such as 
MC or MD. 

The study of segregation to interfaces is less well 
developed. Simple, lattice-gas models have been used 
[4, 5], but these suffer from an unrealistic treatment of 
the interactions between the particles and the elastic 
properties of the material, though they do allow for 
fairly straightforward theoretical analysis. Recent 
advances in Monte Carlo simulation methods [6, 7] 
have allowed this method to be extended to alloy 
systems where the local composition can change 
during the course of the simulation. This has led to 
the first atomistic studies of equilibrium segregation 
to interfaces. While this method does yield equi- 
librium interfacial structure and composition, it 
has never been successfully applied to obtaining 
thermodynamic information. Unfortunately, these 
calculations require very substantial computational 
resources and hence this method is generally limited 
to supercomputer applications. Our goal in studying 
interracial phenomena is not simply to elucidate the 
properties of  individual interfaces under well defined 
conditions, but is, instead, directed at understanding 
the trends in interfacial and segregation behavior as 

a function of the experimental parameters; tempera- 
ture, bulk composition, and interface geometry/ 
crystallography. In order to elucidate trends, compu- 
tational efficiency is not simply a matter of con- 
venience but determines whether such studies are 
possible. Given this goal, we conclude that Monte 
Carlo methods do not yield sufficient information 
and are computationally too demanding for system- 
atic studies of interfacial properties in alloys. 

The goal of the present work is to develop simple 
techniques that obviate massive computer simu- 
lations yet that are accurate enough to be useful. 
By accurate, we mean that the results should produce 
the proper trends in interfacial behavior and are at 
least semiquantitative, which is the most that can 
be asked of any atomistic simulation procedure 
given the empirical/approximate nature of  the inter- 
atomic potentials. We approach this problem based 
on the use of the LH model, which is known to be 
quite accurate for pure materials. Extension of this 
method to alloy systems is achieved by introducing 
effective (or mean-field) atoms, that have properties 
that are a concentration-weighted mix of the different 
atom types. The LH model then can be used with 
essentially the same ease and efficiency as for pure 
systems. In addition, the extension of the method 
to alloys requires the addition of  some description of 
the configurational entropy. There are a number 
of methods, such as the cluster variation method [8], 
the Bethe method [9], etc. which have had some 
successes in determining the configurational entropy 
of perfect crystals. Unfortunately, these methods 
are rather difficult to apply to nonuniform systems 
and with non-pairwise interactions. We thus 
choose to use a simpler approximation, namely that 
derived assuming ideal mixing. The configurational 
entropy in this approximation reduces to a simple 
point term that depends only on the concentration 
of each component at each site and that neglects 
any site-site correlations. Though this is a very 
simple approximation, we demonstrate below that 
it works rather well for studying defects in alloys 
at temperatures not too close to transformation 
temperatures. 

In the present paper, we first describe our new 
simulation approach and then apply it to segregation 
at grain boundaries and free surfaces in the Cu-Ni 
system. These systems were chosen because accurate 
results for these cases are available from Monte Carlo 
calculations employing the same description of the 
interatomic interaction as used here. Any discrepan- 
cies between our results and those from the Monte 
Carlo calculations are thus due to the approximations 
in our methods. In the present study and the Monte 
Carlo calculations, the atomic interactions are de- 
scribed within the framework of the embedded-atom 
model (EAM) [10], in which the energy of a metal is 
expressed as a sum of pairwise repulsive terms and a 
many-body term that approximates the energy to 
embed an atom in the electron gas. 



NAJAFABADI et al.: SIMULATION OF ALLOYS: INTERFACIAL SEGREGATION 3073 

2. METHOD 

The goal of the present study is to develop an 
accurate, efficient method to study the structure, 
composition and thermodynamics of defects in alloy 
systems. The approach we take in reaching this 
goal is to define an approximate expression for 
the free energy of a multicomponent atomic system 
and minimize that free energy with respect to 
the atomic coordinates and the compositional profile 
in the material. The free energy of a multicomponent 
system consists of several distinguishable parts. 
These include atomic bonding, atomic vibrations 
and configurational entropy (i.e. the entropy associ- 
ated with the relative spatial distribution of the 
atomic species). In the present study, we describe 
atomic bonding using standard atomistic simulation 
methods (for metals, we employ the Embedded Atom 
Method (EAM) potentials [6, 11]). The effects of 
atom vibrations are included within the framework 
of the Local Harmonic (LH) model [I], which we 
previously introduced. Configurational entropy is 
described on the basis of a point approximation. 
While each of these features can, in principle, be 
described more accurately than we are doing here, 
each has drawbacks that prevent their application to 
efficient atomistic simulations. For example, elec- 
tronic structure calculations, diagonalization of full 
dynamical matrices and the cluster variation method 
provide very accurate descriptions of atomic bond- 
ing, atomic vibrations and configurational entropy, 
respectively, but generally do so at such great com- 
putational expense that they are impractical for 
atomistic simulations. In the remainder of this 
section, we review the Local Harmonic description 
of atomic vibrations, introduce the point approxi- 
mation for configurational entropy in a form appro- 
priate for atomistic simulations, and then finally 
describe the method we employ in examining inter- 
facial segregation. 

