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Abstract-Radiation heat transfer in packed beds of relatively large spherical particles is considered. The 
common practice is to follow the theory of independent scattering as long as C/L > 0.5, where C is the 
average interparticle clearance and 1 the wavelength. The single particle properties are related to the 
radiative properties of the bed by volume averaging. The equation of transfer is then solved by an 
approximate method such as the method of discrete ordinates or the two-flux method. In this study, the 
Monte Carlo method is used to examine the thermal radiative transfer through packed beds of large 
(geometric range) particles. Opaque, semi-transparent and emitting particles are considered. The results 
are compared to the independent theory and to the available experimental results, and they indicate that 
the independent theory fails even when this C/2 criterion is satisfied. The success of independent theory in 
systems with low porosities, noted by previous researchers, is shown to be either a special case existing 
only for a small range of the optical properties or arising due to some unjustifiable assumptions. For the 
same radiative particle properties, the deviation from the independent theory is shown to increase with 

decrease in the porosity. This deviation can be significant even for porosities as high as 0.935. 

1. INTRODUCTION 

RADIATIVE heat transfer in packed and fluidized beds 
can be significant and has attracted considerable inter- 
est in the past two decades. The theory of radiative 
transfer in an absorbing, emitting, and scattering 
medium is sufficiently developed and can be found 
in the standard references [l, 21. The crucial step in 
applying this theory to packed beds is relating the 
properties of the packed bed to the properties of an 
individual particle. To do this, the assumption of inde- 
pendent scattering is introduced, i.e. it is assumed that 
the interaction of the particle with the radiation field 
is not influenced by the presence of neighboring par- 
ticles. This condition is satisfied if the spheres behave 
as point scatterers, i.e. the distance between two par- 
ticles is large as compared to their size. Also, there 
must be no interference between scattered fields. The 
first condition should lead to a limit on the porosity 
while the second condition would limit the minimum 
value of C/L, where C is the average interparticle 
spacing based on a rhombohedral packing (C/d = 
0.9047/( 1-E) U3 - 1). If both these conditions are sat- 
isfied, then the bulk (away from the bouhding sur- 
faces) behavior of the bed can be predicted from the 
equation of radiative transfer, by the theory of inde- 
pendent scattering. 

The limits of the theory of independent scattering 
have been experimentally investigated by Hottel et al. 
f3]. They identified the limits of independent scattering 
as C/1 > 0.4 and C/d > 0.4 (i.e. E > 0.73). For a 5% 
deviation from the independent theory, they rec- 
ommend C/L > 0.49. Brewster [4] also considered 
larger particles (maximum value of E, = 74). His 

results indicated that no dependent effects occur as 
long as C/1 > 0.3, even for a close pack arrangement 
(E = 0.3). It was suggested by Brewster [4] that the 
point scattering assumption is the only artifice necess- 
ary in the derivation of the theory and is not crucial to 
its application or validity. Thereafter, the C/2 criterion 
for the applicability of the theory of independent scat- 
tering was verified by Yamada et al. [5] (C/n > 0.5 for 
5% deviation from the independent theory) and by 
Drolen and Tien [6]. However, Ishimaru and Kuga 
[7] noted dependent effects at much higher values of 
C/L. In sum, the above experiments seem to have 
developed confidence in application of the theory of 
independent scattering in packed beds consisting of 
large particles, where C/L almost always has a value 
much larger than the above-mentioned limit of the 
theory of independent scattering. Thus the approach 
of obtaining the radiative properties of the packed 
beds from the independent properties of an individual 
particle has been applied to packed beds without any 
regard to their porosity [4,6]. However, all the above 
experiments were similar in design and most of these 
experiments used suspensions of small, transparent, 
latex particles. Only in the experiment of Brewster 
was a close packing of large, semi-transparent spheres 
considered. 

Dependent scattering involves two distinct effects. 
The first is the far field interference between the scat- 
tered waves, which has been studied by Cartigny et al. 
[S]. They indicated no observable dependent scat- 
tering effects for c(, > 10. The far field interference 
affects only the scattering characteristics of the 
medium and follows the C/2 criterion. The second is 
the effect of multiple scattering in a representative 



I NOMENCLATURE 

‘4 area. cross section [m’] 
B backscatter fraction for a slab 
C average intcrparticlc cleardncc [nil 
tl diameter [m] 
E fraction of cncrgy carried 
F radiation exchange factor, attenuating 

facto1 
I radiation intensity [W m ‘1 
L depth of the slab [m] 
1. tn. II direction cosines 
1’1 complex refraction index. n - 11, 
11 index of refraction 
;v number of layers in the bed 

P integer that defines the reflected or the 
refracted rays for a transparent sphere 

‘1 heat flux [W m ‘1 
I i-Lay 
s distance travelled [m] 
R radius [m] 
T tcmpcrature [K] 
.I, I‘ 3: coordinate axes [ml. 

Greek symbols 
%, size parameter. 27rK: i. 
1. i maximum allowable displacement of 

sphere centers 
C porosity 
c, emissivity 

‘7, spectral efficiency 
I) polar angle 

0’1 angle between incident and scattcrcd 

beam 
h- index of extinction 
,, wavelength [m] 

!’ cos (I 

5 random number between 0 and 1 

P reflectivity 

0 Stcfan- Boltzmann constant. 
5.6696 x IO ’ W m ’ K ’ 

0,) absorption coefficient [m ‘1 

flT,\ extinction coefficient, (T,+ +n, [ni ‘1 

n\ scattering coefficient [m ’ ! 
5 optical thickness 

9 azimuthal angle [rad] 
@ particle scattering phase function 
,” / scattering albedo. cr.j(n, f ci,) 
Q solid angle [sr]. 

Superscripts 
avcragc value 
directional quantity 

+ forward 
backward. 

Subscripts 

il 

b 
c 
d 
c 
cx 
t 
/ 
ind 
n 
r 
s 
w 

i 
i 

absorption 
blackbody radiation 
center 
diffuse 
elfectivo. emission 
extinction 

fluid phase 
incident 
independent 
normal 
reflected, or radiation / 
solid. or scattering, or specular 
wall 
wavelength dependent 
axial (or longitudinal) component / 

lateral (or transverse) component. I 
! 
! 

Other symbol 

( i volume average 

elementary volume in which the scattering and 
absorption characteristics of the particle are affected 
by the proximity of other particles. This was studied 

for small (Rayleigh) sized particles by Kumar and 

Tien [9]. 
Other researchers have used the Monte Carlo 

method to predict the radiative heat transfer in packed 
beds. Yang ef c’l. [IO] studied radiative transfer 
through a bed of randomly packed, specularly scat- 
tering spheres. Kudo rt cd. [l I] considered diffusely 
scattering particles. Tien and Drolen [12] compared 
the predictions from the various models with existing 
experimental results [ 131 and concluded that the inde- 
pendent theory gives a better prediction than the 
Monte Carlo method. The Monte Carlo method has 
also been criticized because it was believed that it 
could not treat semi-transparent particles. 

