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We present a detailed investigation of the renormalization scheme dependence of the next-to-next-to-leading order QCD pre- 
dictions for the processes e+e - ~hadrons and x--* v,+hadrons. Based on it the comparison of the results obtained in three fre- 
quently used approaches to resolving the renormalization scheme ambiguities with experimental data is carried out. 

1. Introduction 

Two years ago the next-to-next-to-leading order 
( N N L O )  QCD calculation o f  the familiar R-ratio in 
e÷e - annihilations 

atot(e+e - ~ h a d r o n s )  
R ( s )  = 

a ( e + e -  ~ t + ~ t  - ) 

f 
= 3  ~ a ~ [ l + r ( s ) ] ,  (1)  

i = l  

fo r fmass less  quarks has been reported [ 1 ]. In per- 
turbative QCD r(s)  can be calculated as an expan- 
sion in the renormalized couplant a =g2 /4n2  

r(s)  = a ( R S )  [ 1 + r l  (s, R S ) a ( R S )  

+r2(s, RS)a2 (RS)  +.. .]  . (2)  

Defined in a given renormalization scheme (RS) this 
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SU-117312 Moscow, USSR. 

series, when truncated to any finite order, depends 
on this RS. In the MS RS [2] the original results [ 1 ] 
yielded very large and positive N N L O  corrections 
which seemed to have serious theoretical and phe- 
nomenological consequences. However, after check- 
ing these results it has been found by two of  us that 
they are not correct. The revised results [ 3] change 
the situation drastically as now the correction in MS 
RS is moderate and negative. Expressed through the 
RS invariant P2, introduced in ref. [4],  they lead, 
contrary to ref. [ 1 ], to P2 < 0! In such circumstances 
it is important  to reanalyse the question of  the RS 
dependence o f  the N N L O  results for the quantity (2) 
and in particular to investigate the implications in the 
infrared region. The aim of  this paper is twofold. First 
we discuss the RS dependence of  the N N L O  results 
[3].  We start from the MS RS but then concentrate 
on the discussion within the principle of  minimal 
sensitivity (PMS)  introduced in ref. [4] (and stud- 
ied in the infrared region in refs. [5,6] ) and on the 
effective charges (ECH)  approach [ 7,8 ], the latter 
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being essentially equivalent to the scheme invariant 
perturbation theory of ref. [ 9 ]. Our analysis thus re- 
places those of  refs. [ 10,11 ], based on ref. [ 1 ]. Sec- 
ondly we investigate the implications of  ref. [ 3 ] for 
QCD corrections to the semileptonic z-lepton decay 
rate. These corrections have been considered to NLO 
in ref. [ 12] and to NNLO (again using ref. [ 1 ] ) in 
refs. [13-16].  

2. Ren ormal i za t ion  s c h e m e  dependence  at  the N N L O  

As indicated in (2) both the couplant and the coef- 
ficients rk do depend on the chosen RS. For the dis- 
cussion of the RS dependence of physical quantities 
like (2) within the massless QCD (the restriction 
adopted throughout this paper) this RS may be de- 
fined by the set {a, rk; k>~ 1}. The renormalization 
group (RG) invariance then implies consistency re- 
lations among them. These are usually formulated by 
writing the couplant a (RS)  first as a function of a 
certain scale variable #, which enters the theory in 
the process of renormalization 

da (#, RC) 
- - f l ( a ) =  -ba2(l+ca+cza2+...), (3) 

d ln#  

where [ 17 ] 

153 -  19f 
b = ~ ( 3 3 - 2 f ) ,  c = - -  (4) 

6 6 - 4 f  

are RG invariants while c~, i >t 2 are free parameters 
defining the so called renormalization convention 
(RC).  At the NNLO we have therefore two free pa- 
rameters labeling our RS: c2 and either the couplant 
a itself or # related to it through (3). The value of c2 
corresponding to the MS RC is [ 18 ] 

77139 - 15099f+ 325f 2 
c2(MS) = (5) 

