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Abstract 

Coffey, J.T., R.M. Goodman and P.G. Farrell, New approaches to reduced-complexity 
decoding, Discrete Applied Mathematics 33 (1991) 43-60. 

We examine new approaches to the problem of decoding general linear codes under the strategies 
of full or bounded hard decoding and bounded soft decoding. The objective is to derive enhanced 
new algorithms that take advantage of the major features of existing algorithms to reduce 
decoding complexity. We derive a wide range of results on the complexity of many existing 
algorithms. We suggest a new algorithm for cyclic codes, and show how it exploits all the main 
features of the existing algorithms. Finally, we propose a new approach to the problem of 
bounded soft decoding, and show that its asymptotic complexity is significantly lower than that 
of any other currently known general algorithm. In addition, we give a characterization of the 
weight distribution of the average linear code and thus show that the Gilbert-Varshamov bound 
is tight for virtually all linear codes over any symbol field. 

Much attention has been paid to the important and difficult problem of finding 
decoding algorithms for general linear codes [l-l 81. These algorithms aim to pro- 
vide efficient decoders for medium length (80-200) block codes, with the ability to 
take account of reliability information from the channel. Such decoders can be 
in packet based system or as inner decoders in concatenated coding schemes. In ad- 
dition to the applications to communications, the analysis of general decoding 
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algorithms has an application to public key cryptography, as it bears directly on the 
security of a proposed public key cryptosystem based on the hardness of the 
decoding problem. 

The attention given to the problem has produced a variety of approaches. Almost 
without exception, however, there has been no attempt to relate proposed new 
algorithms to previous work in the field, and little attempt to provide rigorous and 
complete results on the compiexi+y of the algorithms. In this paper we aim to remedy 
this omission in a number of ways. We provide accurate and complete analyses of 
the complexities of many existing algorithms. We propose a decoding algorithm for 
cyclic codes which exploits all the main features of current approaches, and suggest 
an avenue for generalizing the procedure to all linear codes. Finally, we propose a 
new algorithm applicable specifically to the (most important) case of bounded soft 
decision decoding. We prove that this combined algorithm has a complexity 
significantly less than that of any previously proposed algorithm. 

In Section 2, we introduce some decoding terminology and discuss the practicality 
and applications of these general algorithms. In Section 3, we give rigorous and 
mostly complete analysis of the complexity of various current approaches. Many of 
the results are new, such as the analysis of covering polynomials, virtually all the 
extensions to the cases of bounded soft decoding and decoding over nonbinary sym- 
bol fields, and the determination of the weight distribution of the average linear 
code. Other results are formalizations of existing estimates. The analysis is 
straightforward; the goal once again is to formalize and compare the results so that 
combined algorithms can be formed. In Section 4, we propose an algorithm for 
cyclic codes based on the process of continued division. We suggest an extension 
(without asymptotic analysis of complexity, however) to general linear codes. In 
Section 5, we propose a new algorithm for bounded soft decision decoding and show 
that it has significantly lower complexity than any other known algorithm for vir- 
tually all codes. 

irst, we specify the terminology to be used throughout the paper in discussing 
decoding strategies. Bounded hard distance decoding involves decoding the 

received word to the nearest codeword, provided the codeword is at distance no 
greater than L Complete hard decision decoding involves decoding every received 
word to a nearest codeword. In bounded soft decoding, we assume that the receiver 
specifies the received word as a collection of n real numbers ri. The soft distance 
between words c C and r=(ro, . . ..rn_.) is defined to be COsi<,*_l Ici-ril. Chase 

is equivalent to maximum likelihood decoding over the additive 
oise channel, although it is not necessarily optimal for general 

ed soft distance is defined to be the decoding 
the received word is decoded to the nearest co 



New approaches to reduced-complexity decoding 45 

that the codeword is at soft distance no more than t. This strategy has a performance 
close to that of maximum likelihood decoding [8]. 

The decoding problem has long been known to be difficult. The complete hard 
decision decoding problem has been shown lo be NP-complete [5], which “strongly 

suggests, but does not rigorously imply that no polynomial time algorithm exists for 
the procedure”. Although such results do not exist for the bounded hard and 
bounded soft decision problems, it is widely believed that there is no polynomial 
time decoding algorithm for those cases either. As an exponential algorithm is usual- 
ly taken to be impractical, it is necessary to give some justification for the investiga- 
tion of such algorithms. 

