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Abstract: Let X,, X,, X,,... be a sequence of i.i.d. C%*-valued random variables with a spherically symmetric distribution. Let 

(S,,; n > 0) be its sequence of partial sums and let (+(n); n 2 0) be its winding sequence. Assuming only a mild moment condition we 

show, via Brownian embedding, that 2$1(n)/ o g n converges in distribution to a standard hyperbolic secant distribution. 
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1. Introduction 

Let X,, X,, X3,. . . be a sequence of i.i.d. R2-valued random variables and let S = (S,; n > 0) be its 
sequence of partial sums. In Belisle (1989) we defined the winding sequence (e(n); n 2 0) of the random 
walk S and we showed that if 

(a) Xi has mean vector zero and covariance matrix identity, 
(b) there exists a finite constant b such that P[ 11 Xi 11 < b] = 1, and 
(c) either the distribution of Xi is absolutely continuous with respect to Lebesgue measure in the plane, 

or the additive subgroup of R2 generated by the support of the distribution of Xi is the lattice 
gd= {dz; zER2} for some d>O, 
then 

29(n) d 
log n 

+W asn+cc 

where W is standard hyperbolic secant, i.e. W has density isech(&rw). (Condition (a) can be relaxed. 
Vector mean zero and nonsingular covariance matrix is enough. We hope to replace condition (b) by a 
moment condition. Condition (c) can be relaxed. Harris recurrence is enough.) The proof is long and it 
involves a rather complicated construction. The purpose of this note is to show that for spherically 
symmetric random walks satisfying a mild moment condition, the limit distribution result (1) follows 
easily, via Brownian embedding, from the analogous result for Brownian big windings. 

2. The result 

Let F be a nondegenerate probability measure on Iw 2 and assume that it satisfies the following conditions: 
(i) F is spherically symmetric (in the sense that for every rotation Q on R2 and for every Bore1 set B 
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in lR2, F(QB) = F(B)). 

(3 k,ll x II ’ log2(max{ly II x II ))F(dx) < ~0. 

Let p be the probability measure on IR + defined by 

#u((a, b])=F({xER? a< IlxII Gb}), O=Ga<b<cc. 

Let B = (B(t): t 2 0) be a standard 2-dimensional Brownian motion starting at the origin and let R,, R,, 

R,, . . . be independent random variables with distribution p, independent of B. Let r0 = 0 and for j > I, 

rj=inf ta7j_1. ( . IIB(t) -B(~,-I) 11 =Rj). 

Finally, let 

X, = B( T,,) - B( T,-~). 

Observe that Xi, X2, X3,. . _ is a sequence of i.i.d. R2-valued random variables with distribution F and 
that its sequence of partial sums S = (S,; n 2 0) is the sequence ( B(T,); n 2 0). Furthermore the time 
increments 7j - 7, _ 1, j > 1, are i.i.d. This is our Brownian embedding representation of S. Observe also 
that I( X, 11 = R,. From condition (ii) we have /n2 11 x (1 2F(d x < co and since windings are invariant under ) 
scaling, there will be no loss of generality in assuming that /uz 11 x 11 2F(dx) = 2. (In view of condition (i) 
this is equivalent to the requirement that F have covariance matrix identity). With this normalization we 
have E[ ri - ~_i] = 1. Now write 

2+(n) 
log n 

_ 243(n) I %8(7J - 4dd> + 7w4 - 43w 
log n log n log n 

where (+(n); n 2 0) is the winding sequence of S and where (e,(t); t a 0) is the Brownian big winding 
process 

40) = &B(aj,, + de(s), 

as defined in Messulam and Yor (1982) and Pitman and Yor (1986). Below we prove the following two 
results: 

Proposition 1. 

Proposition 2. 

Now Messulam and Yor (1982) (see also Pitman and Yor, 1986) have shown that 

2fbw $ w 

log t 
ast+oc 

where W is standard hyperbolic secant. Thus we have: 
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Theorem 1. For 2-dimensional random walks with increments having a distribution that satisfies conditions (i) 
and (ii), we have 

Q(n) d 
log n 

+W asn+oO 

where W is standard hyperbolic secant. 0 

3. Proof of Proposition 1 

Fix 0 < E < 1. Choose 8, > 0 small enough so that 

Let nE be large enough so that for all n > n,, 

Now observe that if we have 1 7n - n 1 < n&, if we have 11 B(n(1 - 8,)) I[(1 - sin(ie)) > 1, and if we have 
~up,~,_~,~~,~,,~~+~,~ II B(t) - B(n(1 - 8,)) II < )I B(n(1 - 8,)) [Isin( then between time n and time rn the 
Brownian path remains inside the disk of radius II B( n(l - 6,)) (I ’ (’ ) sm Ia centered at B( n(1 - 8,)) and that 
disk does not intersect the unit disk centered at the origin. This implies that I O,(n) - O,(T,,) I < E. Thus 