The local harmonic (LH) model has been applied 
with considerable success to perfect and defected 
solids of single elements [2, 3]. To a good approxi- 
mation, the atoms in a solid can be treated as 
harmonic oscillators. We simplify the harmonic ap- 
proximation further by neglecting all terms that 
couple vibrations of different atoms. For a perfect 
crystal with one type of atom, this becomes the 
Einstein model. Here we are mainly concerned with 
defects, so that each atom potentially has different 
vibrational properties. The classical vibrational con- 
tribution to the free energy is then given by 

,, i 
, - ~ - ,  L2~ka r J  (l)  

where k a is the Boltzmann constant, and to~t, eo~2, 
and to~3 are the three vibrational eigenfrequencies of 
atom i. Neglecting the coupling of vibrations on 
different atoms, these frequencies may be determined 
in terms of the local dynamical matrix of each atom 

DaB = (d2E/dx~,dxl#), where E is the potential energy 
determined from summing the interatomic potential 
and the xip correspond to atomic displacements of 
atom i in some coordinate system. Diagonalization of 
this 3 x 3 matrix yields the three force constants kip 
for atom i. The vibrational frequencies are then 
determined as to,p = (k~p/m) 1/2, where m is the atomic 
mass. As described in references [1, 2], the approxi- 
mations of the LH model reduces the calculation of 
the vibrational contribution to the free energy from 
one of the diagonalizing a 3N x 3N dynamical matrix 
to the calculation of N determinants of 3 × 3 
matrices, where N is the number of atoms in the 
system. In our previous applications of the LH model 
[I, 2], we have demonstrated that the approximations 
inherent in the LH model lead to errors in the free 
energy of perfect close-packed metal crystals, which 
are typically of the order of I% at the melting 
temperature and much less at lower temperatures 
[l, 3, 121. 

In order to study alloys, it is useful to introduce the 
concept of an "effective atom". Consider first the case 
of a binary alloy consisting of a and b atoms. If we 
were to monitor a particular atom site in such an 
alloy for a long time, we would find that that atomic 
site would be occupied by a atoms with probability 
c, and by b atoms with probability cb= l - c ,  
(neglecting vacancies). Ignoring the temporal corre- 
lation between the site occupancies, we can then 
define the spatial compositional profile within the 
alloy crystal as ca(r). Within this framework, the 
vibrational free energy of the crystal may be 
described as in equation (1), with the atomic inter- 
actions used to describe the local force constants 
appropriately averaged (as described below) and the 
mass of the effective atom employed in the frequency 
calculations given by m~= c.(i)m~+cb(i)mb. An 
alternative approach is to determine the vibrational 
free energy as Av=ca(i)Av(a)+cb(i)Av(b) ,  where 
Av(a) is given by equation (1) evaluated with the 
frequencies co,p(a). Our tests indicate that the two 
approaches yield nearly the same results. We have 
adopted the first approach as it is the simpler of 
the two and is more consistent with the concept of 
an "effective atom". 

In the spirit of the "effective atom" approximation, 
we assume that the occupation of different atomic 
sites is uncorrelated. This results in a simple point 
approximation for the configurational entropy [13] 

N 

S¢ = -kB ~ {c~(i) In[ca(i)] + cb(i) In[Cb(i)]}. (2) 
i = 1  

We note that since this expression always assumes no 
correlation between site occupancies, it is a rigorous 
upper bound to the true configurational entropy. 
In almost all situations, we note that at least some 
short range correlation does exist. The assumption 
of no spatial correlations employed in obtaining 
the contigurational entropy [equation (2)] does n o t  

imply that spatial correlations will not form in our 
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simulations since spatial correlations are predomi- 
nantly a result of the properties of the atomic inter- 
actions. 

In the simulations described below, we employ a 
reduced, or baby, Grand Canonical ensemble, where 
the total number of  atoms remains fixed but the 
relative amounts of each atomic species varies. The 
appropriate thermodynamic potential for this type 
of ensemble is the grand potential and is given by 
[14]  

N 

n = A + A# E c,(i) 
t - I  

N 

= E + A , - T S o + a a  Yc,(i) (3) 
t - I  

where A is the Helmholtz free energy and A# is 
the difference in chemical potential between atoms 
of type a and b. Given A#, the equilibrium con- 
centration at each site can be determined by minimiz- 
ing f] with respect to those concentrations. This 
approach was previously employed by Lundberg [15] 
to study surface segregation. However, he forced all 
of the atoms in each atomic layer to have the same 
concentration, thereby leading to a quasi-one dimen- 
sional calculation. More importantly, his calculations 
ignored the often dominant effect of the vibrational 
contributions to the free energy. 

While the above discussion is independent of the 
method in which atomic bonding is described, it 
is useful to clarify the application of the "effective 
atom" approach by way of application to a particular 
atomic bonding scheme. Since the description of 
atomic bonding employed in the simulations reported 
herein were performed within the framework of the 
Embedded Atom Method (EAM), we have chosen 
the EAM method for the present discussion. The 
Embedded-atom model (EAM) potentials have been 
quite successful in the calculation of bulk and surface 
properties of both pure metals and binary alloys 
[see e.g. Ref. 11]. The EAM interaction energy is 
written as 

i--I l - l J # l - I  

where the sum on i is over all N atoms in the system 
and the sum on j is over all atoms interacting with 
atom i, Ou(Ro) is a pair potential between atoms 
of i and j separated by the distance R u, and F~(p~) 
is the embedding term that accounts for the energy 
required to embed atom i in a uniform electron gas 
with density 

~, = Y. ps(Ro) (5) 
J # t  

where Ps(Ru) is the electron density of  atom j evalu- 
ated at atom i. Note, F~ is a nonlinear function that 
is obtained, in practice, by requiring that the energy 
of the perfect crystal lattice matches the universal 
binding curve of Rose et ai. [16].  