The case of absorbing and emitting particles is aiso 
reviewed by Tien and Drolen [I21 and by Vortmeyet 
[l4]. However, the theory of independent scattering 
fails to satisfactorily explain the experimental results 
for this very important case. Most notably, the inde- 
pendent theory cannot explain the effect of particle 
emissivity on the radiative heat transfer. Further dis- 
cussion of radiative heat transfer in porous media can 
be found in ref. [ 151. 

In the present study. radiative transfer in packed 
beds of large (geometric range) size particles is studicci 
using the Monte Carlo method. The far field inler- 
fcrence effects, which follow the <‘!A criterion. arc 
negligible because particles with very large rl will 
ahnost always have a high value of C. The Monte 
Carlo technique has been extended to accommodate 
emitting particles as welt as semi-transparent particles 
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Also, the Monte Carlo simulations over a range of 
porosities are compared to the results obtained from 
the equation of radiative transfer and the deviation 
from the independent theory is shown for smaller 
porosities. Thus, dependent scattering and absorption 
are shown to exist even for infinitely large particles, 
which should fall into the independent range accord- 
ing to the C/i criterion. 

2. CONTINUUM TREATMENT 

The one-dimensional, steady-state, equation of 
radiative transfer for an absorbing, emitting, and scat- 
tering continuum is [if 

2 = (~i.a)MS) - ((baa) + (~a,>VaW 

where Z, is the spectral intensity, S the distance trav- 
elled, a,, and ~~~ the spectral absorbing and scattering 
coefficients, ZAb the blackbody emission, and @,,(pi, p) 
the phase function for scattering from a direction pi 
to a direction p (+u = cos 6). 

The above equation can be written for a packed 
bed of particles. The scattering and absorption 
coefficients and the scattering phase function of the 
medium can either be calculated assuming inde- 
pendent scattering or by modelling the dependent 
effects. This is discussed in detail in the next section. 

2.1. Cnlcutation of radiative properties 
The calculation of the radiative properties may be 

done under the assumption of dependent or inde- 
pendent scattering. Independent scattering is rather 
easy to implement as the radiative properties of a 
single particle can readily be obtained from the Mie 
theory or a simpler asymptotic method, e.g. the geo- 
metric scattering or the Rayleigh scattering A model 
of dependent scattering must consider an assembly of 
particles. At present, short of a Monte Carlo simul- 
ation, no satisfactory model of the dependent scat- 
tering for large particles is available. However, 
according to the currently accepted criterion [12], 
packed beds of large (geometric) sized particles almost 
always lie in the regime of the independent scattering. 
Thus, for packed beds, the theory of independent 
scattering is generally followed and the radiative prop- 
erties of the bed are calculated from the properties of 
the indi~dual particles. 

2.1.1, Properties of an individual particle. The spec- 
tral scattering efficiency qiS is defined as 

J IAS? df2 
4n 

?ns = rrR21ni (2) 

The spectral scattering cross section is defined as 

Aas = wR= (3) 

similarly the spectral absorption efficiency and cross 
section are defined as 

Aa, = qia~R2. (5) 

Finally the extinction efficiency and cross section are 
defined as 

&%X = I?& + %a (6) 

Aiex = A,, + A>.,. (7) 

For large particles (a, > 100) the diffraction is focused 
in a highly forward direction and can thus be 
neglected. Then, the extinction cross section is equal 
to the geometrical cross section, i.e. the extinction 
efficiency is equal to one. The scattering efficiency is 
equal to the hemispherical reflectivity of the sphere 

113. 
The phase function for specular scatterers with con- 

stant reflectivity is isotropic. For diffuse scattering, 
the phase function is given by [I] 

8 
cD(6,) = -(sin 0, -B0 cos 0,) 

371 (8) 

where 

cos B0 = cos 8 cos 0, + sin 0 sin 8, cos (# - +J. 

For transparent particles, the phase function for an 
individual particle can be obtained from the theory of 
geometric optics, by ray tracing, and can be expressed 
in a series of Legendre polynomials. 

2.1.2. Properties of the packed bed. In obtaining the 
properties of a packed bed, the independent theory 
assumes the following : 

l No interference between the scattered waves (far 
field effects). This leads to a limit on the minimum 
value of C/;l. However, most packed beds are made 
up of large particles and can therefore be assumed to 
be above any such limit. 

l Point scattering, i.e. the distance between the par- 
ticles is large compared to their size. Thus a rep- 
resentative elementary volume containing many par- 
ticles can be found in which there is no multiple 
scattering, and each particle scatters as if it were alone. 
Then, this small volume can be treated as a single 
scattering volume. 

l The variation of intensity across this elemental 
volume is not large. 

Then, the radiative properties of the particles can 
be averaged across this small volume by adding their 
scattering (absorbing) cross sections. The total scat- 
tering (absorbing) cross sections divided by this vol- 
ume gives the scattering (absorbing) coefficient. The 
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phase function of the single scattering volume is the 
same as that for a single particle. 

Using the number of the scatterers per unit volume 
N, (particles m ‘) and assuming independent scat- 
tering from each scatterer. the spectral scattering 
coefficient for uniformly distributed. mono-size scat- 

terers is defined as 
and the reflectance R, is given by 

<a,\.> = NJ,,. (9) 

Similarly (a,,) = N,A,,,, and we also have (a,,,) = 

<a,,> + ((r/,3. 
(18) 

The optical thickness of an absorbing and scattering The fundamental assumption upon which the two- 
medium is defined as flux model is based is that of hemispherical isotropy. 

Therefore, for the two-flux model to give acceptable 

5= s (0, +ud) ds*. (10) results, the scattering must be quasi-isotropic, and the 
0 boundary conditions must be diffuse. However, in the 

For a medium of mono-size, large particles case of a non-emitting (in the wavelength range 01 

(n_ = l), the above equation can be simplified to interest) bed, the hemispherical isotropy is destroyed 
by the presence of absorption. The error caused by 

7 = l.5(1 -a).; (11) 
the two-fux assumption increases with increasing 
absorption and can be significant (as will be shown in 

where E is the porosity of the medium. 
Section 5.1). 

It is obvious that the condition of point scattering 
2.2.2. Method of discrete ordinates. The method 

does not, in theory, exist in packed beds. Therefore, 
of discrete ordinates is an extension of the two-flux 

as pointed out by Brewster [4], the application of the 
method in which the number of discrete streams is 

independent theory to packed beds is only justified by 
increased from 2 to 2N. The result of the approxi- 

its successful prediction of experimental results (even 
mation is to reduce the integro-differential equation 

in systems where it is theoretically not valid). 
to a set of coupled, ordinary, linear differential equa- 
tions, that are solved numerically (e.g. Carlson and 

2.2. Methods qj’solution 
Lathrop [16], Fiveland [17], and Kumar et uf. [IS]). 

2.2.1. TWO$LX method. The two-flux approxi- 
The in-scattering (integral) term is approximated by a 

mation involves the assumption that the intensity at 
quadrature, where IL, is the quadrature points between 
_ 

any point can be divided into a forward I: and a 
I and I corresponding to a ZN-order quadrature. 

backward I;- component, Then, assuming no 
and Ap, (solid angle increment) is the corresponding 

emission, the equation of radiative transfer (equation 
quadrature weight. Then, the one-dimensional radi- 

