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Abstract—Radiation heat transfer in packed beds of relatively large spherical particles is considered. The
common practice is to follow the theory of independent scattering as long as C/A > 0.5, where C is the
average interparticle clearance and A the wavelength. The single particle properties are related to the
radiative properties of the bed by volume averaging. The equation of transfer is then solved by an
approximate method such as the method of discrete ordinates or the two-flux method. In this study, the
Monte Carlo method is used to examine the thermal radiative transfer through packed beds of large
(geometric range) particles. Opaque, semi-transparent and emitting particles are considered. The results
are compared to the independent theory and to the available experimental results, and they indicate that
the independent theory fails even when this C/A criterion is satisfied. The success of independent theory in
systems with low porosities, noted by previous researchers, is shown to be either a special case existing
only for a small range of the optical properties or arising due to some unjustifiable assumptions. For the
same radiative particle properties, the deviation from the independent theory is shown to increase with
decrease in the porosity. This deviation can be significant even for porosities as high as 0.935.

1. INTRODUCTION

RADIATIVE heat transfer in packed and fluidized beds
can be significant and has attracted considerable inter-
est in the past two decades. The theory of radiative
transfer in an absorbing, emitting, and scattering
medium is sufficiently developed and can be found
in the standard references [1, 2]. The crucial step in
applying this theory to packed beds is relating the
properties of the packed bed to the properties of an
individual particle. To do this, the assumption of inde-
pendent scattering is introduced, i.e. it is assumed that
the interaction of the particle with the radiation field
is not influenced by the presence of neighboring par-
ticles. This condition is satisfied if the spheres behave
as point scatterers, i.e. the distance between two par-
ticles is large as compared to their size. Also, there
must be no interference between scattered fields. The
first condition should lead to a limit on the porosity
while the second condition would limit the minimum
value of C/A, where C is the average interparticle
spacing based on a rhombohedral packing (C/d =
0.9047/(1—¢)"* —1). If both these conditions are sat-
isfied, then the bulk (away from the bounding sur-
faces) behavior of the bed can be predicted from the
equation of radiative transfer, by the theory of inde-
pendent scattering.

The limits of the theory of independent scattering
have been experimentally investigated by Hottel et al.
{3]. They identified the limits of independent scattering
as C/A > 0.4 and C/d > 0.4 (i.e. ¢ > 0.73). For a 5%
deviation from the independent theory, they rec-
ommend C/4 > 0.49. Brewster [4] also considered
larger particles (maximum value of o, = 74). His

results indicated that no dependent effects occur as
long as C/A > 0.3, even for a close pack arrangement
(¢ = 0.3). It was suggested by Brewster [4] that the
point scattering assumption is the only artifice necess-
ary in the derivation of the theory and is not crucial to
its application or validity. Thereafter, the C/A criterion
for the applicability of the theory of independent scat-
tering was verified by Yamada et al. [5] (C/4 > 0.5 for
5% deviation from the independent theory) and by
Drolen and Tien [6]. However, Ishimaru and Kuga
[7] noted dependent effects at much higher values of
C/A. In sum, the above experiments seem to have
developed confidence in application of the theory of
independent scattering in packed beds consisting of
large particles, where C/1 almost always has a value
much larger than the above-mentioned limit of the
theory of independent scattering. Thus the approach
of obtaining the radiative properties of the packed
beds from the independent properties of an individual
particle has been applied to packed beds without any
regard to their porosity [4, 6]. However, all the above
experiments were similar in design and most of these
experiments used suspensions of small, transparent,
latex particles. Only in the experiment of Brewster
was a close packing of large, semi-transparent spheres
considered.

Dependent scattering involves two distinct effects.
The first is the far field interference between the scat-
tered waves, which has been studied by Cartigny et al.
[8]. They indicated no observable dependent scat-
tering effects for o, > 10. The far field interference
affects only the scattering characteristics of the
medium and follows the C// criterion. The second is
the effect of multiple scattering in a representative
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NOMENCLATURE

A area, cross section {m-] 9 Stefan—-Boltzmann constant,
B backscatter fraction for a slab 5.6696x10 *Wm K *
C average interparticle clearance [m] a, absorption coeflicient [m ']
d diameter [m] Ty extinction coefficient, ¢, + 0, (m '}
E fraction of encrgy carried a, scattering cocfficient [m ']
F radiation exchange factor, attenuating 7 optical thickness

factor ¢ azimuthal angle [rad]
1 radiation intensity [W m ?] d particle scattering phase function
L depth of the siab {m] w, scattering albedo, o /(0 +0,)
[, m, n direction cosines Q solid angle [sr].
" complex refraction index, n—ix
7 index of refraction Superseripts
N number of layers in the bed average value
p integer that defines the reflected or the ’ directional quantity

refracted rays for a transparent sphere + forward
q heat flux [W m™ 7] - backward.
¥ ray
S distance travelled [m) Subscripts
R radius [m] a absorption
T temperature {K] b blackbody radiation
x, ¥,z coordinate axes [m]. ¢ center

d diffuse
Greek symbols ¢ etfective, emission

%y size parameter, 2nR/ 4 cX extinction
v maximum allowable displacement of { fluid phasc

sphere centers i incident
& porosity ind  independent
&, emissivity n normal
N spectral efficiency r reflected, or radiation
0 polar angle s solid, or scattering, or specular
0y angle between incident and scattercd w wall

beam 4 wavelength dependent
K index of extinction s axial (or longitudinal) component
2 wavelength {m] lateral (or transverse) component.
I cos 0
& random number between 0 and | Other symbol
P reflectivity { % volume average.

elementary volume in which the scattering and
absorption characteristics of the particle are affected
by the proximity of other particles. This was studied
for small (Rayleigh) sized particles by Kumar and
Tien [9].

Other researchers have used the Monte Carlo
method to predict the radiative heat transfer in packed
beds. Yang et al. [10] studied radiative transfer
through a bed of randomly packed, specularly scat-
tering spheres. Kudo er al. [11] considered diffusely
scattering particles. Tien and Drolen {12} compared
the predictions from the various models with existing
experimental results [13] and concluded that the inde-
pendent theory gives a better prediction than the
Monte Carlo method. The Monte Carlo method has
also been criticized because it was believed that it
could not treat semi-transparent particles.

The case of absorbing and ecmitting particles is aiso
reviewed by Tien and Drolen [12] and by Vortmeyer
[14]. However, the theory of independent scattering
fails to satisfactorily explain the experimental results
for this very important case. Most notably, the inde-
pendent theory cannot explain the effect of particle
emissivity on the radiative heat transfer. Further dis-
cussion of radiative heat transfer in porous media can
be found in ref. [15].