We divide the average interaction energy into two 
parts, the pair terms and the many-body embedding 
energy. Neglecting all correlations between the con- 
centration on one site and that on any other site, the 
contribution to the average energy from the pair 
terms is given by 

l Jv N 

× {c.(i)c.( j)cku(Ru) + %(i)cb(J)~bb(R~) 

+ [c.(i)cb(j) + Cb(i)c.(j) ] ~.b(Rq)}. (6) 

We approximate the average embedding energy by 
expanding (Ft>, where ( >  indicates an ensemble 
average, about the average density as 

1/dZFl\  -2 

where 
N 

<~,> ffi Y (c.(j)p.(R,j) + Cb(/)pb(R0)}. (8) 
J ¢ l - I  

We lind that the ratio of the second term in equation 
(7) to the first is typically about 10 -s for the system 
studied here. Therefore, we approximate <F~(~)> 
with F~(<(t~,)>). The total average potential energy, E, 
is given by the sum of Ep,~ and E,~b = EF/(<(~,))). 
We note that an expansion similar to equation (7) was 
recently used in a variational treatment of the free 
energy of pure metallic solids and fiquids [12], with a 
similar conclusion as to the relative unimportance of 
the second-order term. 

The calculation of the segregation around an inter- 
face is performed in steps. First, the properties of the 
perfect, uniform composition crystal are determined. 
This is done by choosing a composition and then 
minimizing the free energy, at the temperature and 
pressure of interest, with respect to the lattice par- 
ameter. Differentiating this equilibrium free energy 
with respect to composition gives the chemical poten- 
tial difference A#. For the Cu-Ni alloy system dis- 
cussed below, we have verified that the equilibrium 
structures are solid solutions at the temperature, 
pressure and composition of interest by minimizing 
the grand potential [equation (3)] with respect to 
lattice parameter and local concentration and verify- 
ing that the resultant concentration profile was 
uniform. This is in agreement with Monte Carlo 
simulations [6, 10] employing the same potentials. 
Since at equilibrium the chemical potential of 
a component is everywhere constant, we fix the 
chemical potentials at their bulk values, introduce 
the appropriate interface, and minimize the grand 
potential with respect to the concentration and 
position of each site. 

The geometry of the cell used in the grain- 
boundary simulations is the same as that employed in 
earlier studies on grain boundaries in pure systems 
[2, 3]. As shown in Fig. 1, the simulation cell is 
divided into two regions, I and II. The effective atoms 
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in region I are completely free to move in response to 
the forces due to other atoms and the concentration 
at each site is allowed to vary. The atoms in Region 
II, however, are constrained such that Region II is 
a perfect crystal with the lattice constant and average 
concentration on each site appropriate to the simu- 
lation temperature, pressure, and bulk concentration. 
The equilibrium configuration and concentrations 
of the effective atoms are obtained by minimizing 
equation (3) with respect to the coordinates, the 
site concentrations, and the relative positions of the 
upper and lower crystals (4N + 3 variables, where 
N is the number of atoms in the system). Addition 
of the three variables corresponding to the relative 
positions of the two crystals removes all constraints 
on the relative in-plane translation of the two crystals 
and on the expansion in the z-direction, which may 
occur if the excess volume of the grain boundary is 
not zero. This type of simulation guarantees that a 
perfect crystal is at zero net stress. However, since 
periodic boundary conditions are imposed in the x 
and y directions and the size of the boundary in those 
directions is fixed by the lattice constant of the perfect 
system, some net stress may develop in the grain 
boundary region, which is appropriate since typical 
grain sizes are extremely large relative to the width of 
the grain boundary. The free-surface results were 
obtained by moving the two crystals far enough apart 
so that they did not interact with one another. The 
simulations then proceeded in the same way as for the 
grain boundaries. 

3. RESULTS 

The free energy minimization method, described 
above, was employed to study surface segregation 
and grain boundary segregation in the Ni-Cu system. 
These cases were all examined in the solid solution 
region of the phase diagrams. These have all pre- 
viously been studied by Monte Carlo (MC) methods 
[6, 7] using the same potentials as employed here. 
This was done in order to gauge the accuracy and 
utility of the present alloy simulation approach. 

The point approximation for the entropy equation 
(2) implies that there is no correlation between 
the concentration at neighboring atomic sites. The 
internal energy term, equation (4), will lead to 
short range ordering. We can obtain an estimate of 
the accuracy of the configurational entropy point 
approximation assumption, at least for the bulk, by 
examining recent MC results [6] on the Ni-Cu system. 
A measure of short range compositional order is 
given by the Warren-Crowley parameter ,~, which is 
defined as 

+, = l - \x+] (9) 

and measures the probability of finding neighboring 
atoms of  the opposite (or the same) type around a 
site. In equation (9), the subscript i represents the ith 
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Region I I 
' L  

Crystal 1 

Region I 't 
~ X  

Crystal 2 

Region II 
_L 

Fig. I. Th© simulation cell employed in the present ~ 
boundary simulations. The grain boundary is in the middle 
region I. The atoms in region I are free to move, while those 
in region II move rigidly with the rest of the crystal. Crystals 
in I and II are free to translate relative to one another. 
Periodic boundary conditions are employed in directions 

parallel to the interface. 

shell of neighbors, ppb is the probability that a specific 
atom in the ith neighbor shell around an atom of 
type a will be of type b, and Xb is the bulk concen- 
tration of type b. For  a perfect solid solution with no 
short-range order, ppb __ Xb and a~ = 0, which is what 
we find with our model for all bulk concentrations at 
this temperature. In the MC simulations, Foilcs 
found [6] for the first neighbor shell around Ni atoms 
a values ranging from 0.149 at Xc~ = 0.284 to 0.085 
at Xc~ -- 0.722, which corresponds to a probability of 
finding a Cu atom around a Ni atom of 0.24 at 
Xc, = 0.284 and 0.66 at Xc, = 0.722. Thus, the Monte 
Carlo results show a slight tendency for atoms of  the 
same type to cluster that is not seen in the model 
calculations. From the MC calculations, however, the 
values for a~ decreases rapidly with distance, so the 
ordering in these alloys is quite small and therefore 
we do not expect the point approximation for the 
configuration entropy to be too severe. 