(1)) can be integrated over the forward and the back- 
ative transfer equation for intensity at x and in the 

ward directions to give 
direction /L, becomes 

where 

dI, 
d.\- 

= - (SA, +a/J1, +6;,1: (13) 

(20) 
+ 0) dcos 0, dcos 0 (14) 

A/+ = 2 
I 

where 
52, = 2((r,.,)B, c,, = Xff,,,), and 

<@n>(rG + p,) 

For transmission through a bed subjected to inci- 
dent radiation at one face, the boundary conditions The boundary conditions are 

are 
at .V = 0 

I,’ = I,~, at x=0 (15) 

I;- = 0 (transparent boundary) at x = L. (16) 
I,, = E,IA,, +P,JA 1 +Q,., f ~J,~A,P(, 

,-= I 

The solution for the transmittance T, is i= l,...,M (22) 
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atx=L 

i= -I,...,--M (23) 

where Z,(X) = Z(x, pi), and i = 0 (corresponding to the 
lateral boundaries) has been avoided because of the 
one-dimensional geometry assumed. In the case of 
incident radiation on a transparent boundary, the 
above equation is used with Q = I, pns = 0, and 
pld = 0. The intensity at the boundary, in a direction 
pi, is equal to the intensity of the incident radiation in 
that direction. 

3. MONTE CARLO SIMULATION 

The ray tracing approach has been used for the 
study of radiation in packed beds by Chan and Tien 
[19] who performed ray tracing in a unit cell. Yang et 
al. [lo] applied the Monte Carlo method to a bed of 
randomly packed specular spheres. They evaluated 
the absorption and scattering coefficients of the 
packed bed using the solution of the two-flux equa- 
tions and the results of the Monte Carlo simulations. 
Kudo et al. [l l] considered diffusely reflecting spheres. 
Both Chan and Tien [ 191, and Kudo et al. [l 1] used 
the unit-cell approach. In extending the results for a 
unit-cell to a packed bed, they made the assumption 
of diffuse scattering at each cell face. This is not found 
to be a valid assumption in the present simulations. 

In this study, three different types of particles 
(opaque, transparent, and emitting) and two types 
of arrangements are considered. Periodic boundary 
conditions are applied in the lateral directions to simu- 
late a one-dimensional bed, and the rays are traced 
through the entire depth of the bed. 

3.1. Arrangements 
Two types of arrangements are considered in the 

present study. The first is a bed of randomly packed 
spheres. The bed was generated by the computer pro- 
gram PACKS [ZO] and has been previously used by 
Yang et al. [lo]. The bed of randomly packed spheres 
generated by this method has a porosity of 0.42. 

The second is based on a simple cubic packing. 
The layers however are staggered with respect to each 
other. This can be significant when considering a 
packed bed of particles with large absorption because 
the regular, simple-cubic structure would result in 
some rays being transmitted directly through the 
voids. Also, from a practical standpoint, irregular 
arrangements are more relevant. 

The domain of interest consists of a box with a 
square cross section bounded by x = 0, x = I, z = 0, 
and z = 1 and with depth equal to the depth of the bed. 
The irregular arrangement is achieved by generating 
sphere centers at four corners of the square 
[(O,O)(O,l)(l,O)(l,l)] in the x-z planes at y = 0.5, 
1.5,. . . The centers are then staggered by applying 

the following transformation to all four spheres in the 
layer : 

xc = ~,+0.5(2&- 1) (24) 

z, = z, +0.5(2& - I) (25) 

where 5, and 5, are random numbers between 0 and 
1. This process is carried out for each layer using 
newly generated 5, and 5, for each layer. After tracing 
a small number of rays (say loo), the above process is 
repeated on the original center locations using freshly 
generated random numbers. Spheres of unit diameter 
result in a porosity of 0.476. To get a higher porosity, 
the sphere size can be reduced. In this case, the spheres 
will no longer touch each other. For a slower E, the 
distance between the layer centers for unit diameter 
spheres must be y,, -y,_, = 0.524/(1 --E), where yn 
refers to the y coordinate of the nth layer. Alternate 
layers have a sphere at the square center. The layers 
are staggered by an amount limited by the physical 
constraint that no overlap is allowed. Thus the 
maximum distance by which a layer can be of stagger 
varies from 0.5 for a porosity of 0.476 to 0 for a 
porosity of 0.26. The above two equations must now 
be changed to 

_u, = x, + y(25 - 1) (26) 

z, = z,+r(25-1) (27) 

where y is a function of porosity alone and represents 
the extent to which sphere centers can be displaced 
without overlap. 

Both of the above models are used in conjunction 
with the periodic boundary condition in the x- and z- 
directions. 

3.2. Opaque particles 
A ray is defined by the coordinates of its starting 

point P,(x,, yo, zo) and its direction cosines (1, m, n). 
The ray enters the bed at a random point in the x-z 
plane (forming the lower surface (v = 0)), i.e. 

G-%Y,, zo) = WLO, I%,) (28) 

where W is the lateral dimension of the box being 
used and r, and <, are random numbers between 0 
and 1. The angles 4 and @ are given by 

# = 27c5 (29) 

8 = cos-’ (l--5(1 -cos e,,,)) (30) 

where Q,,,,, is the maximum angle that the incident 
radiation makes with the normal. For diffuse incident 
flux, cos e,,, = 0. The direction cosines of the ray are 

I= sinecos4 (31) 

m = cos e (32) 

n = sin e sin (6. (33) 
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The coordinates of a ray after travelling a length 5’ 
arc given by 

.Y = .Y,, + IS 

J’ = Jo +m.s 

: = Ti, + ns. 

Substituting in the equation of the sphere, 

(x-_\.,)‘+(!:-?.~)~+(=--,_~)~ = R’ 

i.e. a quadratic equation in S is obtained. A 

(34) 

(35) 

(36) 

we have 

(37) 

posilivc 

discriminant indicates that the ray intersects the 
sphere. Equation (37) is solved for all spheres for 
which it has a positive discriminant. The smaller of 
the two solutions obtained gives the actual point ol 
intersection with a sphere. Also, the distance the ray 
travels before it intersects a bounding surface is deter- 
mined. The minimum distance a ray travels before it 
is intercepted by a sphere or a bounding surface is 
then determined. The sphere or the bounding surface 
corresponding to this solution is the surface which 
actually intercepts the ray. 

If the ray is intercepted by the side walls, the periodic 
boundary condition is applied. In case it passes 
through the upper or the lower face, the energy associ- 
ated with the ray is registcrcd as transmission ot 

reflection. If it is intercepted by a sphere, the point of 
intersection is determined and the direction cosines of 
the reflected ray for a specularly scattering sphere arc 
found using the laws of reflection. i.c. 

l The incident ray, the reflected ray and the normal 
to the surface all lie in the same plane. 

l The angle of incidence is equal to the angle of 
reflection. 

If the sphere is assumed to be diffusely scattering, 
then the ray is scattered in a random direction from 
the point of interception under the restriction that the 
ray does not penetrate the sphere. After reflection, the 

energy of the reflected ray is given by E, = pE,. A 
combination of diffuse and specular scattering can 
also be modelled. This can be done by generating a 
random number at every collision and comparing it to 
the ratio of specular scattering to the total scattering. 
Then, the scattering is allowed to take place specularly 
if the random number is less than the fraction 
scattered specularly. Otherwise, the ray is scattered 
diffusely. 