9 5 0 4 -  576f 

For phenomenologically interesting cases f =  5 (3) 
used in the following we thus have b = 1.26 (1.78) and 
c2 (MS) = 1.475 (4.47). At the NNLO the explicit de- 
pendence of r~, r2 on # and (?2 is determined by the 
equations 

d r , (# )  = 0  ' d r , ( # ) = b ,  
dc2 d In # 

dr2(#, c2) dr2(#, c2) --b(c+2rl), - - - 1 .  (6) 
d In # dc2 

The solution of (3), (6) can be written in terms of 
the RG invariants p, P2 as [ 4 ] 

r~ =bln(#/A)-p,  (7) 

r2 =P2 -c2  + (rl + ½c-) 2 • (8) 

Up to the NNLO the dependence of the couplant on 
# is given implicitly as 

a +ca+c2a2 +f(a, C2) , 

(9) 

2c2 - c  2 [ ~ 2c2a+c "~ 
f(a, c2) = d - -  ~arctan -d - a r c t a n  , 

d = ~ ,  4c2>c 2, (10) 

2c2-c2(ln[2C2a+c-c~_lnC~_~__~d ) 
f (a ,  c2)= ~ - - d - - \  12cza+c+a] 

d = x / ~ - 4 c 2  , 4 C 2 < C  2 . (11) 

In this notation .4=A(2c/b)-c/b= 1.15A (for f = 5 )  
where A is the conventional definition of the A-pa- 
rameter, is held fixed and varying the RS means 
varying #. Although this convention of labelling the 
RS singles out one RS as referential this is merely a 
matter of bookkeeping. Combining (7),  (9) we get 

1 ( x /  ca ) 
r~ = - + c l n  a l+c-~-+c2a e +f(a, c2)-p, (12) 

and putting all together we obtain r NNL° as a func- 
tion of RS invariants p, P2 and the RS-dependent 
quantities a, c2. The energy dependence of r NNL° en- 
ters entirely through the RG invariant p which can be 
written as 

p=bln(x~s/A)-r~(#=x/~s)-bln(x/~s/,~erf), (13) 

where Aeff is the RS invariant but process dependent 
parameter [ 8 ]. 

In the following we shall, when using #, take for the 
referential RS the MS one. We prefer to label the RS 
by means of a, c2 because there is then no need to 
introduce any referential RS at all. The usefulness of 

270 



Volume 267, number 2 PHYSICS LETTERS B 12 September 1991 

using the RG invariant p instead of s to describe the 
energy dependence rests on the fact that the theoret- 
ical expression for rNNLO(p) is unique while that for 
rNNLO(s) depends on the value of A~-g which must 
be determined from data. The RS dependence of 
r NNLO (a,  c2,/9,/92) can therefore be represented by a 
two dimensional surface in three dimensions. In this 
picture each point on such a surface represents 
uniquely one RS. Recall that at the NLO 

rNL°=a[2+caln(l-~caca)--/ga ] , (14,  

and the corresponding curve was close to a parabola 
[ 4 ]. The RS ambiguity of  (14) is simple and its en- 
ergy dependence obvious: both PMS and FAC blow 
up at/9 = 0 while the MS RS does so somewhat later 
a t p =  -2 .411.  

At the NNLO the situation is more complicated as 
the surface representing r NNLO depends nontrivially 
on the mutual relation of the two RG invariants/9,/92. 
In order to determine the value of the invariant/gz for 
the quantity (2) r,, r2 must be calculated to the NNLO 
in some RS. In massless QCD this is most conve- 
niently done in the MS RS where one finds [ 19 ] 

rl = 1 .986-0.115f ,  (15) 

and [3] 

rE = -- 6.637-- 1.2f-- 0.005f 2 

Combining (5),  (8), (15), ( 1 6 ) w e  get/92=P20 c) 
with the following values for f =  5, 3: 

/92(f=5) = -  15.5, /92(f=3) = - 12.2, (17) 

i.e./92 turns out to be negative in both phenomenolog- 
ically interesting cases! This invalidates the conclu- 
sions of  the recent phenomenological analyses 
[ 10,11 ], based on ref. [ 1 ]. In the following we there- 
fore reanalyze the NNLO corrections to (2) using the 
values in (17). The negative value of the correspond- 
ing/92 invariant has recently been found also in the 
analysis of  the NNLO corrections to the total had- 
ronic decay width of the Higgs boson [20,21 ]. A de- 
tailed discussion of the case/92 > 0 will be given else- 
where. A quantitative idea of the shape o f r  NNL° as a 
function of a, c2 and/9 can be obtained by looking for 

stationary points with respect to the variation of a, 
given by the equation 

drNNLO 
d-----~ = 0 ,  (18) 

or, explicitly, 

c2+2rl(c+c2a)+3r2(l+ca+c2a2)=O. (19) 

