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Abstract: In this paper the known geometric results on the disturbance decoupling problem with measurement feedback and internal 
stability (DDPMS) are extended to include non-zero direct feedthrough matrices. Necessary and sufficient conditions for the 
solvability of the DDPMS are expressed in terms of three subspace inclusions. 
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1. Introduction 

The so-called disturbance decoupling problems have been investigated extensively in the last two 
decades. It was the starting point for the development of a geometric approach to systems theory. The 
problem is to find a compensator such that the dosed loop transfer matrix from disturbance to output is 
equal to 0. Using the concept of (A, B)-invariance, the disturbance decoupling problem with state 
feedback (DDP) was solved in [2,3,21]. The problem of disturbance decoupling with state feedback and the 
extra requirement of internal stability (DDPS), was solved in [6,21]. A detailed reference for the above 
mentioned problems is [22]. Approximately 10 years later, the above mentioned problems were solved for 
the case of measurement feedback. The disturbance decoupling problem with measurement feedback 
(DDPM) was solved in [1,7]. Finally, the disturbance decoupling problem with measurement feedback and 
internal stability was solved in [5,18]. 

All the above problems have also been generalized to the so-called almost disturbance decoupling 
problems where one investigates under which conditions we can make the dosed loop transfer matrix 
arbitrarily small in a suitable norm. References for these generalizations are [14,19,20]. For  a overview of 
all the existing results we refer to [15]. 

In all of the above references the direct feedthrough matrices of the system are assumed to be equal to 
zero. In the state space approach to Hoo and LQG control however disturbance decoupling problems for 
systems with direct feedthrough matrices do play a role (see [11,12]). Therefore, this paper will extend the 
results on the disturbance decoupling problems mentioned above to include direct feedthrough matrices. 
We will solve the problem of disturbance decoupling with measurement feedback and internal stability 
(DDPMS) with respect to some arbitrary stability set. Results for DDP, DDPS and DDPM follow as 
special cases from our main theorem. Note that an extension of the results on almost disturbance 
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decoupling to incorporate direct feedthrough matrices has already been done in [23]. 
We will use a geometric approach in this paper similar to the techniques used in the above mentioned 

references. We find that solvability of the DDPMS is equivalent to the requirement that three subspace 
inclusions hold. We will derive our results for continuous time systems but the related results for discrete 
time systems are identical. 

In this paper we will present our main result in Section 2. In Section 3 we will prove our main result. In 
Section 4 we will discuss some extensions. Finally we conclude with Section 5 which contains some 
concluding remarks. 

2. Problem formulation and results 

Consider the finite-dimensional linear time-invariant system 2: given by 

( Yc = A x  + Bu + Ed,  

~,: ~ Y =  Clx  + Did ,  

~ z = C2x + Ozu,  

(2.1) 

where x ~ R" is the state of the system, u ~ R " the control input, d ~ R q the disturbance input, y ~ R p 
the measurement output and z ~ Rr the output of 2: to be controlled. A, B, E, C 1, C 2, D~ and D 2 are 
real matrices of appropriate dimensions. 

Assume that system (2.1) is controlled by means of a measurement feedback compensator  Z F described 
by 

[ p = Kp + Ly ,  (2.2) 
ZF: [ u = M p  + Ny ,  

with p ~ R k the state of the compensator and K, L, M and N real matrices of appropriate  dimensions. 
Interconnection of ~ and ~F results in a closed loop system Zc~ = Z x ~F described by 

B e =  
' L D  1 

{ Y% = A e x  e + Bed, 

Y'c~: ~ [ z = G x e  + Ded, 

where we have denoted 

X e = A e = 
p ' L C  1 

C e = ( C  2 + D 2 N C  1 D 2 M ) ,  D e = D2ND a. 

(2.3) 

Let Cg be a subset of the complex plane C which is symmetric (h ~ Cg ,=, ~ ~ Cg) and with at least 
one point on the real axis (Cg ¢~ R 4:fl). The interconnection of a system Z and ~ e  as given in (2.3) is 
called Cg-stable if the matrix A e is Cg-stable, i.e. all eigenvalues of A e are contained in Cg. 