3.1. Surface segregation m Ni/Cu alloys 

We determined the structure and composition of 
three free surfaces in Ni-Cu at a series of bulk 
concentrations at 800 K. The same surfaces and 
EAM potentials [6] were employed in recent MC 
calculations. In the present study, we did not explic- 
itly consider any surface reconstructions by restrict- 
ing our initial structure to the unrelaxed 1 x 1 
surfaces. The Cu composition of each layer (Xk~,,) 
was determined by averaging the concentration of  Cu 
over all of the atomic sites in that layer (all concen- 
trations will be given in atomic percent). The results 
are shown in Table !, along with those reported by 

AM 39112--I 
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Table 1. Calculated composition profile in at .% Cu for Ni--Cu alloy 
surfaces at 800 K 

Face X ~  X, X 2 X 3 )(4 .T..(X, - Xc~) 

(111) 
Present 4.8 94.8 4.0 3.9 4.8 0.88 
MC 89.4 3.0 4.0 5.0 0.82 
Present 29.2 96.7 11.9 15.0 23.1 0.30 
MC 95.0 I 1.0 19.1 27.1 0.35 
Present 55.2 96.2 17.8 32.4 55.5 - 0 . 1 9  
MC 96.2 21.3 43.2 56.9 - 0 . 0 3  
Present 71.9 97.4 46.1 71.5 71.9 -0 .01  
MC 97.5 39.0 70.2 76.8 - 0 . 0 4  
Present 93.3 99.1 83.0 94.0 93.3 - 0 2 4  
MC 99.1 79.3 93.8 93.6 - 0 . 0 7  

(11o) 
Present 29.1 99.7 37.8 13.1 15.1 0.49 
MC 99.2 36.8 14.1 19.8 0.53 
Present 55.1 99.6 44.2 23.6 34.7 - 0 . 1 8  
MC 99.4 43.9 25.4 40.3 - 0.11 
Present 72.0 99.7 58.0 46.7 64.8 - 0 . 1 9  
MC 99.7 55.8 44.3 64.8 - 0 . 2 3  

(10o) 
Present 25.0 98.6 14.1 9.4 14.4 0.37 
MC 97.5 l l .7  11.6 18.6 0.39 
Present 57.0 98.3 21.3 25.0 48.5 - 0 . 3 5  
MC 98.1 22.7 36.6 57.7 - 0 . 1 3  
Present 73.9 98.9 44.0 64.2 77.2 -0 .11  
MC 98.7 38.6 60.9 78.1 - 0 . 1 9  

The subscripts refer to the atomic layers numhezed from the surface. 
The last column is the sum of  the deviations of  the layer 
concentration from the bulk and is reported in terms of total 
number of  excess monolayers. The summation was performed 
over the four atomic layers nearest the surface. The results 
marked MC are from Ref. 16] 

Foiles from the MC calculations at the same con- 
centrations. The agreement between the two sets 
of  calculations is very good, with an average error 
in the concentration of the surface layer of less than 
1%. The surface layers of the (111), (110) and (100) 
surfaces are almost pure Cu, nearly independent of 
Cu concentration in the bulk. In Fig. 2, we show the 
Cu concentrations of the individual atomic layers 
parallel to the surface, X,.,,(Cu), as a function of 
the layer number for the (111) surface with a 
bulk concentration of  Cu of  55.2%. The agreement 
between the predicted segregation and the reported 
MC results is quite good, though we slightly over- 
estimate the Cu depletion in layers 2 and 3. Note that 
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Fig. 2. Concentration of Cu atoms averagod over the layers 
parallel to the surface for a (111) surface in Cu-Ni with 
55.2 at.% Cu, Xw,~, plotted as a function of layers away 
from the surface. The solid lines are the present results and 

the dashed lines are the results from MC calculations. 
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Fig. 3. Concentration of Cu atoms averaged over the layers 
parallel to the surface for a (I11) surface in Cu-Ni, X~ r, 
plotted as a function of bulk Cu concentration, Xb~. ~ e  
solid lines are the present results and the dashed lines are the 
results from MC calculations. The short-dashed line would 
be the result for a bulk solution. Plotted are the results for 

the first three layers. 

while the surface layer is very strongly enriched in 
Cu (relative to the bulk), the Cu concentration on 
the second layer is substantially depressed relative 
to the bulk Cu concentrations. Similar oscillatory 
segregation profiles are observed for all of the sur- 
faces examined. Despite the large changes from the 
bulk values, the segregation is of a rather limited 
spatial extent; the bulk concentration value has been 
reached by essentially the 4th atomic layer. 

In Fig. 3, we show the Cu layer concentrations as 
a function of the bulk Cu concentration for the three 
(111) atomic layers closest to the surface. Deviations 
of these curves from the X~ay, r = Xb~k line indicate 
segregation; if Xa ,  r is above that line, the Cu concen- 
tration is enhanced, if below, then the concentration 
of Ni is higher than in the bulk. Note that the Cu 
concentration in the first layer is considerably en- 
hanced for all bulk concentrations, while for layers 2 
and 3, the Ni concentration is greater than in the 
bulk. A similar plot of the fourth and higher layers 
essentially follow the bulk concentration, the layer 
concentration has largely reached the bulk concen- 
tration by the fourth layer. Once again, agreement 
between the present simulations and the Monte Carlo 
data is excellent. We do, however, slightly overestimate 
the degree of segregation on the first and third layers. 
Even there, however, the overall trends in the layer 
concentrations are the same. Examination of the 
results for the other surfaces also indicates excellent 
overall agreement with the Monte Carlo data. 

