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We study the long-time behavior of small solutions of the initial-value problem 
for the generalized Kortewegde Vries equation 

?,u+~ju+c:,F(u)=0 

U(.L 0) = g\.x ). 
tgKdV) 

For the case where F(n) = )w.(‘, with s B ( 1.‘4 )( 23 - v 57) c 3.8625, our results 
imply that if l/g/l,; + )igI/,; is sufticiently small then sup,( I + )(I )’ ’ ))u(r)/lLS < x. In 
particular, the solution tends to zero in the supremum norm. The proofs make use 
of Duhamel’s formula and dispersion estimates for the linear propagator. as well as 
chain and Leibniz rules for fractional derivatives of compositions IID’F(u)il LP and 
products llD”(Sg)ll Lp. O<a<l and l<p<r,. ! 1991 Academic Press. Inc 

In this paper we study the long-time behavior of solutions of the initial- 
value problem for the generalized Korteweg-de Vries equation (gKdV) 

d,u + a$ + 3,F(u) = 0 
(1.1) 

u(x, 0) = g(s). 

F(U) is a nonlinear function of U, such as Juj’ with s > 0. Suitable regularity 
hypotheses on F and g guarantee the existence of a unique solution for all 
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TV [wi. Our purpose is to show that if g is sufficiently small in some 
reasonable norm, then u tends to zero in some other norm as t approaches 
+ CG. More specifically, when F(U) = IuI’, this dispersion is known to occur 
provided s is sutliciently large, and we seek to improve the allowed range 
of s. 

For gKdV we obtain all 

s > so E (23 - ,,&)I4 2 3.8625. (1.2) 

Recently, Ponce and Vega [PV J have obtained all 

s > (9 + &3,/4 z 4.39, 

improving the work of several authors [Str, Kl, Sh, KlPo]. 
We do not know what the best value of s might be. In the cases s = 2 and 

s = 3, ( 1.1) is known to admit exact solution by the inverse scattering trans- 
form. Inverse scattering theory is applied in [AS] to deduce the decay rates 
of solutions which are assumed to decay to zero in L”. They find in the 
case s = 3 that decaying solutions satisfy 

~lu(r)llr*=O(r-“3). 

For s = 2, generically one has 

Ilu(t)llLx = f3(r-2;‘3) 

but for certain exceptional “resonant data,” the rate of decay is 

Our method of proof is to write gKdV as an integral equation, treating the 
nonlinearity as a small perturbation of the linear part of the equation. We 
then obtain a priori estimates on time-weighted norms of U(X, t), the time- 
weights being determined by the decay rates of the linear equation. 
The cited asymptotics for s = 2, 3 indicate that there are fundamental 
limitations to the perturbative method of proof we employ, for certain s. 

We shall use the following notation. Let u(t) denote the function 
XH U(X, t). Let 11. I(,, denote the Lp = Lp(lR, dx) norm and (( .llp,ar denote a 
norm on L,P, the subspace of Lp consisting of functions possessing tl 
derivatives in Lp [Ste]. For the case p = 2, we set H”r Lf. We define 
P(D)=(P(5)fCt))” whereftt‘(e)=f,e -iX5f(x) d-x, is the Fourier transform 
off D” is the operator with Fourier multiplier 
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We set axf‘= L?f/&x and ( y ) z (1 + c,~)‘,~. C(R, H”) and CJR, H’) denote 
respectively the spaces of continuous and weakly continuous functions of 
t E R with values in H”. 

We assume throughout that F(0) =O. It follows from the work of 
Kato [Ka] that for FE C2, if g E HL and 11 gJI,, , is sufficiently small then 
(1.1) has a solution uEC(R,f.‘)nC,,.(R, H’). If FEC’ and Jlgl),,, is suf- 
ficiently small, then ( 1.1) has a unique solution u E C(R, H *). In [Ka] the 
existence results are obtained for the case FE C x, but our assertions for F 
satisfying weaker assumptions follow from his proofs. 

Furthermore, one has the following two a priori bounds on solutions: 

lIDLU(f d c, fER, il.4 

where C is independent of t, and 

Il4~)llz= llgll,, tER. (1.5 

Equation (1.5) is the statement that the L2 norm is conserved for solutions 
of gKdV. In addition, gKdV possess a conserved Hamiltonian energy func- 
tional [Ka] which together with (1.5) implies (1.4) by Sobolev-- 
Nirenberg-Gagliardo estimates. 

We now state results on the dispersion of small data solutions of gKdV 
in terms of L” decay rates. We have, 

THEOREM 1. (A) Let.s>4andFEC2besuchthat(F’(w)l=0((wJSm’) 
as IM’~ -+ 0. Then, there is an Q, > 0 such that .for every g sati&ing 

IgIl= IId, + llgll2., <Eo, (1.6 

fhe solution 01‘ 

&u+d;u+d.F(u)=O 
(1.7 

40) = g 

in the class C(R, H ‘) satisfies 

sup (t>1.‘3 Ilu(t)l < cc. 
rtlW 

(1.8) 

(B) Let SE (so, 41, where s0 = (l/4)(23 - ,/??) s 3.8625, and FE C’ 
he such that IF’(w)1 =O(IwI’+‘) and IF”(w)l =O(~W\“+~) as )w( -0. Then, 
there is an Ed > 0 such that for every g satisfying 

Islz= Ilgll,,, + lIgll2,r~~o 

the unique solution of (1.7) in the class C( R, Hz) satisfies ( 1.8). 