Our justification is one commonly used in such cases: we are interested in solving 
relatively short instances of the problem - we aim to produce decoders for medium 
length block codes (up to n =200). The trivial algorithms of searching through all 
codewords or through all syndromes have complexities 2”R and 2”” - RJ respective- 
ly, an impractical proposition unless the block length of the code is extremely short - 
n = 30. However, an algorithm with complexity 2nR’“‘, while still exponential, 
should in theory be practicable for codes m times as long. We demonstrate later that 
it is possible to achieve at least m = 5 for bounded soft decoding and m =9 for 
bounded hard decision decoding, for rate l/2 codes in each case; thus codes of much 
higher lengths can in principle be decoded. 

Furthermore, in coding we are concerned primarily with the decoder error prob- 
ability, and this declines exponentially with increasing block length. This suggests 
that if the complexity rises at a slower rate than the error probability declines, then 
decoding is a practical proposition. The situation is exactly the same as for Viterbi 
decoding of convolutional codes. The algorithm is exponential in the constraint 
length of the code, which limits the possible constraint lengths that can be used. On 
the other hand, significant coding gains are achievable with the short constraint 
length codes used. 

Because we are working with exponential algorithms, it is more convenient to 
measure complexity by the logarithm of the complexity. Given a decoding algorithm 
of complexity M(C), we define the complexity coefficient F(R) to be 
(l/n) log,(M(C)), i.e., M(C) = q’1FfR)o 

These algorithms will also be applicable to the McEliece public key CI yptosystem 
[28]. For parameters n, k, and t, the cryptosystem has as private key a k X n 
generator matrix G’ for a t-error-correcting Goppa code, an n X n permutation 
matrix P, and a k x k nonsingular matrix S. The public key is the k x n matrix 
G = SG’P. The messages are binary words of length k. To encrypt a message m, we 
form c = mG + e, where e is a randomly chosen word of length n ad \:jeight at most 
t. To decode, we form c’= cPp’, apply the algebraic decoding algorithm for the 
Goppa code to find m’ such that d(m’G’, C’)I t, and then we have m = MS-‘. “b 

crack the system given only the public key, we apparently have to use a ~r~~~~ 
capable of bounded hard distance decoding for any linear code; thtis the security 
of the cryptosystem depends on the complexity of these algorithms. 
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3. Information set and progressive approaches 

We examine a number of approaches of two distinct families. This is not an ex- 
haustive survey of general decoding algorithms -- for example, we omit any discus- 
sion of threshold and majority logic decoding [25]. Instead, we concentrate on 
determining the exact complexity of the various procedures for bounded hard or 
soft decision and complete hard decision decoding. 

We state, without proof, two results wh!ch will be useful later. The first is from 
our [ 111. The second is a recent result of Blinovskii [6]. We follow with an impor- 
tant, and to our knowledge previously unproven result on the weight distribution 
of the average linear code. 

(1) [ll] For any fixed R and a satisfying O<a< 1, OCR< 1, and for all suffi- 
ciently large values of n, virtually all linear (n, LnRJ> codes over any symbol field 
contain no LnR]-tuple with fewer than LnR(1 -cx)J independent symbols. 

(2) [6] The covering radius Q of virtually every linear code over any symbolfield 
satisfies Q = nHi’( 1 -R) + o(n), where H4(x) = -xlog,x-(1-x)log,(l-x)+logJq-I) 
is the q-ary entropy function. 

Some of the results on complexity require a knowledge of the weight distribution 
of the average linear code; computation of the complexity of bounded hard and soft 
decision decoding algorithms require a knowledge of the average distance of linear 
codes. The problem of the average distance of binary linear codes has been exam- 
ined many times. Koshelev [21), Pierce [30] and Kozlov [22] have shown that the 
Gilbert-Varshamov bound is exact for the average binary linear code. Our proof is 
very much simpler and holds over all symbol fields. It is possible to give a simple 
estimate of the number of codewords of a given weight in the average linear code: 
we have (1:) binary words of weight w. The code contains 2k of the 2n binary 
words of length n. Thus a reasonable approximation is that there are (c)2-‘n-k) 
codewords of weight w in the average code. The following result formalizes this. 

heocm 3.1, For any R with O< RC 1 and any symbol field GF(q), the fraction 
of linear (n, nR) codes over GF(q) satisfying 

A(w) = Lq I?[&,( w/n) - (I -- R)] 4” O(lV) 
1 

for all w, 0 < w I n is at least 1 - qwa2 fi + O(‘Og ‘0 for some constant a. The minimum 
distance of virtually all linear (n, nR) codes over GF(q) thus satisfies d = 
H,-‘(1-R)+o(n). 

roof. Assume that the kxn generator matrix is chosen at random from the 
uniform distribution (possibly resulting in a matrix with rank less than k). For a 

to be the random variable denoting the number of nonzero 
codewords of we 1 combinations of the k rows if at least one 

- 1 be a random variable taking the value 1 if 
ination gives a codeword of weight w, and taking the value 0 otherwise. 
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Then X= Ci Xi, SO 

E(X)= C EXi=(qk-l) 
i 

((;I(;; 1’“). 