A measure of  the net segregation to the surface can 
be obtained by summing the deviation of the layer 
concentrations (Xay~) from the bulk value (Xb~k), 
Z,.~r (X~yc,--Xb~dk). These data are reported in 
Table I for all three surfaces and plotted in Fig. 4 for 
the (i11) surface as a function of the bulk Cu 
concentration. As for the individual layer concen- 
trations, the net segregation results are in reasonable 
agreement with the MC values. We see that at low 
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Fig. 4. Total net segregation of Cu to the surface 
[~t.m(X~.~r- X~k)] as described in the text plotted as a 
function of bulk Cu concentration, X~,~. The solid lines 
are the present results and the dashed fines are the results 

from MC calculations. 

bulk Cu concentrations, there is considerable Cu 
segregation to the surface region. As the bulk 
Cu concentration increases, the net segregation 
decreases. This is simply a result of  the fact that the 
surface Cu concentration is nearly 100%, indepen- 
dent of  bulk Cu concentration. Figure 4 and Table l 
show that when the bulk Cu concentration becomes 
large, there is a net Ni segregation to the region. The 
Ni segregation to the surface in Cu rich alloys is, 
however, much weaker than the Cu segregation to the 
surface in the Ni rich alloys. This result appears to be 
independent of  surface plane. 

3.2. Grain boundary segregation in Ni-Cu alloys 

Calculations were performed on three [1t30] twist 
grain boundaries in N i - C u  alloys at 800 K for a series 
of  bulk Cu concentrations. These conditions are 
identical to those employed in the free-surface studies 
discussed above. The grain boundaries were created 
by cutting a single crystal along an (100) plane and 
rotating the resultant two crystals relative to one 
another  around a common [100] axis by 36.9 °, 22.6 °, 
and 10.4 °, which correspond to the 5z5, Y.13, and 5z61 
[100] twist boundaries, respectively (the Y- value is 
equal to the reciprocal of  the coincident site lattice 
density). The N i - C u  bulk alloy compositions em- 
ployed in these calculations were 10, 50 and 90% Cu. 
These particular choices for the grain boundaries, 
bulk composit ions and temperature were made in 
order to compare with the Monte  Carlo simulation 
results reported by Foiles [7] using the same EAM 
potentials as those employed here [6]. Since we do not 
require as large of  a sample in order to get statistically 
significant data  as in the Monte  Carlo simulations, we 
are able to use relatively small simulation cells (in the 
plane of  the boundary). In the present calculations, 
we used 2X2 arrays of  the basic periods of  the 5.5 and 
Yd3 boundaries and a single unit cell for the 5z61 

boundary.  
In Table 2 we compare the concentration profiles 

obtained from our calculations with the MC data. 

Table 2. Calculated composition profile in at.% Cu for Ni-Cu grain 
boundaries at 800 K 

Boundary Xc. X, X2 X3 X4 T..(X t - X~) 
I:5 
Present 
MC 
Present 
MC 
Present 
MC 
~13 
Present 
MC 
Present 
MC 
Present 
MC 
7.61 
Present 
MC 
Present 
MC 
Present 
MC 

90 96.2 87.2 89.0 90.3 0.05 
95 90 90 0.10 

50 82.2 41.8 37.0 45.9 0.22 
78 48 42 0.36 

10 85.6 25.8 10.1 9.3 1.83 
74 22 I 1 1.54 

90 95.3 89.1 89.2 90.0 0.07 
95 90 90 0.10 

50 78.8 48.1 50.0 50.0 0.54 
74 52 44 0.40 

l0 79.4 26.2 10.0 9.2 1.71 
62 24 I 1 1.34 

90 92.9 90.7 89.9 90.0 0.07 
92 91 90 0.06 

50 71.5 56.2 48.0 47.1 0.51 
66 57 51 0.48 

10 65.1 32.3 14.2 10.1 1.63 
41 27 15 1.06 

The subscripts refer to the atomic layers numbered from the 
boundary. The last column is the sum of the deviations of the 
layer concentration from the bulk and is reported in terms of 
total number of excess monolayers. In all cases, the summation 
was performed over three layers on each side of the boundary. 
The results marked MC are from Ref. [7]. 

The concentration of  Cu on each atomic layer 
Xam(Cu) is plotted as a function of  layer number 
(where the grain boundary lies between layers 0 and 
1) in Figs 5-7 for the Y.5, ~13, and Y61 [100] twist 
boundaries, respectively. The layer concentrations 
were determined by averaging over all of  the atomic 
sites on the appropriate (002) planes. Comparison of  
our results (Solid lines) with MC results (dashed lines) 
shows good overall agreement, especially for the 
larger bulk Cu concentrations. There is a tendency 
for the model to overestimate the amount  of  Cu that 
segregates to the atomic layer adjacent to the bound- 
ary; nonetheless, the only significant disagreement 
between our results and the MC data is at low bulk 
Cu concentration (10%). For  these low bulk Cu 
concentrations, the results become worse as the grain- 
boundary angle becomes smaller (i.e. our results for 

80 _ ~ Xbu m : 907._~ 

~-" ",~ E5 boundary 

_~' 40 - = 507. 
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l a y e r  

Fig. 5. Concentration of Cu atoms averaged over the layers 
parallel to a ~5 [100] twist boundary, X,.~, in Cu-Ni with 
10, 50, and 90aL% bulk Cu plotted as a function of layers 
away from the surface. The solid lines axe the pcesent results 
and the dashed lines axe the results from MC calculations. 
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Fig. 6. Concentration of Cu atoms averaged over the layers 
parallel to a Z13 [100] twist boundary, Xl,~,,, in Cu-Ni with 
I0, 50, and 90 at.% bulk Cu plotted as a function of layers 
away from the surface. The solid lines are the present results 
and the dashed lines are the results from MC calculations. 
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Fig. 8. Concentration of Cu atoms averaged over the layers 
parallel to a E5 [100] twist boundary, Xa~, plotted as a 
function of bulk Cu concentration, X ~ .  The solid lines are 
the present results and the dashed lines are the results from 

MC calculations. Plotted are the first three layers. 