We can now consider the following problem: 

Problem. Given Z determine ~ e  such that the interconnection 2: × ~ r  is C g-stable and such that the 
closed loop transfer matrix is equal to zero. 

This problem is often called the disturbance decoupling problem with measurement  feedback and 
internal stability (DDPMS).  The problem has been completely solved in case the direct feedthrough 
matrices D 1 and D 2 are equal to 0 (see [4,9,18]). This paper  extends these results to include direct 
feedthrough matrices. 

For the formulation of our main result we need a number  of definitions: 
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Definition 2.1. We define the detectable strongly controllable subspace ~s(A, B, C, D) as the smallest 
subspace 3" of R" for which there exists a linear mapping G such that the following subspace inclusions 
are satisfied: 

( A + GC ),.q'g,Y', (2.4) 

Im(B + GD) c.Y-, (2.5) 

and such that A + GC]R"flY" is C s-stable. We also define the stabilizable weakly unobservable subspace 
$:g(A, B, C, D) as the largest subspace ~¢: for which there exists a mapping F such that the following 
subspace inclusions are satisfied: 

( A + BF)~¢"C_ ~", 

( C + D F ) ~ : =  {0}, 

and such that A + BF [ W is C s-stable. [] 

(2.6) 
(2.7) 

The subspaces ~s(A, B, C, D) and ~ ( A ,  B, C, D) can be computed by means of well-known 
algorithms (see e.g. [10,22]). We also note that if (A, B) is Cg-stabilizable then for ~ ( A ,  B, C, D) there 
exists an F such that (2.6) and (2.7) are satisfied and moreover A + BF is C s-stable. A similar comment 
can be made for ~g(A, B, C, D) in case (C, A) is Cg-detectable. We will denote, for a given subspace &a 
and matrix C, by C-  1 ~  the subspace { x I Cx ~,LP }. 

We can now formulate the main result from this paper: 

Theorem 2.2. Let Z be given of the form (2.1). The following two conditions are equivalent: 
(i) There exists a compensator of the form (2.2) such that the closed loop system is C s-stable and such that 

the closed loop transfer matrix is equal to O. 
(ii) (A, B) is C g-stabilizable, (C1, A) is C g-detectable and 

(a) Im E ~ ~s(Z¢i) + B Ker D2, 
(b) KerC 2 ___~(Zai) N C11Im D 1, 
(C) ~(~di)  ~ ~(~ci), 

where Zci = (A, B, C2, DE) and ~di = (A, E, Ca, Da). 

Remarks. (1) Note that we have still all freedom in our choice of Cg. For the disturbance decoupling 
problem with measurement feedback (DDPM) we choose C g = C. On the other hand if we are interested 
in disturbance decoupling with internal (asymptotic) stability, then we choose C g equal to the open left 
half complex plane. 

(2) Since we mainly investigate properties of transfer matrices, the results for discrete time systems are 
immediate from Theorem 2.2. For a discrete time system with the same parameters as Z conditions (i) and 
(ii) are still equivalent. Only this time, for internal (asymptotic) stability, we have to choose C g equal to the 
open unit disc. 

(3) In the special case of state feedback, i.e. C 1 = I and D 1 = 0, conditions (a)-(c) in our theorem 
reduce to: 

(a) Im E _c ~s(~ci) + B Ker D2, 
(b) KerC 2 D (0), 
(c) Im E _ ~(Zc i ) ,  

respectively. Clearly condition (c) implies conditions (a) and (b). Thus we obtain the well-known single 
subspace inclusion Im E ___ ~ (Z¢ i )  for this special case. 

(4) It can be easily checked that condition (c) also implies conditions (a) and (b) in case both the direct 
feedthrough matrices D a and D 2 are equal to 0. 

The following theorem gives the possibility of actually calculating a suitable compensator if it exists: 
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Theorem 2.3. Let Z of the form (2.1) be given. Conditions ( a ) - ( c )  of Theorem 2.2 are equivalent to the 
following conditions: ~g(Zdi) C Yrg(,~ci ) and there is a matrix N such that 

In addition to such an N, let F and G be the matrices satisfying the conditions of Definition 2.1 for ~g('Yci) 
and ~g('~di) respectively and such that A + BF  and A + GC 1 are both Eg-stable. Then a compensator F~ F 
making the closed loop system C g-stable and the closed loop transfer matrix equal to 0 is given by 

ZF: { p = A p + B u + G ( C l p - y ) '  (2.9) 
u= r p -  N ( C l p - y  ). 