Thus EX=q~[H,(w/n)-(l-R)l+O(logn). F or the variance of X, we have a2(X)= 
E(X’)-E2(X)=E(X)+(ECi Xi)(Ecj+i Xj)-E2(X)<EX. NOW from Chebyshev’s 
inequality, Pr(lX-flJ I t)Q?it2, so 

Pr([X/p-lIZ$) ra2/(/f&2<(&82)-1. 

Setting /I = q”@ gives the required result. Thus the fraction of codes which do not 
satisfy the average weight condition for a given weight is vanishingly small. The 
fraction of codes that do not satisfy the average weight condition for Some w is at 
most n times greater, and is hence also small. The probability that the generator 
matrix is of rank k is lower bounded by the probability that a k x k matrix over 
GF(q) is nonsingular, which is ni”=-,’ (1 - qmfkei)) 143. This is lowest for q = 2, when 
it converges to 0.288. The set of codes which do not have the average weight 
distribution must therefore also be a vanishingly small fraction of the codes with 
rank exactly k. 0 

3.1. Information set a&orithms 

We use the term information set algorithm to denote algorithms that work by ex- 
ploiting thd redundancy of the code. In an (n,k) linear code, if we know k linearly 
independent symbols from a codeword, we can reconstruct the codeword. Thus if 
the received vector contains no errors in the k linearly independent symbols (the “in- 
formation set”), we can reconstruct the codeword. If the received vector contains 
no errors in the information set, any error pattern in the parity symbols can be cor- 
rected. This is where the procedure gains its efficiency: one basic operation (re- 
encoding) is sufficient to correct many error patterns. Of course, if there are errors 
in the information set, but we know or guess the error values, the same principle 
applies. We will exploit this fact in two decoding algorithms. 

An interesting result is given by Mandelbaum [27]. 

Lemma (Mandelbaum). For any linear code C and any coset leader or joint coset 
leader w of C, there is at Ieast one information set in C that is disjoint from w. Thus 
a pure information set algorithm is always sufficient to achieve complete minimum 
distance decoding. 

. Suppose the complement of the support of w contains fewer than k indepen- 
dent symbols. Then there is a nonzero codeword c with all these independen 
bols 0. Then c must be 0 on all symbols not in the support of w, i.e., supp(c) c 
supp(w). Therefore w + ac has weight less than w for appropriate constant cy, con- 
tradicting the assumption that w is a coset leader. 0 
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Despite the great interest in algorithms based on the information set idea [I-l 81, 
no precise estimates of the decoding complexity have been available. We examine 
two algorithms based on this approach: systematic coset search and the covering 
polynomials algorithm. We have examined a third algorithm based on the approach 
in [I 11; we report the results here. 

3.2. Systematic coset search 

Systematic coset search, suggested by Montgomery et al. 1291 and by Levitin [ 181, 
involves taking one information set and searching through all possible patterns of 
errors in that set. If we can guess the pattern of errors in the information set, we 
can recover the error pattern from the re-encoding argument above. We have 

eorem 3.2. The complexity coefficient for complete hard decision decoding 
using the systematic coset search algorithm is 

min(R, R&,(H; * (I - R)/R)). 

This is always less than or equal to min(R, 1 - R). 
The complexity coefficient for bounded soft decision decoding is 

min(R, RH2(Hz?(l - R)/R)). 

The complexity coefficient for bounded hard decision decoding is 

min(R, RHJHi’(l- R)/2R)). 

roof. The maximum number of errors tP +.n.. Afie81r ; laL bau ubbuL n a correctable error pattern 
is the covering radius Q of the code. Thus in searching through all patterns of errors 
in the information set, it is sufficient to search for all patterns of weight Q or less. 
Using Blinovskii’s result, cited above, we have Q = nH,-‘( 1 - R) + o(n) for virtually 
all linear codes over M(q). If this number is less than k, we achieve some reduction 
in decoding complexity. We must search through Ci=Q (:)(q - 1)’ instead of qk 
possible error patterns. Using (c)(q - 1)” = exp,(nH&) + o(n)), we have 

(lin) lOg,(Ci<y ’ ($)(q - 1)‘) = RHJHi'(1 - R)/R) if &/& (q - 1)/q. Note that by 
the convexity-of the entropy function, we have H,(xy)>xH,( y) if OCX, y< 1. Thus 

RHJH;‘(l- R)/R)< R(L’R)H,(H;‘(l -R))= 1 -R. 