These points from a curve in the plane a, c2 along 
which we look for stationary points with respect to c2 
as well 

drNNLO 
= 0 .  (20) 

dc2 

This leads to the condition 

a=I(a, c, c2) [ 1 + ( c + 2 r  I a)  ] , 

I(a, c, c2) 

1 (a[cc2a- (2¢2--C2)]  ) 
--dE \ l+ca+c2a --4czf(a, c2) . (21) 

The system of coupled equations (19), (21 ) is too 
complicated to be solved analytically but there is no 
problem to solve them numerically. The complica- 
tion of the case P2 < 0 with respect to P2 > 0 comes 
basically from the fact that in the former case the so- 
lution to ( 19 ), (21 ), which turns out to be the saddle 
point, lies for each p in the quadrant a > 0, c2 < 0 where 
there is a boundary line defining the region of the 
physical, i.e. positive, couplant. Its equation 

1 +ca+cEa2=O (22) 

implies that for a given c2<0: a < a * ( c 2 ) = ( - c -  
)/2C2. Forp2 < 0 this saddle point, defining 

the PMS "optimized" RS, is moreover infrared sta- 
ble, i.e. has a finite limit a s p ~  - ~  [4]. 

In the effective charges (ECH) approach [ 7,8 ], 
which is is based on the requirement that to any or- 
der of  perturbation theory 

r(s)=aeff , (23) 

we get at the NNLO the condition 

r, (eft) + r2(eff)aeff = 0 .  (24) 

Assuming rl = rE = 0 separately defines what we call 
the "canonical" ECH approach. The/t-dependence of 
aeff is governed by the effective//-function: 
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daeff 
--/~e~(a) d In/2 

= -ba~rr( 1 +Caeff+c~ffa2eff+...) . (25) 

Due to the fact that c~ff=pz+(½c)2<O (for 
rl = r: = 0) this effective fl-function has an IR fixed 
point at 

- 1  ( c + ~ )  (26) 
aefr = 2c~----ff 

and therefore -NNLO -- is IR stable as in the PMS t e f f  ~ Ueff 

approach discussed above (numerically the respec- 
tive IR limits are different, see below). As for the PMS 
approach the physical relevance of this IR fixed point 
is an interesting problem in its own, lying, however, 
beyond the scope of this paper. We merely stress that 
the IR behaviour of the series (2) is closely related 
to the divergence thereof and can be answered only 
once a way of summing it is found. 

In the case of the ECH approach there appears at 
the NNLO a further complication connected with its 
very definition as (23) does not in general have a 
unique solution. In the case r~/r2 < 0 there is an infi- 
nite number of them corresponding to the intersec- 
tion of the surface rNNLO(a, C2) with the plane r=a. 
As with the solutions to (18) there are two, one or no 
intersections for any given c2, depending on the value 
of p. In the PMS approach an additional condition 
and namely the requirement drNNL°/dc2 = 0 could be 
used to find a unique point. Here on the other hand, 
there seems to be no reason to single out any of the 
solutions of (24). Note that even for c2 =c~ff=p2 + 
(½c) 2 there is besides the trivial solution r2 = 0 (de- 
fining the canonical ECH) another solution to the 
equation 

r 2 +crza-r~a2=r2(  1 + c a - r z a  2) = 0 ,  (27) 

implied by (23) and (8). In the following we shall 
use these two different solutions to estimate the am- 
biguity of the ECH approach at the NNLO. 

3. Comparison with experimental data 

We shall now present the phenomenological anal- 
ysis of r NNL° for the quantity (2) in all three above 

mentioned approaches using the value/92 = _.L 15.5. AS 
the comparison is done in the energy range x/s> 
l0 GeV, we take f =  5 and have c= 1.26, r~ = 1.411, 
r 2 = -  12.8. The world average value . _ t s )  ox A~-g -- 150 
MeV [22] (based mainly on the deep inelastic scat- 
tering data which determines primarily -~MsA (4) =230 
MeV) [ 23 ] translates to our ,/i= 172 MeV and means 
that the corresponding region in p lies safely inside 
the interval pc ( 12, 23 ). 