Remarks. (1) In case Cg = C, i.e. if we consider disturbance decoupling without stabihty requirements, 
and if the conditions (ii) of Theorem 2.2 are satisfied then it can be shown that there exists a compensator 
of dynamic order: 

dim ~g (Zci) - dim Jgg ( Zdi ). 

This result was already known (see [9]) and can be extended to the more general system (2.1) investigated 
in this paper. By means of a simple example it can be shown that this result is not true in case of stability 
requirements (Cg 4: C). For bounds on the order of the compensator that do hold in case Cg :# C we refer 
to [13]. 

(2) Note that we can easily rewrite (2.9) in the form (2.2). However in (2.9) the structure of the 
controller is more visible. 

We can also investigate when there exists a strictly proper compensator which solves th DDPMS: 

Theorem 2.4. Let Z be given of the form (2.1). The following two conditions are equivalent: 
(i) There exists a compensator of the form (2.2) with N = 0 such that the closed loop system is C g-stable 

and such that the closed loop transfer matrix is equal to O. 
(ii) (A, B) is C g-stabilizable, (Cl, A) is C g-detectable and 

(a) Im E _c ~ ( Z c i ) ,  
(b) KerC2 D_~gg(Z~i), 
(C) A~gg(,~di ) ~ ']Pg(~ci), 
(d) G(~:di) _ "~g(~:ci), 

where ~'ci = (A', B, C2, D2) and Xdi = (A, E, C1, D1). 
In case part (ii) is satisfied a compensator satisfying (i) is given by (2.9) with N = 0 and F, G as described 

in Theorem 2.3. 

In the next section the above results will be proven. 

3. Proofs of the results obtained 

The following characterization (see e.g. [4]) of the subspace ~g(,~) turns out to be very useful: 

Lemma 3.1. Denote by Rsps(S ) the set of strictly proper C g-stable real rational vectors, i.e. vectors whose 
elements are strictly proper rational functions with all poles in C g. The subspace ~ ( A ,  B, C, D) is equal to 
the set of all x o E R n for which there exist ~, o~ ~ Rsps(S ) such that 

X o = ( s I - A ) ~ ( s ) - B w ( s ) ,  O = C ~ ( s ) +  Dro(s).  [] 



A.A. Stooroogel, J.W.. van der Woude / DDPMS with direct feedthrough matrices 221 

We will also need the following lemma. 

[,emma 3.2. Let all and 7g/" be linear subspaces, and let P, Q and R be matrices such that 

Pq/c__ zcF+ Im Q, P(q/N Ker R) c ~/'. 

Then there is a matrix X such that 

( P + Q XR ) ql c_ g/" . [] 

A proof of the above lemma is straightforward and goes along the same lines as the proof of Lemma 4.2 
in [81. 

Proof ot Theorem 2.2. (ii)=, (i): Because (A, B) and (C a, A) are Cg-stabilizable and Cg-detectable 
respectively it follows from the definitions of ~(X~i) and -~g(~:ai) that there are matrices F and G such 
that the subspace inclusions in Definition 2.1 with ~¢/'= ~(~:ci) and J '=~(~:<u) are satisfied, and such 
that A + B F  and A + GC a are both C g-stable. 

Now observe that ~s(Z¢i) and ~(Zdi )  are such that 

C2 ~g(~ci) c (~g(Xci) ~ {0}) -q- Im , 

[A El ( (~Tgg(Zai )~Rq)NKer[C1 Dal)--~(Zdi). 
Furthermore, it can be easily shown that condition (a) is equivalent to 

[:] Im --- (~g(~¢i) * (0}) + Im D2 , 

and that condition (b) is equivalent to 

(~gg(Zdi) ~ a q) ('1Ker[C a DI] c Ker[C: 0]. 