In bounded soft d--‘-: tLlalon decoding, the maximum hard weight error pattern has 
weight 21= d - 1. Using Theorem 3.1 and Blinovskii’s result on covering radius, 
2t =Q, so bounded soft decision decoding has the same complexity coefficient as 
complete hard decision decoding. A similar argument holds for the bounded hard 
decision case, using Theorem 3.1 to show that t = n ‘( 1 - R)/2 for virtually all 
linear codes over any symbol field. Cl 
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Fig. 1. Comparison of complexity of various schemes. 
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The function for complete hard decoding (also obtained by Levitin) is plotted in 
Fig. 1. The bounded hard and soft decision complexity coefficients are new. 

3.3. Covering polynomials 

Another method in the information set family is to take more than one informa- 
tion set, and attempt to recover the pattern of errors in at least one of the informa- 
tion sets. In each information set I, we search through candidate error patterns (the 
covering polynomials) of up to an appropriate weight w. We correct these 
postulated errors and use the re-encoding process. If there are in fact w or fewer 
errors in one of the information sets, the re-encoding principle implies that the entire 
error pattern will be found. The algorithm was first suggested for cyclic codes [20], 
with the information sets taken to be the n sets of k consecutive symbols; we follow 
this convention. 

Before computing the complexity coefficient for the procedure, we consider the 
situation if a selected set of k bits is not an information set, i.e., if the column rank 
of the corresponding k columns of the generator matrix is k-c for some positive 
constant c. We can modify the algorithm to take account o this, at the cost of an 
increase in complexity, as follows. We take k - c linearly independent columns from 
I and c additional columns from outside I, so that the resulting set of k columns 
is an information set I’. Now for each postulated error pattern in I, we postulate 
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every possible error pattern in I’ - I. If the postulated error pattern in I is the actual 

error pattern, then because of the exhaustive search through 1’4, we will find the 
actual error pattern in I’. Re-encoding from this information set will then give the 
error pattern. This procedure multiplies the complexity of the algorithm by qc, so 
it is practical only for small c. 

heorem 3.3. For virtually ar’r’ linear (n, nR) codes over GF(qj3 the complexity coef- 
ficient for complete hard decision decoding using the covering polynomial algorithm 
is R(1- R). For bounded soft decision decoding, the complexity coefficient is also 
R( I- R). For bounded hard decision decoding, the complexity coefficient is 
RHJH;’ (1 - R)/2). 

roof. From the first result quoted in Section 3, the fraction of codes with any set 
of k symbols of rank less than k( 1 - a) tends to zero for any a> 0. Thus we can take 
as information sets the n sets of k (cyclically) consecutive symbols, find an informa- 
tion set I’ containing as many symbols of I as possible, and perform an exhaustive 
search through I’- fi the result shows that the increase in complexity caused by 
using this procedure will be subexponential. 

We need the value of w, the maximum weight information set error pattern that 
needs to be tried. There are no more than Q errors in any correctable pattern, and 
the n information sets have on average &k/n) errors each. Thus there is at least one 
information set with no more than &k/n) errors, and we can set w=eR. The 
number of patterns to be tried for each information set is then Cl._,, (:)(q - 1)’ 
= Z l=eR (“y)(q- l)‘= exp,(A?H&/n) + o(n)). To find the overall complexity, we 
multiply by n (the number of sets) and a subexponential term q’(“) to account for 
the additional exhaustive searches. Using the fact that 8 = nH,-‘(l -R) + o(n) for 
virtually all codes, we have a complexity coefficient of R(l -R) overall. The com- 
plexity coefficient is thus independent of the size Jf the symbol field. For bounded 
soft decision decoding, the same result holds, bet Ause the maximum number of hard 
errors, 2C, is the same for virtually all codes a the covering radius. For bounded 
hard decision decoding, the value of w becomes 1 R = n(KHi’(1 - R)/2 + o(l)), and 
the complexity coefficient is RH,(H; ‘( 1 - R), 2). Cl 

The results for complete hard decision and bounded soft decision - identical for 
q=2- are plotted in Fig. 1. Clearly, the algorithm represents a great improvement 
over both the trivial exhaustive search algorithms and systematic coset search. 

In generalized information set decoding, we seek to find a large enough number 
of sets of k symbols so that at least one of the sets is error free. If a set is not an 
information set, we apply the method used in covering polynomials above. Recent- 
ly, we proved the following results: the details, too long to be given here, can be 
found in [ll]. 