The above process is repeated until the ray passes 
through either the upper or the lower surface. The 
number of rays used for each simulation ranged from 
100 000 to I 000000. Packed beds with lower trans- 
mittance need more rays for the same accuracy. 

3.1. Suni-transparent particles 

Transmitting particles are dealt with by ray tracing 
inside the sphere, following the laws of reflection and 
refraction. The angle that the incident radiation makes 
with the tangent to the surface, i.e. (U,), is calculated. 
Then, the angle of refraction is given by 

cos 0, = I1 cos II,, 
“5 

t? =- 
n, 

(3X) 

Next. the Fresnel coefficients and the refectivity are 

calculated in terms of the angles 0, and 0, (pp. 95 Ii) 1 
of Siegel and Howell [I]). ie. 

Thus, the reflected parts of energy arc pi,j and I_, !, 
The refracted parts are I --p’,, and I -p’, ;. Then, the 
energy carried by the various rays is [II] 

JC ,’ = 0 1, for p = 0 (40) 

/ 7 
E,,,, = (1 -P,‘/J-(P;I,)” ’ for/l = 1.2.3.. 

i(‘K = 0. (41) 

For the other polarization. rcplacc 11 with _L. How- 

ever, if K, is not small, then equation (39) should not 
be used to calculate the reflectivity. Instead, an exact 
analysis should be followed (p. 100 of Siegel and How- 
ell [I]) although ray tracing beyond (p = 0) will not 
bc required because even moderate values of K, (for a 

large particle in the geometrical optics range) make 
the particle virtually opaque. 

For non-polarized irradiation. the total energy car- 

ried by a ray is given by 

Ep = ;(E, ,‘+ I:‘ ,,). (42) 

When a ray strikes a sphere, it is either reflected 

(17 = 0) or transmitted (p = 1. 2. .) with a reduction 
in the energy due to absorption. The outcome is 
decided by generating a random number. Let us define 

Then. the ray is reflected (p : 0) it 

; < /I,, (44) 

and is transmitted, with p = i. if 

p, < < d p, c / (45) 

Generally. tracing up lo p = 2 or 3 is sullicient. 

Figure I shows a sketch of a ray traced up to p = 2. 

FIG. I Ray tracing for a semi-transparent sphere 
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The ray incident on the point P, can either be reflected 
or transmitted. 

l If the ray is reflected, its direction cosines are 
calculated as in the case of opaque particles. However, 
the energy carried by the ray, remains unchanged. 

l If the ray is transmitted, the direction cosines of 
the ray rO,, are found using the laws of refraction. 

-the incident ray, the refracted ray, and the normal 
to the surface all lie in the same plane ; 

-the angle of refraction is related to the angle of 
incidence by Snell’s law (equation (38)). 

The coordinates of point P, are found by using 
P,P, = 2R sin 8,. The direction cosines of the rays 
r , 2 and Y, are found by applying the laws of reflection 
and refraction at point P,, respectively. 

The coordinates of point Pz and the direction 
cosines of ray r2 are found by repeating the above 
steps. 

In the case of semi-transparent particles (K # 0), 
the energy of the rays is reduced by an attenuating 
factor given by 

F, =exp(-4plccr,sinB,) forp= 1,2,3,... (46) 

where a, is the size parameter (c(, = 27cR/i). Therefore, 
the energy carried by a transmitted ray is given by 

E, = F,E, forp= 1,2,.... (47) 

3.4. Emitting particles 
The spheres are assumed to have a high enough 

thermal conductivity so that a sphere can be assumed 
to be isothermal. The case simulated here is of a bed 
of absorbing, emitting, and scattering spheres. If the 
sphere has a reflectivity p, the ray is : 

l Reflected if p > 5 ; either diffuse or specularly 
reflecting particles may be considered. 

l Absorbed and emitted if p < 5. 

The emission can take place from any randomly 
selected point on the surface. Also, the direction of the 
emitted ray is determined according to the Lambert 
cosine law as in the case of diffusely reflected rays. 

k, = 4FdoT;. (49) 

Many different models are available for prediction 
of F, and these are reviewed by Vortmeyer [14]. Here, 
the main emphasis will be on examining the validity 
of this approach, by comparing the results of some of 
these models with the Monte Carlo simulations and 
also with the available experimental results. 

A solution to this problem based on the two-flux 
model is given by Tien and Drolen [ 121 

2 

F = d(6,. + 25,,) (SO) 

which can be written as 

2 
F= 

3f,(rlia +2&J . 
(51) 

For isotropic scattering, B = 0.5 and the above 
equation becomes independent of the particle emiss- 
ivity. 

5. RESULTS AND DISCUSSION 

5.1. Examination of two-flux method 
The inability of the two-flux model to handle large 

anisotropy in the phase function was noted by Brews- 
ter and Tien [22] and by Mengiic and Viskanta [23] 
although it was found to be suitable for isotropic 
scatterers. However, only non-absorbing media were 
considered in these studies (w, = 1). It is shown here 
that the two-flux model fails to handle the hemi- 
spherical anisotropy created by an isotropically scat- 
tering, absorbing medium. We consider a packed bed 
of specularly reflecting spheres with constant reflec- 
tivity of 0.6 and porosity of 0.40 subject to a diffuse 
source on one of its boundaries. Then, we calculate 
the properties of the medium as described in Section 
2.2 and solve the equation of radiative transfer by 
applying the two-flux method and the discrete ordi- 
nates method (using a 24 point Gaussian quadrature). 
The results are presented in Fig. 2. The figure clearly 

4. RADIANT CONDUCTIVITY 

The radiative heat transfer for a one-dimensional, 
plane geometry, with emitting particles under steady- 
state condition is given by [14] 

FO 

qr = i+pw= 
+T:--;I 

l-p, d 

(48) 

where F is called the exchange factor and the prop- 
erties are assumed to be wavelength independent. If 
pw = 0 and the bed is several particles deep, then the 
first term of the denominator can be neglected. Then, 
for T, - T2 < 200 K, a radiant conductivity is defined 

D4 

0.0 2.0 4.0 6.0 6.0 10.0 
Tml 

FIG. 2. Effect of optical thickness on transmittance for an 
absorbing medium (w, = 0.6). 
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shows that the two-flux model fails to give satisfactory 
results. 

The above point could have been made for an ideal 
medium with given properties ((a,), (a,), and (Q)) 
without refering to a packed bed. However, the above- 
mentioned set of conditions resembles the experiment 
of Chen and Churchill [13], where the use of the two- 

flux method is partly responsible for incorrect con- 
clusions regarding the validity of the theory of inde- 
pendent scattering in packed beds. This will be dis- 
cussed in detail in Section 5.3. 

5.2. Comparison qf Monte Carlo simulations and 
independent theory 

The Monte Carlo method, being a direct sirnul- 

ation, involves very few assumptions. On the other 
hand, the continuum treatment involves the approxi- 

mation of a heterogeneous system by a single 
continuum. The major task is that of obtaining the 
radiative properties of this continuum. This can be 

done by using the independent theory (which though 
easiest to use, is not always valid), or through alter- 
nate methods that allow for interparticle interactions. 