Now, 

while 

(3.1) 

(3.2) 

(3.3) 

using condition (c), the combination of (3.1) and (3.3) implies that 

[A [B] 
C 2 0 ( ~ ( Z a i ) ~ a q ) - - - ( ~ ( ' ~ c i ) $  ( 0 ) ) + I m  D 2 

the combination of (3.2) and (3.4) with condition (c) implies that 

C2 (~g('~di) ~ R q) N Ker[ C1 D1 ]) c_ (~Pg(-~ci) • {0}). 

(3.4) 

The last two inclusions imply by Lemma 3.2 the existence of a matrix N satisfying (2.8), or equivalently 
such that 

(A  -.[- BNC1)~g(Zdi ) cc__ ~g(.~ci), Im(E + BNDa) c_ ~'~g(-~ci), 

(C 2 + D 2 N C 1 ) ~ ( ~ a i  ) = (0}, D2ND , = O. (3.5) 

Let such N be the feedthrough matrix of the compensator (2.2), and define the other compensator 
matrices as follows: 

K := A + BF  + GC 1 - BNC1, L := BN  - G, M := F - NCa. 

It is easy to see that the closed loop system now obtained can equivalently be described as follows: 

0 A + G C  a ] ~ x _ p ) - q -  E..I_GD1 ) d ,  (3.6) 

t z = ( C 2 + D 2 F  D 2 N C 1 - D 2 F ) ( x X - p ) + D 2 N D l d .  
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An easy calculation shows that the closed loop transfer matrix is given by 

(C 2 + D 2 F ) ( s I -  A - B F ) - 1 (  E + B N D , )  

- (C 2 + D 2 F ) ( s I -  A - B F ) - l ( s I -  A - B N C I ) ( S I - A  - G C 1 ) - I ( E  + GD, )  

+ (C 2 + D 2 N C 1 ) ( s l -  A - GC 1 ) - I ( E  + GD,)  + D2ND 1. 

From (3.6) it is clear that the closed loop system is Cg stable, since A + B F  and .4 + GC~ are Cg-stable. 
Moreover observe that F and G are such that for all s ~ C, 

Ker(C2 + D z F ) ( s I -  A - B F )  -~ ~_ ~(~'~i ), 

l m ( s I -  A - G C ~ ) - I (  E + GDI)  ___ 5~g (~Ydi). 

(3.7) 

(3.8) 

Using (3.5), (3.7) and (3.8) together with condition (c) of Theorem 2.2 it is straightforward to show that the 
closed loop transfer matrix is equal to 0. 

(i) ~ (ii): Let a compensator Xr be given such that the closed loop system ~:c~ is Cs-stable and such 
that the closed loop transfer matrix is equal to 0, and let the closed loop system ~:cl be described by (2.3). 
Then all eigenvalues of A e are in C g and 

C e ( s I  - A e ) - l n e  + D e = 0 .  

By the fact that A¢ is Cg-stable, it is immediate that (A, B) must be Cg-stabilizable and (C 1, A) 
C~-detectable. Because the closed loop transfer matrix is zero, it follows that D e = 0. We define 
Y/~¢ := (A e I Im Be), i.e. ~ is the smallest Ae-invariant subspace containing Im B e. Since C e ( s l -  A e ) - l B  e = 
0, the definition of ~ implies that Y~¢ __c Ker C e. Define 

X 
,~.'= {x e~ " "  I(O) e~ ~ ), (3.9) 

Clearly .~q-c Y/'. Moreover, it follows that 

( A + B N C  1 ) J - c  Y/', Ira( E + B N D  1 ) c $/', 

(C2 + D 2 N C 1 ) 3  -= {0}, D 2 g D  1 = 0 .  (3.11) 

Take any x ~ Y/'. By definition of ~e" there exists p ~ R k such that ( x  x pT)T ~ ~V~. Define 

, ,s)  ,( ;)" 
Because A e is C~-stable we know that 4, ,0 ~ Rsps(S ) and hence 4, (NC14 + M,o) ~ Nsps(S). Moreover, 
because ~ is Ae-invariant it follows that for all s, 

4 ( s ) )  ~ y/~¢ c Ker C e. 