. For virtually all linear (n, k) codes C over GF(q), the complexity 
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M(C) of complete minimum distance decoding using the generalized information 
set decoding algorithm satisfies 

1 
-log,M(C)=H,(H;‘(l-R))-(I-R)H 
n 

Bounded distance decoding has, for virtually all codes, a complexity M(C) 
satisfying 

1 
-log,M(C)=H,(H;*(l-R)/2)-(l-R)H 
n 

Bounded soft decision decoding has, for virtually all binary linear codes, a com- 
plexity M(C) satisfying 

1 
-log,M(C)=(l-R) 1-H 
n 

[ 2 ( HFll(IRp>l + o(1). 

The functions for complete hard decoding and bounded soft decoding are iden- 
tical for q = 2. They are plotted in Fig. 1. Clearly, they represent a huge improve- 
ment over exhaustive search procedures for any fixed rate. For R = l/2, generalized 
information set decoding requires, for complete decoding, less than the fourth root 
of the number of computations required by a search through all codewords; while 
it requires less than the ninth root of the number of computations for bounded hard 
decoding. 

3.4. Progressive algorithms 

The basis of this family of algorithms is the following simple observation: it is 
e;isy in general to locate a word of fairly low weight in a coset. If we can do this, 
the difference between the low weight word we have and the coset leader will be a 
codeword of low weight. The average code has a weight distribution approximately 
equal to a scaled binomial distribution, the low weight words represent the “tails” 
of the distribution, and so there are relatively few low weight codewords. Our 
strategy is thus to find a. low weight word in the coset, add in turn all sufficiently 
low weight codewords, and take the lowest weight sum as the coset leader. This is 
an exhaustive search of a set containing relatively few codewords. 

3.4. A Zero neighbors algorithm 
One version of this is the recently proposed zero neighbors algorithm [23]. To 

summarize this algorithm briefly, the set of codewords used is that required to pro- 
vide a minimal cover of the zero domain frame, which is the set of n-tuples that are 
not coset leaders, but are at distance 1 from a coset leader. Levitin and Hartmann 
1231 show that an upper bound on the weight of a codeword in the minimal set is 
about twice the covering radius. Thus an upper bound on the complexity is give 
by the number of codewords of weight 2~ or less, where Q is the covering radius. 
Thus 
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Theorem 3.5. Complete hard decision decoding using the zero neighbors algorithm 
has, for virtually all linear codes, a complexity of 

q"[H4(2~~'(l-R))-(I-R)+O(l)l . 

Bounded soft decision decoding has, for virtually all binary linear codes, a complex- 
ity of ~n[H,(2H,-'(l-R))-(l-R)+0(1)] . 

roof. The complete hard decision result f~Jlows immediately from Theorem 3.1. 
The bounded soft decision result follows from the fact that the hard decision coset 
leader will, from Blinovskii’s result quoted above, have weight no more than 
Q = nHi’( 1 - R) + o(n). The least soft weight error pattern cannot have more than 
2t hard errors if it is within the bounded soft distance, and from Theorem 3.1, we 
have 2t = nHi’(l - R) + o(n) = Q for virtually all binary linear codes. Then the best 
hard decision estimate of the error pattern and the best soft decision estimate differ 
by a codeword of weight at most 2~. Thus after using the zero neighbors algorithm 
to find the best hard decision estimate, we can add all codewords of weight 2~ or 
less to the estimate and find the best soft decision estimate. But the set of zero 
neighbors is already assumed to contain all codewords of weight up to 2~, so the 
second part of the algorithm results in a doubling of complexity, making no dif- 
ference to the form of the result. cl 

The result for complete hard decision decoding was given in the original paper 
by Levitin and Hartmann; the result on the complexity for bounded soft decoding 
is new to this paper. The function is plotted in Fig. 1 for the binary case. The com- 
plexity required is much less than that for exhaustive search (approximately the 
square root of the number of codewords at rate l/2), though considerably more 
than that for generalized information set decoding. 

3.42. Projecting set decoding 
An algorithm with some points in common with the zero neighbors algorithm has 

been suggested (for the soft decision case) by Hwang [19]. Again, we want to com- 
pute a minimal set of codewords so that, given a word in the coset, we can add 
codewords from the set repeatedly, accepting a sum if it results in a lower weight 
word, and declaring that the word is a coset leader when no further weight reduction 
occurs by adding any word of the set. The pr+lL’ YJbLlng set is a set of low weight 
codewords: the set contains ali codewords of weight 2d - 1 or less, and for binary 
codes we need have no word of weight greater than n 4 in the minimal set [19]. 
The second observation follows because any codeword of weight >n - k can be ex- 
pressed as the sum of two disjoint codewords. If the single codeword gave a weight 
reduction when added to the received word, at least one of its constituc ?t codewords 
must do so also. Thus we use a subset of the number of codewords, and have a lower 
complexity than a full search through the codewords. We have (once again a new 
result) 
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Theorem 3.6. IVie complexity coefficient f (R) for complete (maximum likelihood) 
soft decision decoding using the projecting set algorithm satisfies, for virtually all 
binary linear codes, 

H2(2H~‘(l-R))-(l-R)=fL(R)~f(R)~f”(R)=maxH,(l-R’)-(l-R’). 
R’rR 

The upper bound is higher than min(R, 1 -R). 