The Monte Carlo method can be used to get the trans- 

mittance or reflectance through a packed bed (as is 
done in this section). Alternatively, the radiative prop- 
erties of the bed can also be obtained using the Monte 
Carlo method. These properties are not uniform since 

the bulk behavior and that near bounding surfaces 
are different. 

According to the currently accepted criterion, 

packed beds of large particles lie in the independent 
regime; therefore, the independent theory should be 
valid for these beds. However, it will be shown in 

this section that because of the violation of the point 
scattering assumption, the theory of independent scat- 

tering breaks down when the porosity is small. As the 
porosity is increased, a closer agreement is expected 
between the Monte Carlo simulation and the results 

obtained from the equation of transfer solved by the 
method of discrete ordinates. In this section, first 
opaque particles, and then semi-transparent particles 
are examined. The particles are assumed to be non- 
emitting in the wavelength range of interest. 

Figure 3 shows the transmittance through a 

medium consisting of totally reflecting particles. The 
scattering is assumed to be specular. Porosities of 
0.476, 0.732, 0.935. and 0.992 are considered. The 
bed is generated by the second method described in 
Section 3.1. The optical thickness is calculated from 

equation (11). Thus according to the theory of inde- 
pendent scattering, the following systems are exactly 
equivalent (as far as their radiative behavior is con- 

cerned) : 

. E = 0.476, N = 8.0 
l E = 0.732, N = 12.5 
. c = 0.935, N = 32.0 
. E = 0.992, N = 128.0 

where N is the number of layers in the generated bed 

0.0 2.0 4.0 6.0 6.0 10.0 12.0 14.0 
r,,,<1 

FIG. 3. Effect of porosity on transmittance for totally reflect- 
ing spheres (p = 1). 

(N = L for all porosities greater than or equal to the 

porosity of the simple cubic arrangement since the 
layers are a unit distance apart). The value of L,id is 
obtained by noting that for systems having a poros- 
ity larger than the simple cubic porosity, d = 

((1 -s)/O.524)“‘. Thus, the values of d for the four 

systems mentioned above are I .O. 0.8, 0.5, and 0.25, 
respectively. 

All these systems give z,,~ = 6.28, where s,,~ is the 
optical thickness of a bed based on the independent 
theory, i.e. the independent theory predicts identical 
behavior for all these systems. The transmittance 
through packed beds of different porosities and at 
different values of rind was calculated by the method 
of discrete ordinates using a 24 point Gaussian quad- 
rature. Further increase in the number of ordinates 
did not cause any significant change in the results. it 
is clear from Fig. 3 that the independent theory fails 
for low porosities. As the porosity is increased, the 
Monte Carlo solution begins to approach the inde- 

pendent theory solution. For s = 0.992, the agreement 
obtained is good. The bulk (away from the bounding 
surface) behavior predicted by the Monte Carlo simu- 
lations for F: = 0.992 and the results of the independent 
theory are in very close agreement. A small difference 
occurs at the boundaries, where the bulk properties 

are no longer valid. However, although this difference 
occurs at the boundary, the commonly made assump- 
tion that the prediction by the continuum treatment 
will improve with increase in the optical thickness is 
not justifiable because this off-set is carried over to 

larger optical thicknesses. 
Figure 4 shows the effect of the porosity on trans- 

mittance for absorbing particles (p = 0.7). Again, the 
independent theory fails for low porosities although 
the agreement for a dilute system is good. Thus, the 
transmittance for a packed bed of opaque particles 
can be significantly less than that predicted by the 
independent theory. This is due to multiple scattering 
in a representative elementary volume, so that the 
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FIG. 4. Effect of porosity on transmittance for absorbing FIG. 6. Effect of porosity on transmittance for semi-trans- 
spheres (p = 0.7). parent spheres (n = 1 S, qh = 0.287). 

effective cross section presented by a particle is more 
than its inde~ndent cross section. 

Figures 5-7 show the effect of change in the porosity 
on the transmittance through a medium of semi-trans- 
parent particles. The particles considered are large 
spheres with n = 1.5. For these particles, the only 
parameter that determines the radiative properties of 
a particle is the product KCC, (as long as fc is not too 
large). Figure 5 is plotted for the case of k: = 0 (trans- 
parent spheres). Differences from opaque particles 
(Figs. 3 and 4) are obvious. A violation of the inde- 
pendent theory results in a decrease in the trans- 
mittance for opaque spheres, but for transparent 
spheres, it results in an increase in the transmittance. 
This results because the change in the optical thickness 
across one particle in a packed bed is large. Therefore, 
a transparent particle while transmitting the ray 
through it also ‘transports’ it across a substantial 

lo0 

T, 

10-' 

TBANSPARENT PARTICLES (n = 1.6) 

------ MDEPENDENT 

MONTE CARLO 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 
%r,d 

FIG. 5. Effect of porosity cm transmittance for transparent 
spheres (n = 1.5, qh = 0). 

optical thickness. Ln a dilute suspension, a particle 
while transmitting through it still does not transport 
it across a substantial drop in intensity. 

Figure 6 is plotted for semi-transparent particles 
with rctl, = 0.1, which gives qla = 0.287. The absorp- 
tion decreases the above effect (transportation across 
a layer of substantial optical thickness) to the extent 
that it is exactly balanced by the decrease due to 
multiple scattering in the elementary volume for 
E = 0.476. As a result, the Monte Carlo prediction 
for E = 0.476 shows very good agreement with the 
prediction from the independent theory. The results 
for a dilute system are exactly as expected: giving 
slightly less transmittance than the independent the- 
ory solution but showing the same bulk behavior. 
Therefore, due to these two opposing effects, the mag- 
nitude of deviation from independent theory for 

4.0 
%d 

FIG. 7. Effect of porosity on transmittance for semi-trans- 
parent spheres (n = 1.5, q& = 0.763). 
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packed beds of transparent and semi-transparent par- 
ticles is smaller than that for opaque spheres. 

Figure 7 shows the effect of variation in porosity on 
transmittance through a medium of highly ahsorbinp 
semi-transparent particles (KK, = 0.5, J{;,~ = 0.763). 
Here. the multiple scattering effect clearly dominates 
over the ‘transportation’ eRect. The predicted trans- 

mittance for low porositics by the Monte Carlo 
method is far less than that predicted by the indc- 
pcndent theory. while the most dilute system 
(c = 0.992) again shows good agreement lcith the 
independent theory. It is encouraging to note that 

the c = 0.992 system matched the independent theory 
results for all cases considered. However, the ctfcct of‘ 
the porosity on transmittance is noticcablc even for 
relatively high porositics (E = 0.935). 