Combining the above, we find that 

x = ( s I - A ) 4 ( s )  - B ( N C , 4 ( s )  + M e o ( s ) ) ,  

0 = C24(s ) + D 2 ( g c ~ 4 ( s  ) + Moo(s ) ) .  
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This implies by Lemma 3.1 that x ~ Y:g(Eci ). Hence Y/'__C_ Y:s(E~i). By dual reasoning it can be derived that 
~rg(Edi) __C_ : 2  From the above it is clear that condition (c) of (ii) is satisfied. From (3.11) it is now clear that 

I m(E  + BND1) c YPs(Eci), (3.12) 

K e r ( C  2 -F D2NC1) ~_ ~g ( ' ~d i ) ,  (3 .13)  

DEND 1 = 0. (3.14) 

Now (3.12) and (3.14) together imply condition (a) of (ii). Indeed take any x ~ R q and denote u = NDlx. 
Then u ~ K e r D  2 and there is a o ~ ~g(E~i ) such that Ex = v - Bu. Dually it can be shown that (3.13), 
(3.14) together imply condition (b) of (ii). [] 

Theorems 2.3 and 2.4 immediately follow from the proof of Theorem 2.2. 

4. A more general case 

In Section 2 we discussed a system E of the form (2.1). However, in the most general linear, 
time-invariant case, there are two more direct feedthrough matrices unequal to 0 in the system. In this 
section we discuss this more general case and we assume that our system is of the form 

! = A x  + B u  + Ed, 
F,: C1 x + D3u + Did, (4.1) 

C2x + D2u + D4d. 

For this more general case we have to discuss the admissibility of controllers of the form (2.2) in more 
detail. Consider the interconnection shown in Figure 1 where E and E F are described by (4.1) and (2.2) 
respectively. 

The closed loop system is said to be well-defined and ' internally proper '  if the dosed loop transfer 
matrices from d, o 1, 0 2 to z, u, y are well-defined and proper. In that case we call the interconnection 
well-posed. For a detailed discussion of the concept of well-posedness we refer to [17]. It can be shown 
that here well-posedness is equivalent to the requirement that I - D3N is invertible. Therefore we require 
that our controller EF is such that 1 -  ND 3 is invertible. Moreover, if 1 -  ND 3 is invertible, the closed 
loop system E x EF can be written in the form (2.3) where 

( A + B N ( I - D 3 N ) - I c I  B ( I - N D 3 ) - I M  ) 

Ae := L ( I  - D3N)-ICa K+ L ( I  - D3N)-'D3M " (4.2) 

We require that the interconnection is Cs-stable, i.e. A e has all eigenvalues in C s. If the realirations for 
and E F are both Cg-detectable and Cs-stabili7able , then this is equivalent to the requirement that in the 
interconnection of Figure 1 the closed loop transfer matrices from d, v 1, v I to u, y, z are all Cg-stable, i.e. 
the rational matrices have all poles in C s" 

We can derive the following theorem: 

v 1 u y 

;l v2 

Fig. I. 
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Theorem 4.1. Let Z be given of the form (4.1). There exists a compensator of the form (2.2) such that the 
closed loop system is well-posed and C g-stable and such that the closed loop transfer matrix is equal to 0 if and 
only if the following conditions are satisfied: 

(i) (A, B) is Cg-stabilizable, (Ca, A)  is Cg-detectable, 
(ii) _c 

(iii) there exists a matrix 1V such that 

c2 D4 +  ?[Cl Dll + aq) _c ( (Zoi) + {0}) (4.3) 

and such that I + ND 3 is invertible. 
A controller solving the D D P M S  is then described by 

{ ~ = Ap + Bu + G ( Cl p + D3u - y )' (4.4) 

Zr:  = Fp - I~(C1p + D3u - y ) .  

Remarks. (1) Note that (4.4) describes a compensator of the form (2.2) because I + ATD 3 is invertible. The 
reason for defining the compensator in this implicit way is to show the relationship with the compensator 
we found in (2.9). 