Proof. Every word of weight 2d - 1 or less is in the set, and from Theorem 
3.1, d=nHz’(l-R)+o(n). Thus, again from Theorem 3.1, Ci~Zd-1 A(i)= 
2n[H,(2H;“(l-R))-(l-R)l. Th e upper bound follows directly from Theorem 3.1. If 
R c l/2, then Theorem 3.1 shows that an asymptotically insignificant prqortion of 
the codewords have weight greater than n-k, so the set includes almost every 
codeword and f”(R) = R. If R> l/2, we have a significant gain over a search 
through all codewords, but the complexity function, H2( 1 -R) - (1 - R) is always 
greater than 1 -R over this range, and thus the algorithm is inferior to the trellis 
search proposed by Wolf [34], for which the complexity coefficient is 1 - R. q 

Thus the algorithm appears to have no value in the asymptotic sense, although 
it does have the features that it is valid for complete soft decision decoding, and pro- 
vides an upper bound on the weight of codewords to be included in the set of zero 
neighbors. 

4. Continued division algorithms 

The basic procedure of continued division, defined below, was first suggested as 
an approach to the decoding problem by Farrell [15] on empirical grounds. In this 
paper, we provide original analysis of the effect of the procedure, and use it as an 
integral part of a new decoding algorithm. We show that the proposed algorithm 
is unique in that it exploits features of both information set decoding algorithms and 
progressive algorithms. It also offers a way of reducing the space complexity of a 
generalized algorithm at the expense of slightly increased time complexity; this 
tradeoff is not available with the approaches of Section 3. We discuss the algorithm 
for the case of cyclic codes; this clarifies the ideas and simplifies the analysis. We 
show how the procedure may be generalized to linear codes. 

The basic procedure is as follows. We have a received word r(x), and a dividing 
codeword c(x). Dividing r(x) by c(x) will produce the remainder r(x) mod C(X). By 

continued division, we mean the process of producing x%(x) mod c(x) for OS irA4 
for some appropriate M. This corresponds to d division with a 

large number of zeros appended to the right of r(x). Alternatively, we can view the 
process as involving continued subtractions of cyclic shifts of c(x) that may ‘“wrap 
around” the end of the word. Table 1 gives an example of the procedure for the 
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Table 1. Continued division. 

r(x) 
g(x) 

1010101l0100l0001110001 

101011100101 

0 0 iI 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 

!~1011100011 

w 00000000000010010110001 

1 10101110001 

100000000000001 1000000 

Goiay code. Starting with the syndrome S(x) =~(x) mod g(x), the ith remainder in 
the process is x ii ‘(A=(x) mod c(x j) mod (x” - i 1. 

As a first step towards the analysis, we consider division by g(x). This is exactly 
equivalent to error trapping [25], i.e., information set decoding in which the infor- 
mation sets are the n sets of k consecutive bits (taken cyclically). This is sufficient 
to detect all error patterns of burst length up to n - k: let T(X) = i(x)g(x) +x6?(x), 
with deg e(x) c n - k. Then the (n -j)th remainder in the continued division process 
is xj(x”e(x) mod g(x)) mod(x” - 1). But g(x) 1 xn - 1 and deg g(x) > deg e(x), so 
x”e(x) mod g(x) = e(x), and the (n - j)th remainder is xje(x), the error pattern. 

In dividing by a codeword d(x) = i(x)g(x) other than the generator, we distinguish 
between the two cases d(x) 1 xn - 1 and d(x) ix’ - 1. If cl(x) 1 P - 1, then d(x) is 
itself the generator of a cyclic code Cs of length n; this cases the analysis con- 
siderably, and we concentrate on this case. Every codeword in Cs is of the form 
a(x)d(x) =a(x)i(x)g(x) E C, so Cs is a subcode of C. Continued division by d(x) 

thus corresponds to error trapping in fhe subcode. If the transmitted codeword 
c(x) E C is also in Cs, then the received word can be written as T(X)= 
b(~)d(x) + e(x). In this case, if the error pattern has burst length less than the redun- 
dancy of the subcode, we achieve correction. The redundancy of the subcode is 
deg d(x)=n - k+deg i(x). This is higher than the redundancy of the code C, and 
so many more error patterns can be trapped. In general, however, the transmitted 
codeword does not belong to the subcode. In this case, the received word is of the 
form r(x) = c(x) + e(x) = c,(x) + e,(x), where c,(x) is the nearest codeword of C,* to 
r(x), and e,(x) is in the same coset as e(x)* We refer to es(x) as the subcode coset 
leader. Three situations are possible when we begin division of T(X) by d(x): 