The cxperimcnt of Chen and Churchill [ 131 is the 

most referenced experiment on radiative transfer in 
packed beds [IZ]. In this experiment, an open-ended 
tubular furnace behaving as a high temperature, 
bla~kbod~l source was incident on one surface of 21 
packed bed of spheres. The flux was modulated to a 
square wave by a mechanical chopper, and the intcn- 
sity of the transmitted radiation was measured with a 
thcrmopilc dctcctor. The packed bed was designed to 
simulate a one-dimensional bed by using an aluminum 
tube with highly reflecting walls as the container. The 
transmission through the bed was measured through 
isothermal beds of glass, aluminum oxide, steel, and 
silicon carbide particles of different shapes. The USC 
of the modulator enabled the measurement of only 
the scattered and directly transmitted radiation from 
the source and the particles in the bed can be con- 
sidered to be nonenlitting. 

Many authors have compared the results of their 
models to the experimental results of Chen and 
Churchill. However. one fact which has heen over- 

looked by all of them is the incident boundary con- 
dition to be applied. The incident boundary condition 
has always been treated as diffuse. Figure 8 shows ii 
sketch of the apparatus used in this cxperimcnt 1241. 
It is clear that the incident radiation is collimated from 

a very small solid angle around the normal. Ncithct 
the two-flux model nor the unit-cell type Monte Carlo 
simulation arc capable of handling this boundary con- 
dition. However. it can bu accolnmodatcd by the 
method of discrete ordinates as well as the direct 
simulation of a packed bed. 

Figure 9 shows the comparison of results obtained 
from the Monte Carlo method with those from the 
independent theory (using the method ofdiscrete ordi- 
WdLCS), with the Chen and Churchill experiment on 
steel spheres (d = 4.7625 mm. I’= 1366 K, where 7’ 
is the temperature of the biackbody source). The 
experiment was closely matched by Brewster [4] by 
using an emissivity of 0.4 (as recommended by Chen 
and Churchill [ 131) and by using the two-flux model. 

DETECTOR 

BEDHOLDER 

sOURCE ---TV-- 
p--j 

FIG. 8. Relative position of the packed bed and ihe source 
in the Chen and Churchill experiment. 

The errors resulting from the two-flux method were 
discussed in Section 5.1. The use of the incorrect 
boundary condition adds to the error because both of 
these factors (the use of the two-flux model and the 
USC of the incorrect boundary condition) result in 
lower transmission. Figure 9 shows the results 
obtained from the independent theory. assuming 
specularly reflecting spheres with an emissivity of 0.4. 

0.0 Z.0 4.0 6.0 f3.0 

L/d 

FIG. 0. ‘Transmittance from a bed oi’ steel spheres: com- 
parison of the Chen and ChurchiIl experiment with the &or- 

etical predictions. 
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and solving by the method of discrete ordinates. It 
can be seen that the independent theory predicts a 
much higher transmittance than the experimental 
results of Chen and Churchill. 

Droien and Tien [6] calculated the emissivity from 
the optical properties of iron. They used the n and ic 
values at d = 0.589 pm from Siegel and I-Iowell [l] and 
scaled them to i = A,,,,, (where A,,,,, is the wavelength 
corresponding to the maximum emissive power in 
the blackbody spectrum) using the Hagen-Rubens 
formula. Then using the Mie theory, they arrived at 
via = 0.50. However, the approach of using the optical 
properties at ,? = d,,, is questionable since 75% of 
the energy of the blackbody spectrum is at higher 
wavelengths. Also, the use of the Hagen-Rubens for- 
mula is unnecessary because the optical properties of 
iron are now available [25]. The spectrum was divided 
into five wavelength bands, and the wavelengths in 
the middle of the band were used to calculate the 
emissivities of a large particle. Emissivity values rang- 
ing from 0.05 to 0.30 were obtained. This would result 
in further worsening of the prediction by the inde- 
pendent theory. 

The Monte Carlo method was used with a randomly 
packed bed (E = 0.58) generated using the sphere set- 
tling program of Jodrey and Tory [20]. Figure 9 shows 
two plots obtained from the Monte Carlo method. 
The first is plotted for specularly scattering particles 
for ‘F, = 0.4 (as reported by Chen and Churchill). Also 
plotted is a spectrally averaged transmittance 
obtained by calculating the transmittance for each 
band and computing a weighted average. It is clear 
from the figure that the results from the Monte Carlo 
method lie in the same range as the experiment. The 
uncertainty in the emissivity of steel because of the 
dependence on the temperature and due to the pres- 
ence of an oxide coating was pointed out by Chen and 
Churchill [ 131. In fact, the first couple of layers might 
be at a higher temperature than the rest of the bed 
because of their proximity to the source. 

It must be stressed that the independent theory fails 
to explain the experimental results even when a very 
large allowance is made for uncertainty in the emiss- 
ivity. 

Figure 10 shows the comparison of results obtained 
from the Monte Carlo method and the independent 
theory with the Chen and Churchill experiment for 
glass spheres (d = 5 mm, T = I366 K). The only other 
prediction available is that of Brewster [4] who used 
the two-flux method with an emissivity of 0.03 for 
1 <: 2.7 ,um, and an emissivity of 0.9 for 1. > 2.7 pm. 
For the present study, the wavelength range was div- 
ided into three suitable bands. The optical properties 
of glass [26] were used to find the absorption 
eficiencies and the scattering phase function from the 
theory of geometric scattering. Figure 11 shows the 
variation of absorption efficiency with wavelength for 
a 5 mm glass sphere. The phase was calculated using 
the theory of geometric scattering and expressed in a 
series of Legendre polynomials. Then, the method of 

loo 
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FIG. 10. Transmittance from a bed of glass spheres: com- 
parison of the Chen and Churchill experiment with the theor- 

etical predictions. 

discrete ordinates was used to calculate the trans- 
mittance predicted by the inde~ndent theory. The 
Monte Carlo simulation for a randomly packed bed of 
semi-transparent particles was performed. The results 
for the Monte Carlo simulation show good agreement 
with the experimental results. The prediction obtained 
from the independent theory also shows fair agree- 
ment. As pointed out in the previous section, this 
is because the errors resulting from the use of the 
independent theory, for semi-transparent particles 
with small absorption, are not very large. 

5.4. Comparison with the Kasparek experiment 
In the Kasparek experiment (described by Vort- 

meyer 1141) measurements of radiation heat transfer 
through a number of planar series of welded steel 
spheres were made. Conduction and convection were 

1.0 , 

0.0 - 

0.6 - “/- 

4.0 

WwC 

FIG. I I. Absorption efficiency of a glass sphere of diameter 
5 mm. 
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eliminated by placing the layers a small distance apart 
and by performing the experiment in vacuum. The 
high thermal conductivity of the material ensured that 
the heat resistance of the material was negligible and 
that the spheres were isothermal. Measurements were 

made using polished steel spheres (s+ = 0.35) and 
chromium oxide coated spheres (F, = 0.85). The 
arrangements considered were a cubic (R z 0.5) and a 
porosity of 0.4. 