Y-5 are in better agreement with the MC data than the 
El3 results, which are better than for E61). However, 
even in the worst cases 0owest Cu concentration and 
lowest boundary misorientation angle) the model 
still produces the proper trends and is still at least 
semiquantitative. 

As in the MC studies, we see a very strong segre- 
gation of Cu at the atomic layer adjacent to the grain 
boundary, especially at low bulk Cu concentrations. 
While the second and third atomic layers from the 
free surfaces tend to be depleted of Cu, this effect is 
not generally present for these grain boundaries. The 
shortest period grain boundary (the Y~5 36.9 ° bound- 
ary) does, however exhibit this Cu deplefion/Ni en- 
richment on the second and third layers in all but the 
most Ni-rich alloy, as shown in Fig. 8. 

The net grain boundary segregation may be ob- 
tained by summing the deviation of  the layer concen- 
trations from the bulk value, (Z~,~.d) :~--Xb~]) .  
Unfortunately, the MC data was only presented for 
the first three layers. In many cases (see Table 2), the 
layer concentrations have not converged to the bulk 

values by this distance from the grain boundary. 
Thus, the MC results do not provide an accurate 
estimate of the net boundary segregation. Nonethe- 
less, in order to make the most appropriate compari- 
son between the present results and the MC data, we 
have calculated the net grain boundary segregation 
in all cases to three atomic layers on either side of 
the grain boundary. The agreement between the 
present simulation results and the MC data for the 
net grain boundary segregation is significantly worse 
than for the free surfaces. On average the error is 
approximately 30%, with a worst case error of 50% 
and a best case of 7%. In general the error increases 
with increasing Cu concentration in the bulk and 
decreasing boundary period (i.e. decreasing Y. value). 
In Fig. 9, we plot the net segregation results for the 
Y.5 boundary as a function of bulk composition. 
Unlike the free-surface, this function is always posi- 
five, indicating that there is always a net segregation 
of Cu to the grain boundaries. As with all of  the other 
major trends, the present segregation results are 
consistent with the Monte Carlo results. 
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Fig. 7. Concentration of Cu atoms averaged over the layers 
parallel to a ~61 [1130] twist boundary, X,.~, in Cu-Ni with 
10, 50, and 90 at.% bulk Cu plotted as a function of layers 
away from the tan'face. The solid lines ate the present results 
and the dashed lines are the results from MC calculations. 
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[ ~ ( X t . ~ - X t ~ ) ]  as described in the text plotted as a 
function of bulk Cu concentration, X ~ .  The solid lines 
are the present results and the dashed lines are the results 

from MC calculations. 
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In Fig. 10, we show the average concentration of (o} 
Cu atoms per site for the first three layers on either 
side of the Z61 boundary with 10% Cu in the bulk, 
which may be compared with the Cu concentration Q • 
contour plots for this grain boundary under the same • • 
conditions in Fig. 2 of Ref. [7] by Foiles. Layer 1 
[Fig. 10(a)] shows that Cu segregations is strongest • • 
along the square pattern that corresponds to the • • 
location of screw dislocations in this relatively low 
angle boundary. The Cu concentration is lowest at • • 
the center of the square pattern, which is furthest • • 
from the dislocation lines. In contrast, layers 2 and 3 
show a decided segregation of Cu to the center and • • 
corners of the cell with some Cu depletion in the • • 
vicinity of the positions of the screw dislocations. 
These patterns are in nearly identical to those • • 
obtained by Foiles using Monte Carlo simulations. 
The relative magnitudes of the maxima and minima • 
in the concentrations obtained in the present study Q • 
and those obtained by MC are essentially the same. 
The absolute magnitudes of the Cu concentrations, 
however, are too large by a factor of i.7 in layer 1, ( b ) 
1.8 in layer 2 and 1.6 in layer 3. 

Since the present simulations employing the free 
energy minimization method are very efficient, it is • • 
possible to perform more complete studies than easily • • • 
possible with MC methods. In Fig. 11, we show the 
results of such a study, where we examine the tern- Q O 
perature-dependence of the layer concentrations at a 0 ~ • 
I25 [001] twist grain boundary for 50% bulk Cu. 
(These calculations were performed with a more O • 
current version of the EAM potentials [11] than used Q • • 
in the MC study, so the results are somewhat different 
than those reported in Table 2.) We see that the • • 
dominant effect of temperature is to decrease the • G • 
amount of segregation to the boundary region. This 
decrease in segregation is due primarily to the • 
configurational entropy, which drives the system to a • • 
completely uniform state. The segregation to layer I 
is the most affected by temperature since the segre- • 0 
gation to that layer is the most pronounced. On 
energetic grounds, we know that at 0 K there would ( c } 
be complete segregation to the boundary, as dis- 
cussed in detail below. At high temperatures, the 
configurational entropy term becomes important, • 0 
thereby leading to a more uniform/disordered state. 
For the layers farther from the boundary, the results O 
are essentially the same. 0 • 