(i) T(X) is a subcode coset leader; 
(ii) r(x) is not a subcode coset leader, and all words of lower weight in the same 

subcode coset have burst length > n - k + deg i(x); 
(iii) r(x) is not a subcode coset leader, and at least one word of lower weight in 

the same coset has burst length in - k + deg i(x). 

the first case, no reduction in weight is possiDle on division by d(x). In the second 
only achieve weight reduction in the exceptional case that the received 
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word is of the form x’a(x)d(x) + w(x), where wt(w(x))< wt(r(x)) and 
len w(x) c n - k+ deg i(x) + 6. In the third case, a word of lower weight in the coset 
is found. This suggests the following algorithm. 

Conttinrred division algorithm 
(I) Select M codewords Ci(X), O%i<M, with Ci(X) 1 xn - 1. 
(2) Construct the table T of adjustment codewords (see below). 
(3) Given received word r(x), perform continued division for two cycles by each 

ci (x)* 
(4) Let w(x) be the lowest weight word resulting from step (2). If 

wt(w(x))< wt(r(x)), let r(x) = w(x) and go to step (3); otherwise, go to step (5). 
(5) For each codeword a(x) in T, compute a(x) + w(x). 
(6) Take the lowest weight such word as the coset leader. 

The basis for the algorithm is the assumption that case (ii) is rare, and that cases 
(i) and (iii) dominate. Then if there is a word w(x) in the coset such that r(x) - W(X) 

is contained in any of the subcodes, we find w(x) through the continued division 
process. We eventually finish with a w(x) which is a coset leader in each of the sub- 
codes. The table of “adjustment” codewords Tconsists of all those codewords that 
are representable as the difference between a word that is a coset leader in all the 
subcodes and its coset leader in the code C. As in the case of the zero neighbors 
algorithm, only codewords of relatively low weight will be required. We will not, 
however, have to store any such low weight codewords that are contained in any 
one of the cyclic subcodes. We thus achieve a form of compression of the required 
decoding codewords: if many zero neighbors lie in a single subcode, then instead 
of having to store them all explicitly, we can store the generator of the subcode only. 

To generalize the process to any linear code C, we select an information set of 
C, and a subset of the information set. The set of codewords whose nonzero infor- 
mation bits are confined to the subset of the information set define a subcode Cs 
of the code. Given a received word r(x), we subtract the codeword in C’s which has 
the same pattern in the subset as r(x). As in the case of cyclic codes, this is sufficient 
to recover the error pattern if the transmitted codeword belongs to the subcode and 
the error pattern is disjoint from the subset. Given any received word, a lower 
weight word in the same coset will be found if the codeword equal to the difference 
between the two words is in the subcode, and the lower weight word is disjoint from 
the subset. We now draw a distinction between two types of errors: ones turned to 
zeros (type I) and zeros turned to ones (type II). A necessary condition for decoding 
is that no type I errors are located in the information set: if a type I error is in the 
subset, then the error pattern is not trapped even in the subcode, while if it is in the 
remainder of the information set, the difference codeword cannot be in the subcode. 
However, decoding is still possible even if type II errors are in the informatio 
but not the subset. The asymptotic complexity of the procedure will be determined 
by the manner of selection of the information sets and subsets. The above argument 
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indicates that the best strategy is to select the information sets so that the ones of 
the received word are more likely to be in an information set than the zeros. Thus 
tht: type I errors are more likely to be confined to the parity check bits. 