(2) We can again express solvability of (4.3) in terms of subspace inclusions. However, the well-posed- 
ness constraint ( I  +/VD 3 is invertible) we can not express in subspace inclusions. On the other hand, 
condition (iii) is equivalent to the requirement that N should satisfy a linear matrix equation and be such 
that I +/VD 3 is invertible. Because all solutions to this linear matrix equation can be parametrized this is 
still a condition which can be checked straightforwardly. 

We will only give a sketch of our proof. We will treat these extra feedthrough matrices in two steps. In 
the next subsection we show how we can reduce the disturbance decoupling problem with measurement 
and stability (DDPMS) for (4.1) to the same problem for a different system which has a direct feedthrough 
matrix from disturbance to output that is equal to zero. In the second subsection we show how we can 
reduce the DDPMS for a system (4.1) to the same problem but again for another system which this time 
has the form (2.1). On the latter system we may apply Theorem 2.2. 

4.1. A direct feedthrough matrix from disturbance to output 

We first solve DDPMS 'at  infinity'. It is easily checked that for (4.1) the solvability of DDPMS 'at  
infinity' is equivalent to the existence of a matrix S such that I - SD3 is invertible and 

D 4 + D2(I  - SD3)-ISD4 = 0. (4.5) 

This fact is expressed in Theorem 4.1 by the condition that, in addition to I +/VD 3 being invertible, the 
matrix N has to be such that amongst others 1)4 + D21~D1 = 0. It is immediate that for such 57 condition 
(4.5) can be satisfied by S := (1+/VD3)-  1IV. 

Next we apply the preliminary feedback u = Sy + v to our system. The system we thus obtain will have 
a direct feedthrough matrix from d to z which will be equal to 0. Clearly solvability of the disturbance 
decoupling problem for the original system is equivalent to solvability of the disturbance decoupling 
problem for the system we obtain after this preliminary feedback. Therefore we can reduce the disturbance 
decoupling problems for (4.1) to the same problems for a new system which has a direct feedthrough 
matrix from d to z that is equal to 0. 

4.2. A direct feedthrough matrix from input to measurement 

By the previous subsection we may assume that we have system of the form (4.1) with D 4 = 0. Assume 
that a compensator Z r of the form (2.2) is given such that the interconnection Z × Z r  is well-posed, 
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Cs-stable and has a closed loop transfer matrix which is equal to 0. We define 

I ~ , = K +  L ( I - D 3 N ) - I D 3  M,  

£ : = L ( I - D 3 N )  - l ,  

~1 := ( I  - N D 3 ) - ' M ,  

IV := N(  I -  D 3 N ) - ' .  

225 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Then it is easily checked that the following compensator satisfies condition (i) of Theorem 2.2 for the 
system Z given by (2.1). 

~F: I pu= )~Ip + I~p + Ly,  (4.10) 

On the other hand assume that we have a compensator of the form (4.10) such that I + D357 is inverti- 
ble and such that condition (i) of Theorem 2.2 is satisfied for Z. In that case, the following compen- 
sator makes the interconnection ~ × Z r  well-posed, Cs-stable and yields a closed loop transfer matrix 
which is 0: 

K: - - /~ - -  L ( I  + D3N ) - 1D3,~,1 , 

L:= L (  I + D31~l)-' , 

M : = ( I + / V D 3 )  - 1)14, 

g : =  ( I  + ND3)-I)v.  

We can now apply Theorem 2.2 to Z described by (2.1) to obtain necessary and sufficient conditions for 
the solvability of DDPMS for Z. We only have to do some work to incorporate the well-posedness 
constraint ( I +  D3,~ invertible). The results of this subsection can be used to obtain necessary and 
sufficient conditions for the solvability of DDPMS of 2: described by (4.1) with D 4 -- 0. The results of the 
previous subsection can then be used to obtain necessary and sufficient conditions for the solvability of 
DDPMS for the general system $: of the form (4.1) without any restrictions. These conditions are given in 
Theorem 4.1. 

5. Conclusion 

In this paper we have treated the most general disturbance decoupling problem: the disturbance 
decoupling problem with measurement feedback and stability for some arbitrary stability set C s. We have 
shown how the known results can be extended to incorporate direct feedthrough matrices in the system. In 
our opinion this paper completes the results already available. 
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