The fundamental quantity from which all thermo- 
dynamic information can be derived is the free • 
energy. For a defect, one can define an excess free 
energy for the defect as the difference in free energies 
between the system with the defect and the perfect • 
system. Here, we use the grand potential [equation • 

Fig. 10. Distribution of Cu at a 5361 [100] twist boundary for 
10% bulk Cu in a Ni--Cu alloy at 800 K. The circles are 
atomic sites and the darker the circle, the higher the Cu 
concentration at that site. Shown are (a) layer I, (b) layer 

2, and (c) layer 3. 
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Fig. 11. Temperature dependence of the concentration of Cu 
atoms averaged over the layers parallel to a Z5 [100] twist 
boundary, X ~ ,  for a system with 50% bulk Cu. Shown are 

the results for the first 4 layers. 
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Fig. 13. Excess grain boundary free energy, F@, as defined 
in the text, as a function of temperature for the 2;5 [I00] 
twist boundary. Shown are the results for 10, 50, and 

90 at.% Cu in the bulk. 

(9)] and define Fib as the excess free energy for the 
grain boundary. The excess grain boundary free 
energy has contributions from the grain boundary 
itself, the non-uniform composition profile near the 
grain boundary and the interaction between them. 
We plot that excess free energy (calculated with the 
EAM potentials of Ref. [11]) in Fig. 12 as a function 
of  bulk Cu concentration at 800 K for the three 
boundaries studied here. The free energy of  [001] 
symmetric twist boundaries in elemental metals tends 
to increase in a nearly monotonic fashion with in- 
creasing misorientation angle from a low at 0 ° to a 
high at 45 ° and the free energy versus misorientation 
plot is symmetric about 45 ° . The ordering of the three 
curves in Fig. 12 is as expected with the largest 
misorientation angle boundary X5 highest and the 
lowest angle boundary g61 lowest. The effect of 
composition on the excess grain boundary free energy 
is to smoothly interpolate between the grain bound- 
ary values in the pure solids. The effect of  tempera- 
ture on Fro is shown in Fig. 13 for the Z5 boundary 
at three different bulk compositions. There we see 
quite different behavior for the three boundaries. 
The excess grain boundary free energy values for 
90% bulk Cu are quite typical of the temperature= 
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Fig. 12. Excess grain boundary free energy, FO, , as defined 
in the text, as a function of bulk Cu concentration, Xb,~, for 

the I;5, I;13, and T,61 [1(30] twist boundaries. 

dependence of the grain boundary free energy in 
a pure system; the grain-boundary free energies 
decreases with temperature due to entropy effects. 
For  50 and 10% bulk Cu, however, the situation is 
quite different; F@ shows a very strong increase with 
T that levels off around 600 K. Since Cu strongly 
segregates to the grain boundary at low temperature, 
the presence of  Cu at the grain boundary clearly 
lowers the energy of the system. When the tempera- 
ture is increased, the configurational entropy drives 
the Cu off the boundary, thereby raising the energy 
(which more than balances the entropy effect on 
the grand potential). This effect is much more 
pronounced with decreasing bulk Cu concentration 
because it is at low bulk Cu concentration that 
segregation is the strongest. For  instance, for the 
boundary in the 50% bulk Cu system, the net segre- 
gation is 75 at 200 K and 26 at 800 K. The leveling 
off of Fsb at high temperatures may be attributed to 
the increase in the vibrational entropy term. 

4. DISCUSSION 

The overall agreement between the present results 
on segregation to free surfaces and grain boundaries 
in metals and accurate Monte Carlo data is striking, 
considering the simplicity of the model and the ease 
and efficiency of  the present method. In most cases, 
the model gives quantitative agreement with the MC 
results [6, 7] and, in all cases, the qualitative trends 
predicted by the model are correct. Even where the 
greatest discrepancies between the Monte Carlo and 
the present results exist, the two methods yield segre= 
gation which seldom differ by more than a factor of  
two. Successes of the model include the accurate 
prediction of almost complete Cu segregation to, and 
Ni enhancement just below, surfaces in Cu-Ni alloys 
as well as the prediction of a net Ni enhancement for 
bulk Cu concentrations greater than about 50%. The 
method also does well in predicting the segregation in 
grain boundaries in Cu-Ni alloys. The agreement 
with MC data [7] is, for the most part, excellent for 
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bulk Cu concentrations of 50 and 90 at.%, though 
the results at 10% are less good. In all cases, however, 
we overestimate the Cu segregation right at the 
boundary. Thus, the model, for all its simplicity and 
approximated nature, is accurate enough to serve as 
a predictive tool. 

Nonetheless, the discrepancies between the present 
results and the Monte Carlo data should be ad- 
dressed. The key to understanding these deviations 
lies in the central approximation in our model; that 
the concentrations at any site are completely uncorre- 
lated with those at any other site. This approximation 
enters into the model in two central ways. First, the 
expression we employ for the configurational entropy 
[equation (2)] is valid only in the limit of uncorrelated 
concentrations. Second, the mean-field expressions 
used for the average potential energy are also derived 
based on the assumption of uncorrelated sites. 

The configurational entropy in equation (2) has 
a very simple form and reaches its maximum value 
at a concentration of 50%. Since the expression is 
derived based on the assumption of uncorrelated 
sites, any correlation in the real system will produce 
an entropy that is less than obtained from equation 
(2), i.e. our expression for the entropy is an upper 
bound on the true configurational entropy. An 
overestimate of the configurational entropy will, 
therefore, tend to produce an underestimate of the 
true interfacial segregation. This, however, is not 
observed in the present calculations in the Cu-Ni 
system. Therefore, we conclude that the mean-field 
expression for the potential energy [equations (6-8)] 
is the dominant source of error in this method. 
Nonetheless, the simple point approximation for the 
entropy is known to produce problems when studying 
the details of configurational entropy driven phase 
transformations. 