In the present study, radiative transfer in packed
beds of large (geometric range) size particles is studied
using the Monte Carlo method. The far field inter-
ference cffects, which follow the C/1 criterion, are
negligible because particles with very large ¢ will
almost always have a high value of C. The Montc
Carlo technique has been extended to accommodate
emitting particles as well as semi-transparent particles.
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Also, the Monte Carlo simulations over a range of
porosities are compared to the results obtained from
the equation of radiative transfer and the deviation
from the independent theory is shown for smaller
porosities. Thus, dependent scattering and absorption
are shown to exist even for infinitely large particles,
which should fall into the independent range accord-
ing to the C/4 criterion.

2. CONTINUUM TREATMENT

The one-dimensional, steady-state, equation of
radiative transfer for an absorbing, emitting, and scat-
tering continoum is [1]

.
4 = <0 a(8) ~ (T + (T N(S)

+ S{Zﬁs—zﬁ 1 LAS, p )@ (s 1) dpt; (1)

where I, is the spectral intensity, S the distance trav-
elled, 0, and ¢, the spectral absorbing and scattering
coefficients, I, the blackbody emission, and @,(u;, 1)
the phase function for scattering from a direction ;
to a direction u (¢ == cos 8).

The above equation can be written for a packed
bed of particles. The scattering and absorption
coefficients and the scattering phase function of the
medium can either be calculated assuming inde-
pendent scattering or by modelling the dependent
effects. This is discussed in detail in the next section.

2.1. Caleudation of radiative properties

The calculation of the radiative properties may be
done under the assumption of dependent or inde-
pendent scattering. Independent scattering is rather
easy to implement as the radiative properties of a
single particle can readily be obtained from the Mie
theory or a simpler asymptotic method, e.g. the geo-
metric scattering or the Rayleigh scattering. A model
of dependent scattering must consider an assembly of
particles. At present, short of a Monte Carlo simul-
ation, no satisfactory model of the dependent scat-
tering for large particles is available. However,
according to the currently accepted criterion [12],
packed beds of large {(geometric) sized particles almost
always lie in the regime of the independent scattering.
Thus, for packed beds, the theory of independent
scattering is generally followed and the radiative prop-
erties of the bed are calculated from the properties of
the individual particles.

2.1.1. Properties of an individual particle. The spec-
tral scattering efficiency 7, is defined as

J\ I';srz dQ
4n
His = TCRzl;',- . (2)

The spectral scattering cross section is defined as
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similarly the spectral absorption efficiency and cross
section are defined as

f L.r* dQ

4

Mia = TR, C))
A= nlanRz' 5

Finally the extinction efficiency and cross section are
defined as

Maex = Mus + Haa (6)
Alex = Als + Ala' (7)

For large particles (&, > 100) the diffraction is focused
in a highly forward direction and can thus be
neglected. Then, the extinction cross section is egual
to the geometrical cross section, i.e. the extinction
efficiency is equal to one. The scattering efficiency is
equal to the hemispherical reflectivity of the sphere
{1}

The phase function for specular scatterers with con-
stant reflectivity is isotropic. For diffuse scattering,
the phase function is given by [1]

8
DG, = i (sin 6, — 8, cos 8) ®

where
cos B, = cos 8 cos 0,+sin 8 sin 8, cos (¢ —¢,).

For transparent particles, the phase function for an
individual particle can be obtained from the theory of
geometric optics, by ray tracing, and can be expressed
in a series of Legendre polynomials.

2.1.2. Properties of the packed bed. In obtaining the
properties of a packed bed, the independent theory
assumes the following:

e No interference between the scattered waves (far
field effects). This leads to a limit on the minimum
value of C/A. However, most packed beds are made
up of large particles and can therefore be assumed to
be above any such limit.

e Point scattering, i.e. the distance between the par-
ticles is large compared to their size. Thus a rep-
resentative elementary volume containing many par-
ticles can be found in which there is no multiple
scattering, and each particle scatters as if it were alone.
Then, this small volume can be treated as a single
scattering volume.

e The variation of intensity across this elemental
volume is not large.

Then, the radiative properties of the particles can
be averaged across this small volume by adding their
scattering (absorbing) cross sections. The total scat-
tering (absorbing) cross sections divided by this vol-
ume gives the scattering (absorbing) coefficient. The
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phase function of the single scattering volume is the
same as that for a single particle.

Using the number of the scatterers per unit volume
N, (particles m ") and assuming independent scat-
tering from each scatterer, the spectral scattering
coefficient for uniformly distributed. mono-size scat-
terers is defined as

(0,0 = NoA,. 9

Similarly {¢,,> = N,4,,, and we also have {0, > =
<0-/Vs> + <G/La>'

The optical thickness of an absorbing and scattering
medium is defined as

r:J (o, +0,) dx*. (10)
)
For a medium of mono-size, large particles
(e« = 1), the above equation can be simplified to
15(1—e) (11)
= 1.5(1 —¢
! d
where ¢ is the porosity of the medium.

It is obvious that the condition of point scattering
does not, in theory, exist in packed beds. Therefore,
as pointed out by Brewster [4], the application of the
independent theory to packed beds is only justified by

its successful prediction of experimental results (even
in systems where it is theoretically not valid).

2.2. Methods of solution

2.2.1. Two-flux method. The two-flux approxi-
mation involves the assumption that the intensity at
any point can be divided into a forward /] and a
backward /7 component. Then, assuming no
emission, the equation of radiative transfer (equation
(1)) can be integrated over the forward and the back-
ward directions to give

dr;
d;* = (Gt & +651; (12)
dl;
- ’a L= _(G—:/\+&/d)]/ +5')514+ (]3)
X

where

1 0
B= ;.[ J {®,>(0, - 0) dcos 0, dcos 0 (14)
i} -1

G, = 2{0,>B, 6;, = 2{0,,», and
| (=
D0, 0) = ﬁﬁ (D060, ¢: — 0, 9)) d(@— ).

For transmission through a bed subjected to inci-
dent radiation at one face, the boundary conditions
are

x=0 (15)

(16)

I} =1, at
I; =0 (transparent boundary) at x = L.