We point out that the recent NLO analyses [24- 
26] of (2) in the energy range spanned by the 
PETRA, PEP and TRISTAN experiments give higher 
values of A~g which cannot, even taking into account 
the large associated error, be made compatible with 
the cited world average. Even for so large values of 
A~-g we have, however, still pc ( 11, 23 ). Fig. la dis- 
plays the dependence of r NNL° (p) on p in a wider in- 
terval in order to see where the various approaches 
differ really significantly. Fig. lb shows the same in 
detail for the interval pc ( 11, 21 ). Included for com- 
parison are also the NLO results. From fig. 1 we con- 
clude the following: 

(1) The upper ECH curve, corresponding to the 
nontrivial solution of (27) is far above all the other 
ones, while the canonical ECH results are very close 
to PMS results in most of the allowed range of the 
couplant. 

(2) The difference between the PMS and canoni- 
cal ECH results is practically negligible down to p of 
about 3 and remains at the level of 20% even in the 
IR limit! This feature has been previously theoreti- 
cally suggested in refs. [ 11,27 ]. 

(3) In the region where NLO and NNLO approx- 
imations can be trusted, i.e. roughly p >/12 the inclu- 
sion of the NNLO contributions decreases the differ- 
ences between the MS and PMS/ECH results. This 
welcome feature indicates the importance of their 
being taken into account. The numerical difference 
between the NLO and NNLO results can be consid- 
ered as measure of the theoretical uncertainties of the 
current perturbative calculations of the quantity (2). 

(4) There is a qualitative difference between some 
of the curves for low values ofp  and in particular in 
the IR region. This pattern, observed for other phys- 
ical quantities [ 20,21 ] as well will be discussed in de- 
tail elsewhere. 

Although the curves in fig. 1 are unique, indepen- 
dent of any A-parameter, to transform them into 
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Fig. I. (a)  The shape o f  the funct ion r(p) fo r  various choices o f  
the renormal izat ion scheme. Indicated are also the IR l imits o f  
this quanti ty in PMS and ECH approaches. (b )  The same as (a) ,  
but in a narrower interval ofp. 

r(p) =ro +r~ (p-  14) + rz(p- 14)2+r3(p - 14) 3 . 
(28) 

Within the whole mentioned interval (28) repro- 
duces all the curves of fig. 1 a with accuracy better than 
1%, which is quite sufficient for the purposes of their 
mutual comparison and the extraction of A ~ .  The 
coefficients rk are given in table 1. Although very 
small, the coefficient r3 is needed in order to have an 
accurate description of these curves up to p = 23. They 
can not be obtained from one another by horizontal 
shift and thus the differences between them are not 
expressible as differences between the resulting val- 
ues of A ~ .  

Instead of making our own fit to experimental data 
along the lines sketched above we take as the basic 
experimental input the values for r (v / s=  34) coming 
from two recent extensive analyses of the quantity (2) 
in the PETRA, PEP and TRISTAN energy range 
namely r(v/~= 34) = 0.056 + 0.008 [24 ] and r (v /s=  
34) =0.051 _+0.007. The values ofp  and A ~  corre- 
sponding to these values of r(s) in various ap- 
proaches discussed above are given in table 2. Clearly, 
the inclusion of the NNLO corrections increase the 
value of A ~  by a factor of 1.2 while the differences 
between MS and PMS or ECH are, at both NLO and 
NNLO, small. Note that the values of A ~  extracted 
from the data of ref. [25 ] are closer to the world av- 
erage than those based on ref. [ 24 ]. 

4. x-lepton decay 

curves describing the measured energy dependence 
of r(s) requires the knowledge of A ~  and moreover 
means that each such A ~  will be associated with a 
different curve describing rNNLO(s). Fitting these 
curves to experimental data will then fix A ~ .  A sim- 
ple way how to do this graphically is as follows. We 
first plot the experimental data as a function of 
b ln(x/~)=l .91651n(s  ) and then shift the chosen 
curve in fig. 1 horizontally and in negative direction 
by the amount A so that it fits the data best. In view 
of ( 13 ) we find A = b In ( A ~ )  + r~ (MS) and thus fi- 
nally A~-~ = exp{ [r~ (MS) -A] /b} .  To make this pro- 
cedure straightforward we have fitted the curves of 
fig. la in the interval pe ( 11, 23) by a simple analyt- 
ical formula of the form 