P[ Mn) - 4&J I >&I 

<P[ lrn-nl >nS,] +P[IIB(n(l -&,))I](1 -sin(:e)) ,<l] 

+P 
1 

sup II B(t) - B(n(l - 4)) II > IIB(n(l - 4)) II sin&) 
n(l--6,)<t<n(1+6,) 

I 

<P[ lrn-nl >n&]+P[]]B(n(l-6,))]](1-sin(fe))<l] 

+P 
[ 

sup IIB(t)-B(n(l-&))(I >6~3/4n*‘2 sin(ie) 
n(l-6,)<fcn(1+6,) 1 

+P[((B(n(l-&))/I <8~‘4n1/2] 

+p ,~wIIm 
i . . > gg +P 

E I I ,,B(l)llg & 
e 1 

and we get 

P[[e,(n)-e,(r,)j >E] <E forall n>n,. 

This proves the proposition. 0 
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4. Proof of Proposition 2 

Let Xj=(+(j)--+(j-l)), qj=8e(~j)-/3B(~_1), and Aj=Xj-qj. Then 

+(n> -4&z> = i A,. 
j=l 

Below we show that E[A;] < co for j> 1 and E[A;] = O(l/‘) as j * co. By symmetry we have 
E[A,,A,,] = 0 for every j, Zj,. Thus for every E > 0, 

+w-M%) >E < 1 
log n 1 1 ’ e’(log n)’ = q &)- 

This proves the desired result. In order to obtain the desired bound on E[A;.], observe that if between time 
T_~ and time 5 the Brownian path remains inside a disk that does not intersect the unit disk centered at 
the origin, then A, = 0. Thus in particular 

+ J J E [A; ( Rj = r, 11 Sj_, )I = u] p(dr)$-“(du) 
[l,W) [u-l,m) 

where p(j-l) denotes the distribution of I( Sj_ 1 I(. Now 

E[A$IR,=r, IISj_lll =u] =E[(X,-qj)21Rj=r, IIS'-1[1 =u] 

.3E[A;I Rj= r, IIS,-I II =u] +3E[$IRj=r, IIs,- II =u]. 

The first term is bounded above by 37r2. The second term is equal to 3ECU,,,,[8,2(T((z.4, 0), r)] and is 

bounded above by 3E(o,0, [sup0 d f Q T((~,~),u+ r) B 02(t)] where E,[.] = E[. I B(0) = x] and where T(x, r) = 
inf{ t > 0: II B(t) - x II = r}. N ow using conformal invariance (Pitman and Yor, 1986, Section 5) one gets 

EW) 
I 

sup e,‘(t) f c log2(max{l, u+ r}) 
Oar~T((O,O),u+r) I 

for some finite constant c (which may now change from line to line). Thus 

E[AS] < A0 ljio 
,oo 

)(3n2 + 3c log2(max{l, u + r}))p(dr)p”-“(du) 

+J1 ji _1 
,w u ,m 

)(2n2 + 3c log2(max{l, u + r}))p(dr)#-“(du) 

=G 
J, / [o 1) [o 

,oo 
)log’(max& r))~(dr)#i-‘)(du) 

+C 
/ / 

(o ) [1 +Ibz2b4L rl)~“-l’(W~W) 
300 ,r 

<C lo 
,m 

)log2bW7 r>)p(dr>P[ llsj-1 II G 11 

+ Cj;o,mF[ II sj-l II G r+ I] log2(max(l, r})p(dr). 
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Covering the disk of radius p with 4p2 unit squares and using Stone’s theorem (Stone, 1970, Corollary 1) 
we get 

E[A;.] G sio 
,m 

)T* log*(m={l, r})p(dr) 

and condition (ii) yields the desired bound, i.e. E[A;] < c/j for some finite constant c. 0 

Remark 1. The case where F is a uniform distribution over a circle centered at the origin was recently 
investigated by Berger (1987) and by Berger and Roberts (1988) using a totally different approach. 

Remark 2. The bounds used in Section 4 are not sharp. It seems reasonable to hope that the condition 

E] II Xi II * log*@WL II X, II >>I < cc can be replaced by the weaker condition E[ ]I Xi I] *] < cc. It also 
seems reasonable to hope that this approach might work for general (not necessarily spherically symmet- 
ric) Brownian embeddable random walks. Spherical symmetry was used in the proof of Proposition 2 to 
obtain E[A,,A,,] = 0 for all j, #j,. Without spherical symmetry, more care would be needed. This is 
reminiscent of the difficulties involved in handling the ‘small windings’ in Belisle (1989). 

Remark 3. Under the spherical symmetry assumption, the sequence A,, A,, A,, . . . , is a martingale 
difference sequence and the computation of Section 4 suggests that $[A;] converges to a finite positive 
constant. Thus it appears that the central limit theorem for martingales could be used to show that 
(+(n) - 19,( T,))/ G is asymptotically normal. 
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