The solution for the transmittance 7, is
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I N
T =" =cosh[(6L+26,.6,) " L]

I,
G:/Vs+6).z| - - Y5 & 1.2 3
(621266, sinh [(63, +26,,05) " °L]  (17)
and the reflectance R, is given by
R =T T inh (G2 +26,. 6.1
=g g 5y sinh [(67, +26,,6,.) " L].
(18)

The fundamental assumption upon which the two-
flux model is based is that of hemispherical isotropy.
Therefore, for the two-flux model to give acceptable
results, the scattering must be quasi-isotropic, and the
boundary conditions must be diffuse. However, in the
case of a non-emitting (in the wavelength range of
interest) bed, the hemispherical isotropy is destroyed
by the presence of absorption. The error caused by
the two-flux assumption increases with increasing
absorption and can be significant (as will be shown in
Section 5.1).

2.2.2. Method of discrete ordinates. The method
of discrete ordinates is an extension of the two-flux
method in which the number of discrete streams is
increased from 2 to 2N. The result of the approxi-
mation is to reduce the integro-differential equation
to a set of coupled, ordinary, linear differential equa-
tions, that are solved numerically (e.g. Carlson and
Lathrop [16], Fiveland [17}, and Kumar er al. [18]).
The in-scattering (integral) term is approximated by a
quadrature, where g, is the quadrature points between
—1 and 1 corresponding to a 2N-order quadrature,
and Ay; (solid angle increment) is the corresponding
quadrature weight. Then, the one-dimensional radi-
ative transfer equation for intensity at x and in the
direction y, becomes

dl)ll(-x,) R
K Tde = =00 Li(x) + {0, 01 (X)
X
<Uj,s‘> u
0 Y ALK~ )
L= My
fori=—M.-M+1,... Mi#0 (19)
M
z Ay, =2 (20)
; M.j£ 0
where

<(D/1>(‘U, - H/)
1 (" .
= TLJ DO, & — 1 ‘75;)) d(¢j”’ ¢ (2D
0
The boundary conditions are
atx =90
M
Li=eLy+pil, i +204 Z Apdypy
Rl

I

i=1,....M (22)
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atx =L
M

I = &, L+ prdi i+ 2p3q Z Al
=1

i=—1,...,—M (23)

where I,(x) = I(x, ), and i = 0 (corresponding to the
lateral boundaries) has been avoided because of the
one-dimensional geometry assumed. In the case of
incident radiation on a transparent boundary, the
above equation is used with ¢ =1, p;; =0, and
0:¢ = 0. The intensity at the boundary, in a direction
1;, is equal to the intensity of the incident radiation in
that direction.

3. MONTE CARLO SIMULATION

The ray tracing approach has been used for the
study of radiation in packed beds by Chan and Tien
[19] who performed ray tracing in a unit cell. Yang et
al. [10] applied the Monte Carlo method to a bed of
randomly packed specular spheres. They evaluated
the absorption and scattering cocfficients of the
packed bed using the solution of the two-flux equa-
tions and the results of the Monte Carlo simulations.
Kudo et al. [11] considered diffusely reflecting spheres.
Both Chan and Tien [19], and Kudo et /. [11] used
the unit-cell approach. In extending the results for a
unit-cell to a packed bed, they made the assumption
of diffuse scattering at each cell face. This is not found
to be a valid assumption in the present simulations.

In this study, three different types of particles
(opaque, transparent, and emitting) and two types
of arrangements are considered. Periodic boundary
conditions are applied in the lateral directions to simu-
late a one-dimensional bed, and the rays are traced
through the entire depth of the bed.

3.1. Arrangements

Two types of arrangements are considered in the
present study. The first is a bed of randomly packed
spheres. The bed was generated by the computer pro-
gram PACKS [20] and has been previously used by
Yang et ai. [10]. The bed of randomly packed spheres
generated by this method has a porosity of 0.42.

The second is based on a simple cubic packing.
The layers however are staggered with respect to each
other. This can be significant when considering a
packed bed of particles with large absorption because
the regular, simple-cubic structure would result in
some rays being transmitted directly through the
voids. Also, from a practical standpoint, irregular
arrangements are more relevant.

The domain of interest consists of a box with a
square cross section bounded by x =0, x=1,z=0,
and z = 1| and with depth equal to the depth of the bed.
The irregular arrangement is achieved by generating
sphere centers at four corners of the square
[(0,00(0,1)(1,0)(1,1)] in the x—z planes at y = 0.5,
L.5,.... The centers are then staggered by applying

2873

the following transformation to all four spheres in the
layer:

X = x.+0.52&,—1) (24)

2o =2.+0.52L -1 (25)

where £, and &, are random numbers between 0 and
1. This process is carried out for each layer using
newly generated £, and &, for each layer, After tracing
a small number of rays (say 100), the above process is
repeated on the original center locations using freshly
generated random nombers. Spheres of unit diameter
result in a porosity of 0.476. To get a higher porosity,
the sphere size can be reduced. In this case, the spheres
will no longer touch each other. For a slower ¢, the
distance between the layer centers for unit diameter
spheres must be y,—y,_; = 0.524/(1 —¢), where y,
refers to the y coordinate of the nth layer. Alternate
layers have a sphere at the square center. The layers
are staggered by an amount limited by the physical
constraint that no overlap is allowed. Thus the
maximum distance by which a layer can be of stagger
varies from 0.5 for a porosity of 0.476 to 0 for a
porosity of 0.26. The above two equations must now
be changed to

X, = X +y2E-1) (26)

Ze = I +’y(2€ - l) (27)

where y is a function of porosity alone and represents
the extent to which sphere centers can be displaced
without overlap.

Both of the above models are used in conjunction
with the periodic boundary condition in the x- and z-
directions.

3.2. Opagque particles

A ray is defined by the coordinates of its starting
point Po(x,, o, o) and its direction cosines (/, m, n).
The ray enters the bed at a random point in the x—z
plane (forming the lower surface (y = 0)), i.e.

(xo,J’o,Zo) = (Wixs 09 Wéz)

where W is the lateral dimension of the box being
used and £, and £, are random numbers between 0
and 1. The angles ¢ and 6 are given by

¢ =2a
6= COS”1 (1 —6(1 —CO08 gmax))

(28)

29
(30)

where 0., is the maximum angle that the incident
radiation makes with the normal. For diffuse incident
flux, cos 8,,,, = 0. The direction cosines of the ray are

3D
(32)

I=sinfcos ¢
m = cos 8

n = sin 8 sin ¢. (33)
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The coordinates of a ray after travelling a length S
are given by

X =x,+IS (34)
y=yot+mS (35)
o= z,+nS. (36)

Substituting in the equation of the sphere, we have

(x—x) +(p—y)+(E—z)'=R (37

i.e. a quadratic equation in S is obtained. A posilive
discriminant indicates that the ray intersects the
sphere. Equation (37) is solved for all spheres for
which it has a positive discriminant. The smaller of
the two solutions obtained gives the actual point of
intersection with a sphere. Also, the distance the ray
travels before it intersects a bounding surface is deter-
mined. The minimum distance a ray travels before it
is intercepted by a sphere or a bounding surface is
then determined. The sphere or the bounding surface
corresponding to this solution is the surface which
actually intercepts the ray.