The results ofref. [ 3 ] can be easily converted [ 12 ] 
into the NNLO predictions for 

Re = F(x--. v~ +hadrons) 
F ( z ~ v ~ + e - g e )  = 3 ( l + r ~ ) ,  (29) 

which is anomalous to r(s) of (2) with s=M~ and 
can be written in exactly the same form. In the MS 
RS and taking f =  3 which is appropriate for the con- 
sidered process, we have [3] r l (MS)=5.2 ,  
r2 (MS) = 26.3. Note that like in the case of the Higgs 
boson decay [20,21 ] the NNLO corrections are in 
the MS RS positive contrary to the case of r NNLO in 
e +e-  annihilations. Despite this difference in r 2 coef- 
ficients we get for (29) as well as for the Higgs boson 
decay rate, negative values of P2:P2 = -6.27!  The 
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Table 1 
The values of the coefficients rk, k=0,  1, 2, 3, parametrising r(p) in the interval pE(14, 21) as r ( p ) = r o + r l ( p - 1 4 ) + r 2 ( p -  

14)2+r3(p-- 14) 3. 

Approach ro rl r2 r3 

PMS(NNLO) 0.0548 - 0.00305 0.000162 - 0.0000062 
PMS (NLO) 0.0575 - 0.00354 0.000212 - 0.0000083 
M--S (NNLO) 0.0551 -0.00301 0.000138 -0.0000042 
M--S (NLO) 0.0569 - 0.00338 0.000175 - 0.0000042 

Table 2 
A (s) The values ofp  and the extracted ~-g in various RS at both NLO and NNLO and using data from refs. [ 24,25 ]. 

Approach ref. [ 24 ] ref. [ 25 ] 

A cs) [MeV] A <5) [MeV] P --MS P --MS 

14 A~+2.80 4"7.4+344 1,< n 7 + 2 . 9 6  3 c t o +  TM N L O  P M S  . . . .  2.10 t . ~ _ 2 4 6  . . . . .  2.21 u ] - 1 6 6  
- -  1 4  ~ '7+2.74 +378 1 ~ Q'1+2.99 MS . . . . .  2.17 489-252 . . . . .  2.25 321 +256 --174 

I ' /  ~ 2 + 2 . 9 2  5 ; / 7  +466 1 ~ "~rt+3.06 +314 N N L O  P M S  . . . . .  2.24 o --313 J . . . 'U_2 .33  3 7 5 - 2 0 6  
M~ 1 a ,7,7+2.89 +463 + 3 0 3  3K ' l  +311 

. . . . .  2.30 5 7 2 - - 2 9 8  1 5 . 4 5  --2(37 u - ' _  198 

whole analysis of the previous section therefore ap- 
plies, with simple numerical differences, to this case 
as well. The principal question is, of course, whether 
it makes sense to use perturbation theory for the 
quantity (30), which may be dominated by nonper- 
turbative effects and which, moreover, corresponds 
within the perturbation theory to a low value of p. 
However, it was shown in ref. [14] (see also ref. 
[28 ] ) that this quantity is rather exceptional in the 
sense that even for so small values of v /~=M,  the 
nonperturbative power corrections are expected to be 
quite small with respect to the purely perturbative 
ones. For a discussion of other nonperturbative un- 
certainties see ref. [29]. In such circumstances the 
question of taking into account higher order pertur- 
bative corrections to (29) and investigating their rel- 
evance in various RS is clearly worth pursuing. 

The results on re(p) are displayed in fig. 2 in a wide 
interval o fp  although the values relevant for the de- 
cay of the x-lepton lie somewhere in the range pc ( 1.5, 
5 ). This interval follows if we convert the world av- 

A ( 4 ) = 2 3 0 M e V  [23]"  -(3) to A~-g =280 MeV, erage on "'MS 
relevant for (29), and evaluate besides the value 

(3) p, =b In( M J A  ~ ) -r~ (MS) + c ln( 2c/ b ) 

=2 .72 ,  (30) 