The errors in the mean-field expression for the 
energy are difficult to determine precisely. The gen- 
eral effect is, however, easily understood. Suppose 
that we have a system that contains, on average, 50% 
of each element, say a and b, that interact with 
pair potentials, 0. The mean-field expression for the 
energy would be 

U = 0.52 (~aa + 0.52 (~bb "3L 2 (0.52) ~b,b. 

Further, suppose that while on average every site has 
equal probability of being occupied by an a or b, 
there is a greater probability for two a atoms to 
occupy adjacent sites than an a and b. In this 
case, it is clear that the mean-field prediction for the 
energy would be in error; the appropriate prefactor 
of Ou would be greater than the 0.52 in the above 
expression. Neglecting this correlation will create 
an error in the average potential energy which 
increases with increasing correlation. It is important 
to recognize that the type of correlation that causes 
this type of error is a temporal-spatial correlation. 
For example, if a given site is always occupied by an 
a atom and its neighbor site is always occupied by a 

b atom, this spatial correlation does not produce 
an error in the energy. Therefore, there is no inherent 
problem in using this approach to simulate an 
ordered alloy. At this stage, it remains unclear how 
to improve upon the simple mean-field picture of an 
atom while still retaining the simplicity necessary for 
efficient atomistic simulations. 

The free energy simulation method, which we 
have described for binary alloys, may be extended 
to account for an arbitrary number of constituents. 
This may be accomplished by extending the "effective 
atom" concept to include all constituents. The com- 
position of  each atom will then be expressed in n-I 
variables, where n is the number of constituents. The 
configurational entropy term [equation (2)] can be 
generalized by summing the c~(i) In[c~(i)] terms 
over all l~<i~<N atoms and over all l ~ < ~ < n  
constituents. In this case, the grand potential mini- 
mization requires the specification of n - l chemical 
potentials and is performed over 3 ( n -  l ) ( N -  l) 
variables, accounting for the composition of each 
"atom". This approach may also be extended to 
include vacancies as one of the constituents. Minimiz- 
ation of the grand potential for the crystal with 
respect to "concentration" should yield the equi- 
librium vacancy concentration. However, since 
vacancy concentrations are so small this presents 
numerical difficulties. Work is currently underway to 
incorporate vacancies as a constituent. 

The present simulation approach has two major 
advantages over competing simulation methods. 
They are: (1) the ability to provide thermodynamic 
data (e.g. free energy and entropy) and (2) compu- 
tational efficiency. While the present simulations were 
performed on inexpensive computer workstations, 
the Monte Carlo simulation, with which these results 
were compared, required substantial quantities of 
supercomputer time. Efficient computation is not 
simply an economic issue; efficient methods are re- 
quired to study trends in properties instead of iso- 
lated examples. Since the present simulation 
approach is based upon a form of direct free energy 
minimization, the free energy, and hence all other 
thermodynamic properties, are obtained as a simple 
by-product of determining the equilibrium atomic 
arrangements. Free energy may also be obtained 
from Monte Carlo simulations. Unfortunately, many 
Monte Carlo simulations must be performed in order 
to obtain the free energy for just one set of con- 
ditions. In fact, due to the extreme computational 
demand required to obtain alloy free energies from 
Monte Carlo data, we know of no cases in which the 
Monte Carlo method was employed to calculate the 
thermodynamic properties (free energies, etc.) of any 
alloy system. 

In the present study, we have focussed on the 
application of our free energy simulation methods to 
grain boundaries and surfaces in alloys. Clearly, this 
method is much more general than the applications 
presented herein suggest. This method may be era- 
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ployed with even greater efficiency to crystal proper- 
ties, such as: lattice parameter vs composition and 
temperature, elastic constants vs composition and 
temperature, coefficient of thermal expansion vs com- 
position and temperature, free energy (and those 
thermodynamic functions derivable from it) vs com- 
position and temperature, etc. The application of 
these methods to other defects such as vacancies, 
stacking faults, dislocations, anti-phase boundaries, 
substitutional atoms, etc. represent straight-forward 
extensions of this method. In addition, properties 
such as brittle fracture toughness and diffusivity 
may be estimated based upon the defect properties 
determined with this method. We believe that the 
free energy simulation methods, described above, 
eliminate essentially all of the major difficulties 
inherent in simulating alloy systems. Given this 
conclusion, we believe then that the limiting step in 
obtaining accurate results from alloy simulations 
is the quality and availability of  appropriate inter- 
atomic potentials. 

5. SUMMARY 

We have presented a new, accurate method for 
determining equilibrium segregation to defects in 
solids. This method is based upon a point approxi- 
mation for the configurational entropy, an Einstein 
model for vibrational contributions to the free energy 
and may be employed with any type of description of  
atomic interactions. The equilibrium atomic structure, 
segregation and thermodynamics of a defect in an 
alloy is determined by minimizing the free energy 
with respect to atomic coordinates and composition 
of each site at constant chemical potential. In order 
to test the accuracy of  this approach, we have 
compared our results with accurate Monte Carlo 
determinations and find good overall agreement for 
segregation to free surfaces and grain boundaries in 

Cu-Ni alloys. One of the main advantages this new 
method enjoys over other methods such as Monte 
Carlo, is the efficiency with which the atomic struc- 
ture of a defect, segregation and thermodynamic 
properties can be determined. This efficiency is ob- 
tained in the framework of a very straightforward 
method and with little loss in accuracy. 
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