If the ray is intercepted by the side walls, the periodic
boundary condition is applied. In case it passes
through the upper or the lower face, the energy associ-
ated with the ray is registered as transmission or
reflection. If it is intercepted by a sphere, the point of
intersection is determined and the direction cosines of
the reflected ray for a specularly scattering sphere arc
found using the laws of reflection. i.c.

e The incident ray, the reflected ray and the normal
to the surface all lie in the same plane.

e The angle of incidence is equal to the angle of
reflection.

If the sphere is assumed to be diffusely scattering,
then the ray is scattered in a random direction from
the point of interception under the restriction that the
ray does not penetrate the sphere. After reflection, the
energy of the reflected ray is given by E, = pE,. A
combination of diffuse and specular scattering can
also be modelled. This can be done by generating a
random number at every collision and comparing it to
the ratio of specular scattering to the total scattering.
Then, the scattering is allowed to take place specularly
if the random number is less than the fraction
scattered specularly. Otherwise, the ray is scattered
diffusely.

The above process is repeated until the ray passes
through either the upper or the lower surface. The
number of rays used for each simulation ranged from
100000 to 1000000. Packed beds with lower trans-
mittance need more rays for the same accuracy.

3.3. Semi-transparent particles

Transmitting particles are dealt with by ray tracing
inside the sphere, following the laws of reflection and
refraction. The angle that the incident radiation makes
with the tangent to the surface, i.e. (0;), is calculated.
Then, the angle of refraction is given by

B. P. SingH and M. KaviaNy

n, .
n= . (3R)
"y

cos 0, = ncos 0.,

Next, the Fresnel coeflicients and the reflectivity are
calculated in terms of the angles ), and 0, (pp. 95- 101
of Siegel and Howell [1]). i.c.

. [tan@,-00 ] q
Pi=tanw+0y| "

. |sin@0, =0y for s 0 39
P Lsin 00y ORG99

Thus, the reflected parts of energy are p}, and p’,,.
The refracted parts are 1 —p/; and | —p’ ;. Then, the
energy carried by the various rays is [21]

E.=pyu

E\J’ = “ 4/)/:‘/1)2(/)/\;/,)’) :

forp=20 (40)

forp=1223....
4n

For the other polarization, replace || with L. How-
ever, if k, 18 not small, then equation (39) should not
be used to calculate the reflectivity. Instead, an cxact
analysis should be followed (p. 100 of Siegel and How-
eli [1]) although ray tracing beyond (p = 0) will not
be required because even moderate values of k, (for a
large particle in the geometrical optics range) make
the particle virtually opaque.

For non-polarized irradiation, the total energy car-
ried by a ray is given by

E,=E, ,+E.,) (42)

When a ray strikes a spherc, it is either reflected

(p = 0) or transmitted (p = 1, 2....) with a reduction

in the energy due to absorption. The outcome is
decided by generating a random number. Let us define

ik = 0.

B=7Y E.

{43)
i—0
Then. the ray is reflected (p = 0) if
S</fo (44)
and is transmitted, with p = i if
Bi<i< P (45)

Generally, tracing up to p =2 or 3 is sufficient.
Figure 1 shows a sketch of a ray traced up to p = 2.

F1G. 1. Ray tracing for a semi-transparent sphere.
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The ray incident on the point P, can either be reflected
or transmitted.

o If the ray is reflected, its direction cosines are
calculated as in the case of opaque particles. However,
the energy carried by the ray, remains unchanged.

o If the ray is transmitted, the direction cosines of
the ray r, , are found using the laws of refraction.

—the incident ray, the refracted ray, and the normal
to the surface all lie in the same plane;

—the angle of refraction is related to the angle of
incidence by Snell’s law (equation (38)).

The coordinates of point P, are found by using
P,P, = 2Rsin §,. The direction cosines of the rays
ry , and r, are found by applying the laws of reflection
and refraction at point P, respectively.

The coordinates of point P, and the direction
cosines of ray r, are found by repeating the above
steps.

In the case of semi-transparent particles (x # 0),
the energy of the rays is reduced by an attenuating
factor given by

F, =exp (—4pxa, sinf,) forp=1,2,3,... (46)

where a, is the size parameter (¢, = 2nR/4). Therefore,
the energy carried by a transmitted ray is given by

E,=FE forp=1.2,.... 47)
3.4. Emitting particles

The spheres are assumed to have a high enough
thermal conductivity so that a sphere can be assumed
to be isothermal. The case simulated here is of a bed
of absorbing, emitting, and scattering spheres. If the
sphere has a reflectivity p, the ray is:

o Reflected if p > &, either diffuse or specularly
reflecting particles may be considered.
o Absorbed and emitted if p < ¢.

The emission can take place from any randomly
selected point on the surface. Also, the direction of the
emitted ray is determined according to the Lambert
cosine law as in the case of diffusely reflected rays.

4. RADIANT CONDUCTIVITY

The radiative heat transfer for a one-dimensional,
plane geometry, with emitting particles under steady-
state condition is given by [14]

FO' 4 4
q. = T;*I)“‘*-E(Tn -T2 48)
1—p, ~d

where F is called the exchange factor and the prop-
erties are assumed to be wavelength independent. If
o, = 0 and the bed is several particles deep, then the
first term of the denominator can be neglected. Then,
for T\ —T, < 200 K, a radiant conductivity is defined
{12]
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k, = 4FdoT?. (49)

Many different models are available for prediction
of F, and these are reviewed by Vortmeyer [14]. Here,
the main emphasis will be on examining the validity
of this approach, by comparing the results of some of
these models with the Monte Carlo simulations and
also with the available experimental results.

A solution to this problem based on the two-flux
model is given by Tien and Drolen [12]

F= d(T—zi—Zcﬁs (50)
which can be written as
I (51)
3£ (30 +2B1;5)

For isotropic scattering, B = 0.5 and the above
equation becomes independent of the particle emiss-
ivity.