The Monte Carlo method as described in Section 
3.3 was used to predict the heat transfer through the 
packed bed used in the Kasparek experiment (unlike 
the previous sections, we encounter emitting par- 
ticles). The results confirm the validity of the exchange 

factor approach as long as the emissivity is not 
close to zero. The change in the value of the exchange 
factor (obtained from equation (48)) resulting from 
increasing the number of layers from 8 to 16, was less 

than 0.01 for E, > 0.20. The simulation was performed 

for both specularly scattering and diffusely scattering 
spheres. The polished steel spheres can be considered 
specularly scattering while the chromium oxide 
spheres would scatter diffusely. Table 1 shows the 
results of the Monte Carlo simulation as well as the 

results obtained from the two-flux model and those 
from the models of Argo and Smith (described by 

Vortmeyer [ 141) and Vortmeyer [ 141 for a porosity of 
0.4. The predictions by the Monte Carlo method 
match the experimental results fairly well, considering 
that some uncertainty is always present in the emiss- 

ivity values. Diffuse spheres result in slightly smaller 
values of F although, as expected, the difference 

decreases with increasing emissivity and vanishes for 
E, = 1. The change in value of F with porosity also 

matched the experimental results. For a cubic 
packing, the value of F increases from 0.47 to 0.51. 
for E, = 0.35, while the experimental value increases 
from 0.54 to 0.60. For E, = 0.85, the value of F 

increases from 0.94 to 0.97, while the experimental 

value increases from 1.02 to 1.06. 
The predictions based on the two-flux model for 

diffuse spheres show a very small sensitivity to the 
emissivity, while those for specularly scattering 
spheres show no change at all. Using the method of 
discrete ordinates, higher values of F are obtained 

than those predicted by the two-flux method. Also, 
for specularly scattering spheres, the heat transfer 
remained independent of the emissivity. This can be 
seen from equation (19) by applying the condition of 
radiative equilibrium. Physically, when the spheres are 
treated as point scatterers, there is clearly no difference 
between isotropic scattering from a point and emis- 
sion from it. The mechanism that results in an increase 
in the radiative heat transfer, with an increase in the 
emissivity. is that of transportation of the absorbed 

energy through each particle (by conduction). i.e. par- 
ticles absorb radiation at one face and emit a part of 
it from the other face. For a dilute medium consisting 
of isotropically scattering, small particles separated 

by large distances, the heat transfer is again expected 
to be independent of the particle emissivity. 

6. CONCLUSIONS 

Radiative heat transfer through a packed bed 01 

particles has been simulated using the Monte Carlo 
technique, and the results are compared with available 
experimental results and also the results obtained 
from the solution of the equation of radiative transfer 
under the assumption of independent scattering. The 
important conclusions that can be drawn from this 
study are : 

l The independent theory is shown to fail for sys- 
tems with low porosity and is not suitable for packed 
beds (even though the C/jL criterion is satisfied). The 
failure is more drastic for transmission through a bed 

of opaque spheres than for transparent and semi- 
transparent spheres with low absorption. Also, the 
deviation from the independent theory is shown to 
increase with decrease in the porosity. This deviation 
can be significant for porosities as high as 0.935. 

l The independent theory gives good predictions 
for the bulk behavior of highly porous systems 
(c > 0.992) for all cases considered. However, because 
the bulk properties no longer hold good near the 
bounding surface, the boundary behavior predicted 
by the independent theory is different from that pre- 
dicted by the Monte Carlo simulations. As a result, 
the transmittance predicted by the independent theory 

Table I. Radiation exchange factor F (I: = 0.4) 

Model 

Two-flux (diffuse) 
Two-flux (specular) 

Discrete ordinates (diffuse) 
Discrete ordinates (specular) 

Argo and Smith 
Vortmeyer 

Kasparek (experiment) 

Monte Carlo (diffuse) 
Monte Carlo (specular) 

Emissivity 
0.2 0.35 0.60 0.85 I .o 

0.88 0.91 I .02 1.06 1.11 
I.11 I.1 I 1.11 1.11 1.1 I 

I .09 1.15 1.25 1.38 1.18 
I .4x I .4x I .4x 1.48 I .4x 

0.1 I 0.21 0.43 0.74 I .o 
0.25 0.33 0.54 0.85 1.12 

0.54 I .02 

0.32 0.45 0.68 0.94 1.10 
0.34 0.47 0.69 0.95 1.10 
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(for E = 0.992) is always slightly more than that pre- 

dieted by the Monte Carlo method. 
l Two distinct dependent scattering effects were 

identified. The multiple scattering of the reflected rays 

increases the effective scattering and absorption cross 
sections of the particles. This results in a decrease 
in transmission through the bed. The transmission 
through a particle in a packed bed results in a decrease 
in the effective cross sections resulting in an increase in 
the transmission through a bed. For opaque particles, 
only the multiple scattering effect is found while for 

transparent and semi-transparent particles, both the 
above-mentioned effects are found and tend to oppose 

each other. 
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Radiative heat transfer in packed spheres by Monte 
Carlo method. In Heat Transfer in High Technology and 
Power Engineering Proceedings, pp. 529-540. Hemi- 
sphere, New York (1987). 
C. L. Tien and B. L. Drolen, Thermal radiation in par- 
ticulate media with dependent and independent scat- 
tering, A. Rev. Numer. Fluid Mech. Heat Transfer 1, I- 
32 (1987). 
J. C. Chen and S. W. Churchill, Radiant heat transfer 
in packed beds, A.I.Ch.E. JI 9, 3541 (1963). 
D. Vortmeyer, Radiation in packed solids, Proc. 6th Int. 
Heat Transfer Conf., Vol. 6, pp. 525-539 (1978). 
M. Kaviany, Principles of heat transfer in porous media, 
monograph. Springer, Berlin (in press). 
B. G. Carlson and K. D. Lathrop, Transport theory- 
the method of discrete ordinates. In Computing Methodr 
in Reactor Physics (Edited by H. Greenspan, C. N. 
Kelber and D. Okrent), pp. 171-266. Gordon & Breach 
Science, New York (1968). 
W. A. Fiveland, Discrete ordinate methods for radiative 
heat transfer in isotropically and anisotropically scat- 
tering media, J. Heat Transfer 109, 809-812 (1987). 
S. Kumar, A. Majumdar and C. L. Tien, The differential- 
discrete ordinate method for solution of the equation of 
radiative transfer, J. Heat Transfer 112,424-429 (1990). 
C. K. Chan and C. L. Tien, Radiative transfer in packed 

l Fair agreement with the Chen and Churchill 
experiment on steel spheres is found using the Monte 
Carlo method. More importantly, the inability of the 

independent theory to match the experimental results 
is clearly demonstrated. The Monte Carlo results 
show good agreement with the Chen and Churchill 
experiment with glass spheres. However, the deviation 
from the independent theory is not large, because of 
the low absorption of the glass spheres. 

l The agreement of the Monte Carlo results with 

the Kasparek experiment is encouraging. The inde- 
pendent theory fails to give acceptable results for a 

packed bed of absorbing, emitting, and scattering 
spheres. 

l The two-flux model fails for absorbing media, 
even when the phase function is isotropic. The trans- 

mission through such media was found to be severely 
underpredicted by the two-flux model. 
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THEORIE INDEPENDANTE CONTRE SIMULATION DIRECTE DLJ TRANSFERT 
THERMIQUE RADIATIF DANS LES LITS FIXES 