0.7 i i , 

o.6 ~ . ~  ,- decay 

~ \ t  !i x . . . . . . . . . . . . .  M'S (NLO) 
0.5- i ~ ~, \ - - M - S ( N N L O )  

rPMS (P ='=):: ~ ~ \ - - - - - -  PMS (NLO) 
--~"x 1 \, ~ \ . . . . . .  PMS (NNLO) 

0.4 " ~ \  ~ \.\ . . . . . . .  ECH (NNLO) 
" -  " : ~ \  ~ \ .  --.--. ECH (NNLO) 

0.3 :, ~. ~. ~ . . . . . .  ECH (NLO) 

i i i L 

-5 0 5 10 15 20 
P 

Fig. 2. The same as fig. la  but for the quant i ty r~ o f  (29).  

also those corresponding to the variation of A ~  in 
the range 50-600 MeV. To facilitate the easy use of  
our results for the quantity (29) we have parame- 
trised the curves of fig. 2 in the rangepe ( 1.5, 5 ) by a 
simple second order polynomial with the coefficients 
rk given in table 3. 

Forp~ ( 1.5, 5 ) the differences between some of the 
curves are large, but as for (2) the results of PMS and 
ECH remain, at both NLO and NNLO,  for our pur- 
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Table 3 
The values of the coefficients rk, k=0, 1, 2, 3, parametrising r(p) 
in the interval pc ( 1.5, 5 ) as r(p ) = ro + r~ (p -  5 ) + r2 (p -  5 )2 

foreseable future to still higher order  calculat ions for 
quanti t ies  like (2) ,  (29) .  

Approach ro r~ r 2 

PMS (NNLO) 0 .1147 -0.01182 0.00412 
PMS(NLO) 0 .1258 -0.00612 0.01182 
MS(NNLO) 0.1100 -0.01033 0.00333 
MS (NLO) 0.0976 - 0.0075 0.00210 

poses essentially indist inguishable.  For  p given by 
(30)  we find 

NLO: r~(PMS) = 0.202, r , ( M S )  = 0 . 1 2 6 ,  (31)  

NNLO:  r ~ ( P M S ) = 0 . 1 6 3 ,  r~(MS) =0.151 . (32)  

F rom the above numbers  we see how impor tan t  it is 
in this case to include the N N L O  contr ibut ions  and 
how different results we may get in different RS. Most  
impor tan t  the difference between the P M S / E C H  and 
MS results which is 50% at the NLO shrinks to a mere 
10% at the NNLO! Thus for A (3) = 2 8 0  MeV and 
taking into account the three RS discussed above  we 
es t imate  the N N L O  predic t ion  for Re to lie within the 
interval  

N N L O  R~ = 3 . 3 9 - 3 . 4 9  . (33)  

Turning the argument  around,  (33)  could be used to 
de te rmine  the value o f  A~a--g at both  NLO and N N L O  
once a choice o f  a a par t icular  RS is made.  The rat io 
of  the extracted A-parameters  

A ( 3 )  ( N L O )  M S  

x =  (3) ( N N L O )  (34)  A MS 

depends  modera te ly  on the value ofr~ and sensit ively 
on the RS where the calculat ion has been performed.  
We f ind x >  1 in the MS RS (contrary  to the case o f  
( 2 ) )  and x <  1 in P M S / E C H  approaches.  The accu- 
rate measurement  of  R ~ could thus provide  a good 
oppor tuni ty  to test per turba t ive  QCD in the region 
where higher order  correct ions are impor tant .  The 
numbers  (31 ), (32)  suggest that while the change due 
to going from NLO to N N L O  is substant ial  it  is small  
enough for the N N L O  approx imat ions  to r~ to give a 
reasonable descript ion of  the experimental  data. This 
is a posi t ive message as there is no hope to go in the 

5. Conclusions 

Corrected results of  the N N L O  per turba t ive  cal- 
culat ions o f  the R-rat io  in e+e - annihi la t ions  and x- 
lepton decay were shown to improve considerably the 
s i tuat ion as far as the difference between Q C D  pre- 
dict ions in var ious  RS ar concerned.  In par t icular  we 
have shown that  the inclusion o f  the N N L O  correc- 
tions is of  vital importance for the applicat ion of  these 
calculat ions to the lat ter  process. A precise measure-  
ment  of  the x-lepton decay rate would thus provide  a 
valuable and sensit ive test of  per turbat ive  QCD.  
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