5. RESULTS AND DISCUSSION

5.1. Examination of two-flux method

The inability of the two-flux model to handle large
anisotropy in the phase function was noted by Brews-
ter and Tien [22] and by Mengiic and Viskanta [23]
although it was found to be suitable for isotropic
scatterers. However, only non-absorbing media were
considered in these studies (w, = 1). It is shown here
that the two-flux model fails to handle the hemi-
spherical anisotropy created by an isotropically scat-
tering, absorbing medium. We consider a packed bed
of specularly reflecting spheres with constant reflec-
tivity of 0.6 and porosity of 0.40 subject to a diffuse
source on one of its boundaries. Then, we calculate
the properties of the medium as described in Section
2.2 and solve the equation of radiative transfer by
applying the two-flux method and the discrete ordi-
nates method (using a 24 point Gaussian quadrature).
The results are presented in Fig. 2. The figure clearly
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F1G. 2. Effect of optical thickness on transmittance for an
absorbing medium (w, = 0.6).
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shows that the two-flux model fails to give satisfactory
results.

The above point could have been made for an ideal
medium with given properties ({a,), {o,), and (D))
without refering to a packed bed. However, the above-
mentioned set of conditions resembles the experiment
of Chen and Churchill [13], where the use of the two-
flux method is partly responsible for incorrect con-
clusions regarding the validity of the theory of inde-
pendent scattering in packed beds. This will be dis-
cussed in detail in Section 5.3.

5.2. Comparison of Monte Carlo simulations and
independent theory

The Monte Carlo method, being a direct simul-
ation, involves very few assumptions. On the other
hand, the continuum treatment involves the approxi-
mation of a heterogeneous system by a single
continuum. The major task is that of obtaining the
radiative properties of this continuum. This can be
done by using the independent theory (which though
easiest to use, is not always valid), or through alter-
nate methods that allow for interparticle interactions.
The Monte Carlo method can be used to get the trans-
mittance or reflectance through a packed bed (as is
done in this section). Alternatively, the radiative prop-
erties of the bed can also be obtained using the Monte
Carlo method. These properties are not uniform since
the bulk behavior and that near bounding surfaces
are different.

According to the currently accepted criterion,
packed beds of large particles lie in the independent
regime ; therefore, the independent theory should be
valid for these beds. However, it will be shown in
this section that because of the violation of the point
scattering assumption, the theory of independent scat-
tering breaks down when the porosity is small. As the
porosity is increased, a closer agreement is expected
between the Monte Carlo simulation and the results
obtained from the equation of transfer solved by the
method of discrete ordinates. In this section, first
opaque particles, and then semi-transparent particles
are examined. The particles are assumed to be non-
emitting in the wavelength range of interest.

Figure 3 shows the transmittance through a
medium consisting of totally reflecting particles. The
scattering is assumed to be specular. Porosities of
0.476, 0.732, 0.935, and 0.992 are considered. The
bed is generated by the second method described in
Section 3.1. The optical thickness is calculated from
equation (11). Thus according to the theory of inde-
pendent scattering, the following systems are exactly
equivalent (as far as their radiative behavior is con-
cerned) :

ec=0476, N =28.0

ec=0732,N=125

e =100935 N=320

oc=10.992, N =128.0

where N is the number of layers in the generated bed
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FiG. 3. Effect of porosity on transmittance for totally reflect-
ing spheres (p = 1).

(N = L for all porosities greater than or equal to the
porosity of the simple cubic arrangement since the
layers are a unit distance apart). The value of L/d is
obtained by noting that for systems having a poros-
ity larger than the simple cubic porosity, d=
((1—£)/0.524)"*. Thus, the values of d for the four
systems mentioned above are 1.0, 0.8, 0.5, and 0.25,
respectively.

All these systems give 7, = 6.28, where 1,4 is the
optical thickness of a bed based on the independent
theory, i.e. the independent theory predicts identical
behavior for all these systems. The transmittance
through packed beds of different porosities and at
different values of 7,4 was calculated by the method
of discrete ordinates using a 24 point Gaussian quad-
rature. Further increase in the number of ordinates
did not cause any significant change in the results. It
is clear from Fig. 3 that the independent theory fails
for low porosities. As the porosity is increased, the
Monte Carlo solution begins to approach the inde-
pendent theory solution. For ¢ = 0.992, the agreement
obtained is good. The bulk (away from the bounding
surface) behavior predicted by the Monte Carlo simu-
lations for ¢ = 0.992 and the results of the independent
theory are in very close agreement. A small difference
occurs at the boundaries, where the bulk properties
are no longer valid. However, although this difference
occurs at the boundary, the commonly made assump-
tion that the prediction by the continuum treatment
will improve with increase in the optical thickness is
not justifiable because this off-set is carried over to
larger optical thicknesses.

Figure 4 shows the effect of the porosity on trans-
mittance for absorbing particles (p = 0.7). Again, the
independent theory fails for low porosities although
the agreement for a dilute system is good. Thus, the
transmittance for a packed bed of opaque particles
can be significantly less than that predicted by the
independent theory. This is due to multiple scattering
in a representative elementary volume, so that the



Independent theory versus direct simulation of radiation heat transfer in packed beds

10 E . SPECULARLY REFLECTING PARTICLES ( p = 0.7 )
Eo e INDEPENDENT
- MONTE CARLO
107 b \ » € =0478
3 B € =032
L ® € =0935
r o € =0992
T. 107k
107 3
107 . | , i . ! R
0.0 20 4.0 6.0 8.0
Tind

FiG. 4. Effect of porosity on transmittance for absorbing
spheres (p = 0.7).

effective cross section presented by a particle is more
than its independent cross section.

Figures 5-7 show the effect of change in the porosity
on the transmittance through a medium of semi-trans-
parent particles. The particles considered are large
spheres with n = 1.5, For these particles, the only
parameter that determines the radiative properties of
a particle is the product ke, (as long as x is not too
large). Figure 5 is plotted for the case of ¥ = 0 (frans-
parent spheres). Differences from opaque particles
(Figs. 3 and 4) are obvious. A violation of the inde-
pendent theory resulis in a decrease in the trans-
mittance for opaque spheres, but for transparent
spheres, it results in an increase in the transmittance.
This results because the change in the optical thickness
across one particle in a packed bed is large. Therefore,
a transparent particle while transmitting the ray
through it also ‘transports’ it across a substantial
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F1G. 5. Effect of porosity on transmittance for transparent
spheres (n = 1.5, 1,, = 0).
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Fi1G. 6. Effect of porosity on transmittance for semi-trans-
parent spheres (n = 1.5, n;, = 0.287).

optical thickness. In a dilute suspension, a particle
while transmitting through it still does not transport
it across a substantial drop in intensity.