5. An improved combined algorithm for bounded soft decoding 

Recall that in bounded soft decision decoding, we are concerned with getting the 
nearest codeword provided that the soft distance is less than t. This means that the 
total number of hard errors cannot be greater than 2. The complexity coefficients 
obtained in Section 3 above assumed that this many hard errors had been made. 
However, if 2t hard errors have been made and the soft distance is still not greater 
than t, then the received vector must have 2t components with soft value l/2 (i.e., 
erasures) and n -2t components that are 0 or 1. If we know that there are exactly 
2t errors, then we know that all the erasures represent hard errors, for otherwise the 
soft distance is greater than t. Thus the error pattern is easy to compute. If the 
number of errors is much lower than 2t, the information set decoding algorithm will 
perform well. If, on the other hand, the number of errors e is high (close to 2t) we 
can perform a sequential search for the error pattern through the words with hard 
weight e that are closest in the soft weight sense to :he received word, To do this, 
we order the received bits in increasing order of reliability, and define a partial 
ordering on the e-tuples: let the word u = (aO, . . . , a, _ 1) have support {a*, . . . , ae} and 
define { 6’ , . . . , be} similarly. Then 0% b if and only if a’= b’ for all i. A full order- 
ing is given by the rule a > b if and only if ai< bi and ~j = bj for j< i. Clearly, if 
(soft) dist(r, a)> t and a,> b, then dist(r, 6) > t. Using this ordering, and beginning 
with leOnme, we examine dist(r, a) for each a in turn. If dist(r, a) > t, we need not ex- 
amine any b such that a%b. 

The following is our proposed new strategy: at stepj of the algorithm, we assume 
that there are j hard errors. If j is less than some appropriate threshold, we try to 
decode using information sets. If it is higher than the threshold, we try the lex- 
icographic search outlined above. The overall complexity coefficient will be deter- 
mined by the value of the threshold. To find the optimum setting, we determine an 
upper bound on the number of operations in the lexicographic search as a function 
of j, and find the point at which this equals the complexity of an information set 
algorithm that seeks to decode j hard errors. 

We have the following result: 

eore The combined algorithm of information set decoding and lex- 
icographic s;arch achieves bounded soft distance decodi g with, for virtually all 

binary linear codes, a complexity coefficient of at most 

where 5 is the solution to the equation 
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Hz(r)-(l-R)H2(</(1-R))=2(2~--~)+(1-4~1-2~)H 
2( (1 Y&) 

where s=t/n=H2-‘(I--R)/2. 

We plot this func$on in Fig. 2. Clearly, it represents a significant improvement 
on the information set decoding algorithm. As it is an upper bound, further im- 
provement may be possible using this approach. 

Proof. To prove the result, we bound the maximum distance two words can be 
apart if they both need to be examined in the systematic search. Assume that we 
compute the reliability of each received bit (the soft distance from the nearer of 0 
and 1) and arrange the bits in increasing order of reliability. Take any two words 
of weightj that are within soft distance t of the received word. Label the bits where 
both words are one as El, the bits where both are zero as Cl, and the bits in which 
they differ as D1 and D2 (where D, is the set of locations which have a one in the 
first word and a zero in the second, etc.). We have 

E (l-ai)+ C (l-ai)+ C ai+ C ai<t 
DI D2 Cl 

and 
-Qi)+ C a;+ C (1-tX~)-+ C q<t. 

DI D2 Cl 
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Fig. 2. Complexity for bounded hard and soft decoding. 
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Summing these, we have 

2 C (l-Ctij+m ’ C OJiC2t 
El Cl 

where m is the distance between the two sequences. AS 1- aiZ l/2, we must have 
m + )E, I< 2t; now IE, 12 j-m/2, so m 5 2(2t - j). Note that if j is close to 2t, we 
must have m close to zero. We need to find the maximum number of words of 
weight j of distance no more than m apart. This amounts to trying to maximize the 
number of codewords in a constant weight anticode. We find an upper bound by 
determining the maximum number of words of any weight that are all within 
distance m of two words that are distance m apart. Without loss of general:. y, let 
one of the words be the zero codeword. The second word then has weight m. We 
seek the maximum number of words of weight m or less that are distance no more 
than m from the second word. This is given by C, &, (f)(nbm j with m - a+ bs m 

and a + b s m. Thus a 2 b and the complexity is dominated by the term (,$ j( ‘i/y). 
Taking the logarithm o f this and dividing by n gives a complexity coefficient of 
m/n + (I- m/n)H2(m/n)/(2( 1 - m/n))). Substituting m = 2(2t -j) yields the expres- 
sion in the theorem. •J 

Clearly this is an upper bound, so we pose the obvious questions: what is the exact 
solution, and what is the maximum number of codewords in a constant weight an- 
ticode? 

6. Conclusions 

Our motivation is to synthesize some of the various approaches to the general 
decoding problem and to derive accurate measures of complexity for such schemes. 
We give accurate results for many schemes, covering the cases of full and bounded 
hard decision decoding and bounded soft decision decoding, and show that a vast 
improvement over brute force algorithms is possible from many different ap- 
proaches. We propose a decoding algorithm for cyclic codes that takes advantage 
of the main features of both types of algorithm studied, and suggest a generalization 
to ah linear codes. Finally, we propose an algorithm for the case of bounded soft 
decision decoding that is significantly better than any algorithm currently known. 
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