KBsumk-On consid& le rayonnement thcrmique dans les litc fixes de grosses particules sphi:riquc.r. La 
pratiquc courante est de suivre la thkorie dc In dispersion indkpendante tant que Ci > 0.5 oil C‘ est la 
distance libre moycnne entre particules ct /. la longucur d’onde. Les propri&s dc la particulc veule sent 
relit-es aux proprit-tt-s radiatives du lit par une moycnne en volume. L’Cquation de transfert cst cnsuitc 
rbsolue par une methode approchke telle yuc la mtthodc dcs ordon&es disc&es ou celle de:, deux Rux. 
Dans cette &ude. on utilise la mbthode de Monte Carlo pour examiner IL’ transfert radiatif i travers Its lits 
lixes de grosses (domaine gkomktrique) particules. On consid& des particules opaques, szmi-tr;lnsparel7tc\ir~llt~~ 
et &missives. Lcs rCsultats sent cornpar& d la thkorie indbpcndante et aux rt-sultats exp&?mcntaux dis- 
ponibles: ils indiquent que la tht-orie indt-pcndante tombc cn di-faut quand cc critkre c‘ i. cst satisfait. Le 
succPs de la th&arie indkpendante dans let systt;mcs 2 faiblc porositt. not6 par des chercheurs antPrieurs. 
est montr6 iZtrc soit un cas spkcial existant seulcment pour un petit doma~ne de propri&tCs optiqucs. soit 
du Li des h?pothPses injustifit-es. Pour les m&lea propriC:tC\ radiatives de particule. la d&wtion par rapport 
ci la thL;orle indPpendante augmente quand la porositb dkcroit. <‘ette dt-viation peut ctre sen\ihle m&ne 

pour des pal-ositks allant iuaqu’;i 0.935. 

WARMETRANSPORT DURCH STRAHLUNG IN SCHUTTUNGEN: VERGLEIC‘tI DER 
UNABHANGIGEN THEORIE MIT EINER DIREKTEN SIMULATION 

Zusammenfassung- Es wird der Warmetransport durch Strahlung in Schiittungen mit vcrh5ltnismtilllg 
gro0en kugeligen Partikeln bctrachtet. Uhlicherwcise wird dazu die Theorie der unabhangigen Streuung 
verwendet, solange C/i > 0.5 ist (mit C und L als der mittleren freien Weglangc bzw. der Wellenkinge). 
Die Eigenschaften des einzelncn Partikcls werden durch Volumcnmittelung zu Strahlungseigenschaften 
ftir die Schiittung vcrarbeitet. Die Transportgleichung wird mit Hilfe eines N5herungavcrfahrens gel&. 
beispielsweise mit der Methodc diskretcr Ordinaten oder mit der Zwei-Strom-Methode. In der vorliegendcn 
Untersuchung wird die Monte-Carlo-Methodc vcrwcndct. urn den W&-metransport durch Strahlung in 
Schiittungen aus groBen Partikeln zu bestimmen. Es ucrdcn strahlungsundurchl~ssige, halbdurchllssige 
und emittierende Partikel untersucht. Die Ergebnisse wcrden mit solchcn nach der unabhlngigen Theorie 
und mit verftigbaren Versuchsdaten verglichcn. Es zeigt sich. da8 die unabhingige Theorie falsche Ergch- 
nissc liefert, sogar dann, wenn das C/i.-Krltcrium erfiillt ist. Es wrrd gezeigt. dafi die \on friiheren Autoren 
angemerkte Anwendbarkeit der unabhingigen Theoric hei Systemcn mit geringer Porositiit sich cntwedet 
auf Spezialfiille beschrankt, die nur fiir cinen engen Bcreich dcr optischen Eigenschaftcn existicren. odrr 
aber durch nichtzullssige Annahmen gewonnen wird. Bei identischen Strahlungseigenschaften der Partikcl 
nimmt die Abweichung von der unabhingigen Thcorie mit abnehmcnder PorositHt zu. Dlese Abweichung 

kann signifikant seiw selbst l’iir Porosit2ten 1,111 0.935. 

CPABHEHME TEOPIIH HE3ABMCHMOTO PACCEIfHMII M nPRMOI-0 
MOflEJIAPOBAHIGI PAA&,iAuWOHHOTO TErUIOrIEPEHOCA B YIIAKOBAHHbIX 

CJ-IOIIX 

h”#OTZU,“H-kICCJWQ’eTCX paAHaIWOHHbI8 TUIJIOnepeHOC B ynaKOBaHHblX C,IOIIX OTHOCHTenbHO 

KpyOHbIX C~epLiWCKGiX SLCTBL,. 06IItenpHHrTbIM IIBJUIeTCIl nCIlOJIb30BaHne TeOpnIl He3aBUCUMOTO paC- 

ces~~nll npa c/i >0,5, me C+peAHee paccTonane MemAy SaCTHIIaMU, A-AJIIiHa BO~HU. MeToAoM 

yCp.ZAHeHnSi "0 o6aeMy yCTaHaBAABaeTCR B3aUMOCB,l3b MeKAy CBOiicTBaME eAHHH'EHOfi gaCTIlUb1 H 

H3JIy=iaTenbHbIIvW CBOiiCTBaMnCJIO%3aTeM OAHHM r(3 IIpn6JIWKeHHbIXMeTOAOB-MeTOAOM AHCICpeTHbIX 

OpAHHaT WIM AByXIIOTO'lHbIM-pemaeTCSl ypaBHeHne IIepeHOCa. B AaHHOii pa6oTe AJIS RCCJELIOBaHHX 

paAnaqHoHHor0 TennonepeHoca gepes ynaKoeaHHbIe cnon KpynHbIx WcTm (reordeTpnwcKoe 

npn6nnmeHne) McnonbsyeTcn rdeToA MOHTe Kapno. PaccMaTpnBamTcK Henpospa9HbIe, nOJIyIIpO3pa9- 

HbIe n tisnysavmuie SacTnUbI. CpaBHeHne nonynembrx pe3ynbTaToB c Teopneii fie3aiwcnMoro pacces- 

HBIl A UMeIO~IIMWCII 3KCOepRMeHTiWlbHhlMH AaHHbIMn nOKa3bIBaeT, ',TO yILOMIHyTaJ3 TeOpilS 

HenpnroAHa Aaxce npsi BbInonHeHne KpnTepnn nns C/l.KaK oTMeqeH0 B npeAbIAyunx ~ccAeAoBaHnRx, 

npnMeHeHue TaKO&",TeopEnAJInCHCTeMC HUJKOii nOp03HOCTbH) lBJUIeTCII yCIIeIIlHbIM TOJIbKO B OTAeJIb- 

HbIX CnyYarrx B ,'JKOM AHana3oHe OnTU'feCKnX CBOi%CTB HJIH npn HaJIn'InA HeKOTOpbIX HeIlpaBOMepHbIX 

~O~~eH~ii.~OKa3aHO,‘4TO “pa OAUHaKOBbIX n3Ay'IaTeAbHbIX CBOiiCTBaX 'faCTnII OTKJIOHeHne 07 pe3y- 

JIbTaTOB Teopm fie3aBncsiMMoro paccemna 903pacTaeT c yMeHameHneM npo3aocTn. YKa3aHHoe OTK- 