Figure 6 is plotted for semi-transparent particles
with xa, = 0.1, which gives #,, = 0.287. The absorp-
tion decreases the above effect (transportation across
a layer of substantial optical thickness) to the extent
that it is exactly balanced by the decrease due to
multiple scattering in the elementary volume for
¢ = 0.476. As a result, the Monte Carlo prediction
for ¢ = 0.476 shows very good agreement with the
prediction from the independent theory. The results
for a dilute system are exactly as expected: giving
slightly less transmittance than the independent the-
ory solution but showing the same bulk behavior.
Therefore, due to these two opposing effects, the mag-
nitude of deviation from independent theory for
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F1. 7. Effect of porosity on transmittance for semi-trans-
parent spheres (n = 1.5, ,, = 0.763).
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packed beds of transparent and semi-transparent par-
ticles is smaller than that for opaque spheres.

Figure 7 shows the effect of vanation in porosity on
transmittance through a medium of highly absorbing
semi-transparent particles (ka, = 0.5, 5, = 0.763).
Here, the multiplc scatiering effect clearly dominates
over the ‘transportation” effect. The predicted trans-
mittance for low porositics by the Monte Carlo
method is far less than that predicted by the inde-
pendent theory. while the most dilute system
{e = 0.992) again shows good agreement with the
independent theory. It is encouraging to note that
the & = 0.992 system matched the independent theory

results for all cases considered. However, the cffect of

the porosity on transmittance is noticeable even lor
relatively high porosities (¢ = 0.933).

5.3. Comparison with the Chen and Churchill exper-
iment

The experiment of Chen and Churchill [13] is the
most referenced experiment on radiative transfer in
packed beds [12]. In this experiment, an open-cnded
tubular furnace behaving as a high temperaturc,
blackbody source was incident on one surface of a
packed bed of spheres. The flux was modulated to a
square wave by a mechanical chopper, and the inten-
sity of the transmitted radiation was measured with a
thermopile detector. The packed bed was designed to
simulate a one-dimensional bed by using an aluminum
tube with highly reflecting walls as the container. The
transmission through the bed was measured through
isothermal beds of glass, aluminum oxide, steel, and
silicon carbide particles of different shapes. The use
of the modulator enabled the measurement of only
the scattered and directly transmitted radiation from
the source and the particles in the bed can be con-
sidered to be nonemitting.

Many authors have compared the resulis of their
models to the experimental results of Chen and
Churchill. However. onc fact which has been over-
looked by all of them is the incident boundary con-
dition to be applied. The incident boundary condition
has always been treated as diffuse. Figure 8 shows a
sketch of the apparatus used in this experiment [24].
It is clear that the incident radiation is collimated from
a very small solid angle around the normal. Neither
the two-flux model nor the unit-cell type Monte Carlo
simulation are capable of handling this boundary con-
dition. However, it can be accommodated by the
method of discrete ordinates as well as the direct
simulation of a packed bed.

Figure 9 shows the comparison of results obtained
from the Monte Carlo method with those [rom the
independent theory (using the method of discrete ordi-
nates). with the Chen and Churchill experiment on
steel spheres (¢ = 4.7625 mm, T = 1366 K, where 7
is the temperature of the blackbody source). The
experiment was closely matched by Brewster [4] by
using an emissivity of 0.4 (as recommended by Chen
and Churchill [13]) and by using the two-flux model.
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The errors resulting from the two-flux method were
discussed in Section 5.1. The use of the incorrect
boundary condition adds to the error because both of
these factors (the use of the two-flux model and the
use of the incorrect boundary condition) result in
lower transmission. Figure 9 shows the results
obtained from the independent theory, assuming
specularly reflecting spheres with an emissivity of 0.4,
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FiG. 9. Transmittance from a bed of steel spheres: com-
parison of the Chen and Churchill experiment with the theor-
etical predictions.
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and solving by the method of discrete ordinates. It
can be seen that the independent theory predicts a
much higher transmittance than the experimental
results of Chen and Churchill.

Drolen and Tien [6] calculated the emissivity from
the optical properties of iron. They used the # and x
values at 4 = 0.589 um from Siegel and Howell [1] and
scaled them to A = A, (Where A, is the wavelength
corresponding to the maximum emissive power in
the blackbody spectrum) using the Hagen—Rubens
formula. Then using the Mie theory, they arrived at
12 = 0.50, However, the approach of using the optical
properties at A = A,,, is questionable since 75% of
the energy of the blackbody spectrum is at higher
wavelengths. Also, the use of the Hagen—Rubens for-
mula is unnecessary because the optical properties of
iron are now available [25]. The spectrum was divided
into five wavelength bands, and the wavelengths in
the middle of the band were used to calculate the
emissivities of a large particle. Emissivity values rang-
ing from 0.05 to 0.30 were obtained. This would result
in further worsening of the prediction by the inde-
pendent theory.

The Monte Carlo method was used with a randomly
packed bed (¢ = 0.58) generated using the sphere set-
tling program of Jodrey and Tory [20]. Figure 9 shows
two plots obtained from the Monte Carlo method.
The first is plotted for specularly scattering particles
for g, = 0.4 (as reported by Chen and Churchill). Also
plotted is a spectrally averaged transmittance
obtained by calculating the transmittance for each
band and computing a weighted average. It is clear
from the figure that the results from the Monte Carlo
method lie in the same range as the experiment. The
uncertainty in the emissivity of steel because of the
dependence on the temperature and due to the pres-
ence of an oxide coating was pointed out by Chen and
Churchill [13]. In fact, the first couple of layers might
be at a higher temperature than the rest of the bed
because of their proximity to the source.

It must be stressed that the independent theory fails
to explain the experimental results even when a very
large allowance is made for uncertainty in the emiss-
ivity.

Figure 10 shows the comparison of results obtained
from the Monte Carlo method and the independent
theory with the Chen and Churchill experiment for
glass spheres (d = Smm, T = 1366 K). The only other
prediction available is that of Brewster [4] who used
the two-flux method with an emissivity of 0.03 for
A < 2.7 ym, and an emissivity of 0.9 for 4 > 2.7 um.
For the present study, the wavelength range was div-
ided into three suitable bands. The optical properties
of glass [26] were used to find the absorption
efficiencies and the scattering phase function from the
theory of geometric scattering. Figure 11 shows the
variation of absorption efficiency with wavelength for
a 5 mm glass sphere. The phase was calculated using
the theory of geometric scattering and expressed in a
series of Legendre polynomials. Then, the method of
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parison of the Chen and Churchill experiment with the theor-
etical predictions.

discrete ordinates was used to calculate the trans-
mittance predicted by the independent theory. The
Monte Carlo simulation for a randomly packed bed of
semi-transparent particles was performed. The results
for the Monte Carlo simulation show good agreement
with the experimental results. The prediction obtained
from the independent theory also shows fair agree-
ment. As pointed out in the previous section, this
is because the errors resulting from the use of the
independent theory, for semi-transparent particles
with small absorption, are not very large.

5.4. Comparison with the Kasparek experiment

In the Kasparek experiment {described by Vort-
meyer [14]) measurements of radiation heat transfer
through a number of planar series of welded steel
spheres were made. Conduction and convection were

1.0

T GLASS SPHERE (d = Smm}
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Fic. 11. Absorption efficiency of a glass sphere of diameter
S mm.
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eliminated by placing the layers a small distance apart
and by performing the experiment in vacuum. The
high thermal conductivity of the material ensured that
the heat resistance of the material was negligible and
that the spheres were isothermal. Measurements were
made using polished steel spheres (& = 0.35) and
chromium oxide coated spheres (g, = 0.85). The
arrangements considered were a cubic (¢ &~ 0.5) and a
porosity of 0.4.

The Monte Carlo method as described in Section
3.3 was used to predict the heat transfer through the
packed bed used in the Kasparek experiment (unlike
the previous sections, we encounter emitting par-
ticles). The results confirm the validity of the exchange
factor approach as long as the emissivity is not
close to zero. The change in the value of the exchange
factor (obtained from equation (48)), resulting from
increasing the number of layers from 8 to 16, was less
than 0.01 for &, > 0.20. The simulation was performed
for both specularly scattering and diffusely scattering
spheres. The polished steel spheres can be considered
specularly scattering while the chromium oxide
spheres would scatter diffusely. Table 1 shows the
results of the Monte Carlo simulation as well as the
results obtained from the two-flux model and those
from the models of Argo and Smith (described by
Vortmeyer [14]) and Vortmeyer [14] for a porosity of
0.4. The predictions by the Monte Carlo method
match the experimental results fairly well, considering
that some uncertainty is always present in the emiss-
ivity values. Diffuse spheres result in slightly smaller
values of F although, as expected, the difference
decreases with increasing emissivity and vanishes for
¢, = 1. The change in value of F with porosity also
matched the experimental results. For a cubic
packing, the value of F increases from 0.47 to 0.51,
for ¢, = 0.35, while the experimental value increases
from 0.54 to 0.60. For ¢ = 0.85, the value of F
increases from 0.94 to 0.97, while the experimental
value increases from 1.02 to 1.06.

The predictions based on the two-flux model for
diffuse spheres show a very small sensitivity to the
emissivity, while those for specularly scattering
spheres show no change at all. Using the method of
discrete ordinates, higher values of F are obtained
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than those predicted by the two-flux method. Also,
for specularly scattering spheres, the heat transfer
remained independent of the emissivity. This can be
seen from equation (19) by applying the condition of
radiative equilibrium. Physically, when the spheres are
treated as point scatterers, there is clearly no difference
between isotropic scattering from a point and emis-
sion from it. The mechanism that results in an increase
in the radiative heat transfer, with an increase in the
emissivity, is that of transportation of the absorbed
energy through each particle (by conduction), i.c. par-
ticles absorb radiation at one face and emit a part of
it from the other face. For a dilute medium consisting
of isotropically scattering, small particles separated
by large distances, the heat transfer is again expected
to be independent of the particle emissivity.

6. CONCLUSIONS

Radiative heat transfer through a packed bed of
particles has been simulated using the Monte Carlo
technique, and the results are compared with available
experimental results and also the results obtained
from the solution of the equation of radiative transfer
under the assumption of independent scattering. The
important conclusions that can be drawn from this
study are:

e The independent theory is shown to fail for sys-
tems with low porosity and is not suitable for packed
beds (even though the C/4 criterion is satisfied). The
failure is more drastic for transmission through a bed
of opaque spheres than for transparent and semi-
transparent spheres with low absorption. Also, the
deviation from the independent theory is shown to
increase with decrease in the porosity. This deviation
can be significant for porosities as high as 0.935.

e The independent theory gives good predictions
for the bulk behavior of highly porous systems
(¢ = 0.992) for all cases considered. However, because
the bulk properties no longer hold good near the
bounding surface, the boundary behavior predicted
by the independent theory is different from that pre-
dicted by the Monte Carlo simulations. As a result,
the transmittance predicted by the independent theory

Table 1. Radiation exchange factor F (¢ = 0.4)

Emissivity

Model 0.2 0.35 0.60 0.85 1.0
Two-flux (diffuse) 0.88 0.91 1.02
Two-flux (specular) 1.11 [.1t 111
Discrete ordinates (diffuse) 1.09 1.15 1.25 1.38 1.48
Discrete ordinates (specular) 1.48 1.48 1.48 1.48 1.48
Argo and Smith 0.11 0.21 0.43 0.74 1.0
Vortmeyer 0.25 0.33 0.54 0.85 1.12
Kasparek (experiment) -— 0.54 - 1.02
Monte Carlo (diffuse) 0.32 0.45 0.68 0.94 [.10
Monte Carlo (specular) 0.34 0.47 0.69 0.95 1.10
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(for £ = 0.992) is always slightly more than that pre-
dicted by the Monte Carlo method.

e Two distinct dependent scattering effects were
identified. The multiple scattering of the reflected rays
increases the effective scattering and absorption cross
sections of the particles. This results in a decrease
in transmission through the bed. The transmission
through a particle in a packed bed results in a decrease
in the effective cross sections resulting in an increase in
the transmission through a bed. For opaque particles,
only the multiple scattering effect is found while for
transparent and semi-transparent particles, both the
above-mentioned effects are found and tend to oppose
each other.

e Fair agreement with the Chen and Churchill
experiment on steel spheres is found using the Monte
Carlo method. More importantly, the inability of the
independent theory to match the experimental results
is clearly demonstrated. The Monte Carlo results
show good agreement with the Chen and Churchill
experiment with glass spheres. However, the deviation
from the independent theory is not large, because of
the low absorption of the glass spheres.

e The agreement of the Monte Carlo results with
the Kasparek experiment is encouraging. The inde-
pendent theory fails to give acceptable results for a
packed bed of absorbing, emitting, and scattering
spheres.

e The two-flux model fails for absorbing media,
even when the phase function is isotropic. The trans-
mission through such media was found to be severely
underpredicted by the two-flux model.
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THEORIE INDEPENDANTE CONTRE SIMULATION DIRECTE DU TRANSFERT
THERMIQUE RADIATIF DANS LES LITS FIXES

Résumé—On considére le rayonnement thermique dans les lits fixes de grosses particules sphériques. La
pratique courante est de suivre la théorie de la dispersion indépendante tant que C/4 > 0.5 ou C est la
distance libre moyenne entre particules ¢t . la longueur d’onde. Les propriétés de la particule seule sont
reliées aux propriétés radiatives du lit par une moyenne en volume. L'équation de transfert est ensuite
résolue par une méthode approchée tetle que la methode des ordonnées discrétes ou celle des deux flux.
Dans cette étude, on utilise la méthode de Monte Carlo pour examiner le transfert radiatif a travers les lits
fixes de grosses (domaine géom¢trique) particules. On considére des particules opaques, semi-transparentes
et émissives. Les résultats sont comparés d la théorie indépendante et aux résultats expérimentaux dis-
ponibles; ils indiquent que la théorie independante tombe en défaut quand ce critére C// est satisfait. Le
succes de la théoric indépendante dans les systémes & faible porosité. noté par des chercheurs antérieurs,
est montré étre soit un cas spécial existant seulement pour un petit domaine de propriéiés optiques, soit
di a des hypotheses injustifiees. Pour les mémes propriétés radiatives de particule, la déviation par rapport
d la théorie indépendante augmente quand la porosité décroit. Cette déviation peut &tre sensible méme
pour des porosités allant jusqu’d 0,935,

WARMETRANSRQRT DURCH STRAHLUNG IN SCHUTTUNGEN: VERGLEICH DER
UNABHANGIGEN THEORIE MIT EINER DIREKTEN SIMULATION

Zusammenfassung--Es wird der Wirmetransport durch Strahlung in Schiittungen mit verhaltnismiig
grofen kugeligen Partikeln betrachtet. Ublicherweise wird dazu dic Theorie der unabhingigen Streuung
verwendet, solange C//. > 0.5 ist (mit C und 4 als der mittleren freien Weglinge bzw. der Wellenlidnge).
Dic Eigenschaften des cinzelnen Partikels werden durch Volumenmittelung zu Strahlungseigenschaften
fiir die Schiittung verarbeitet. Die Transportgleichung wird mit Hilfe eines Nidherungsverfahrens gelost.
beispielsweise mit der Methode diskreter Ordinaten oder mit der Zwei-Strom-Methode. In der vorliegenden
Untersuchung wird die Monte-Carlo-Methode verwendet, um den Wirmetransport durch Strahlung in
Schiittungen aus groBen Partikeln zu bestimmen. Es werden strahlungsundurchlissige. halbdurchlissige
und emittierende Partikel untersucht. Die Ergebnisse werden mit solchen nach der unabhéngigen Theorie
und mit verfiigbaren Versuchsdaten verglichen. Es zeigt sich. dafl die unabhiingige Theorie falsche Ergeb-
nisse liefert, sogar dann, wenn das C/2-Kriterium erfillt ist. Es wird gezeigt. daB die von fritheren Autoren
angemerkte Anwendbarkeit der unabhédngigen Theorie bei Systemen mit geringer Porositit sich cntweder
auf Spezialfille beschridnkt, die nur fiir cinen engen Bereich der optischen Eigenschaften existieren, oder
aber durch nichtzulidssige Annahmen gewonnen wird. Bei identischen Strahlungseigenschaften der Partikel
nimmt die Abweichung von der unabhdngigen Theorie mit abnehmender Porositdt zu. Diese Abweichung
kann signifikant sein---setbst fir Porositdten um 0.935.

CPABHEHUE TEOPUU HE3ABUCHUMOI'O PACCESIHUA U TTPAMOTO
MO/IEJTUPOBAHUS PAIUAHMOHHOI'O TEINJIOITEPEHOCA B YITAKOBAHHBIX
CJ0AX

Annorauus—HWccieyeTcs pajMAlMOHHLIA  TEIUIONEPEHOC B YIAKOBAHHBIX CJOSX OTHOCHTEILHO
KpYOHbIX cepudeckux YacTuu., OOIIENPUHATHIM ABISETCH HUCINOJIL3OBAHME TEOPHH HE3aBHCHMOTO pac-
ceanua mpu C/A > 0,5, rae C—cpejHee paccTOSIHUE MEXIY YaCTHIAMHE, A—/UIHHA BoJHBL MeToaom
ycpenHeHHs 10 0BbeMy YCTAHABIMBAETCS B3aMMOCBA3b MEXIY CBOHCTBAMM CIHHHYHOH HacTULBI U
M3JTy4aTeTbHBIME CBOACTBAMH CJIOA. 3aTEM OIHMM M3 NPHOJIMKEHHBIX METOMOB-—METOIOM AUCKPETHBIX
OPAMHAT WM JBYXMOTOYHBIM—DELIAETCS ypaBHEHHe nepexoca. B nmanuoit paboTe ans wucciefoBanus
PAIMAIMOHHOTO TeNJIONEPEHOCA 4epe3 YNAKOBAHHBIE CJOH KPYMHBIX YacCTHU (reOMETPHYECKOe
npubupkenue) ucnonssyercs meron Monte Kapnio. PaccMaTpuBaloTes HenpospayHble, HOJNYNpPo3pay-
Hble M H3My4atoline yacTvipbl. CpaBHEeHNE MONYYECHHBIX PE3YJAbTATOB C TEOPHEH HE3aBUCHMMOIO pacces-
HUf M HMEIOIMMHCS JKCIEPUMEHTAIBHBIMA JIaHHBIMM TOKA3bIBacT, 4YTO YNOMSHYTad TeopHs
HEMpPHUIO/IHA [IAXKE NP BLITONHCHHA KpHTepusa A C/A. Kak 0TMe4eHO B NpeabiAyliuX HCCAENIOBAHMAX,
NpPUMEHEHUE TAKOM TEOPHM [UIA CHCTEM ¢ HU3KOH OPO3HOCTHIO ABISACTCH YCICUIHBIM TOJIBKO B OTIEIb-
HBIX CJyqasix B Y3KOM [JHATIA30HE ONTHYECKHX CBOWCTB WITM DM HANMYUH HEKOTOPBIX HEMPABOMEDHBIX
ponyiiernit. [Tokazano, ¥TO NPHU ONMHAKOBBIX M3JIyYaTEJIbHBIX CBOHCTBAX YACTHLl OTKJIIOHEHHE OT pe3y-
JLTATOB TEOPHH HE3ABHCEMMOIO PACCESHMS BO3PACTAET ¢ YMEHBUICHHEM MPO3HOCTH. YKa3aHHOE OTK-
JIOHEHHE MOXET GbITh CYLIECTBEHHBIM [aXe B Cilydae 3HaUeHMs TOPO3HOCTH, pasroro 0,935