(1.9) 
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Remarks. (1) More detailed information on rates of dispersion in 
various norms is proved on the way to obtaining Theorem 1 (see Sections 
4 and 5). 

(2) For F(u) = Ju(‘, gKdV has solitary wave solutions of the form 
u( I, X) = M’(X - et; c), where W( 5; c) is an exponentially decaying function of 
5. These solutions are nondecaying with time. Scaling implies ~‘(5; c) = 
c~~“-‘)w(c”~~; 1). A simple calculation shows that 

IId.; C)llLl + II”“(.; c)ll2.1 

tends to zero as c + O+ for s < 3. Thus, smallness in the norms of 
Theorem 1, cannot ensure dispersion for s < 3 [Str]. 

The arguments we use are based on estimates for the free propagator 
,S(t) = exp( - ia3,r). That is, we treat the nonlinearity as a perturbation and 
write (1.1) as 

U(f)=S(l)g+liS(f-t)d.,F(u(r))dr. (1.10) 
0 

Any solution of gKdV in C,,.( R, H’) satisfies (1.10). 
In Section 2 we derive the required estimates for the one parameter 

group of transformations g N S(t) g. In Section 3 chain and Leibniz rules 
are stated and proved for the purpose of estimating quantities like 
Il~“4~~ll, and IlW.k)ll, with O<crtl and l<p<‘%. 

2. ESTIMATES FOR THE LINEAR PROPAGATOR 

The solution of the initial value problem 

a,24 + a.$ = 0 

40) = g 

u(r) = S(f) g, 

where 

(S(f) g) h (5) = e”@~(t). 

Fortunately for us, practically everything we need to know about the 
Lp - Lq mapping properties of S(r) has been worked out by previous 
authors. S(f) is realized by convolution with (3f)-“3 Ai((3t) ~-‘I3 x), where 
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Ai is the well-known Airy function. In particular it is known from the 
method of stationary phase that Ai is bounded and is 0().x( -’ 4, as 
Is/ + CY-. This gives 

LEMMA 2.1. For all gE L’, 

ll~(~)sll,~c~-‘” llsll,, 

IIwkll,~C~-‘” IId,. .for all p > 3. 

and 
IlS~t)gllpfCpf~“3”~‘p’ llgll,. for all p > 4. 

The first two estimates follow from the bounds on Ai( while the third 
follows from the first two by interpolation. The next estimate is at the heart 
of the work of Ponce and Vega [PV]. 

LEMMA 2.2. For all g E L’, 

ll~‘~“gll T 6 Cf ’ 2 II g/l ‘. 

We require a generalization, which is proved by Kenig, Ponce, and Vega 
[KPV]. 

LEMMA 2.3. Let PE [2, xl) and set l/p’ = 1 - l/p. Then 

IID ’ :~‘pS(t)gllpQCt-“2+“P (IgIl,., for all go L”. 

If we dualize the third conclusion of Lemma 2.1 and interpolate with 
Lemma 2.2 we obtain 

LEMMA 2.4. For each p E ( 1.4,l3) there exist fl> 0 and y > 0 such thar 

IID”W~)gll ,z G Cl-” Ilgll, ,for all gE Lr 

‘\lith b -+ 1 i2 and y + l/2 as p + 1 +. Moreorer I/l - l/21 + Ii’- 12 = 
O(P- 1). 

Of course one could give formulae for /I and ;‘, but that won’t be 
necessary. 

3. A CHAIN RULE FOR FRACTIONAL DERIVATIVES 

PROPOSITION 3.1. Suppose that FE C’(c), aE (0, l), 1 < p, q, r < x8, and 
r -I- -I 

-P +q--‘. Zfu~ L”(R), D”ME Ly. and F’(u)E L”, then D”(F(u))E L’ 
and 
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The hypothesis u E L”(R) is inessential and serves only to guarantee that 
D"u is defined, as a distribution. The proof relies on ideas of Coifman and 
Meyer [CoMe] and Bony [Bo]; see also Meyer [Me]. Although the 
result remains valid in 0%“’ for all m, the proof seems to require an addi- 
tional ingredient, the Calderon-Zygmund method of rotations [CaZy]. We 
shall stick to the simpler one-dimensional case. 

For the proof some preparation is needed. Introduce VE C’;(R), 
nonnegative, supported in {l/2 < 151 < 2) and satisfying 

Define Fourier multiplier operators 

1 on R\(O 

for all f E L' with D"~E L', by the Hormander-Mihlin-Marcinkiewicz mul- 
tiplier theorem and Littlewood-Paley theory (see for instance Stein [Ste]). 
Moreover, if the right-hand side is finite then Db(fe L' in the sense of 
distributions. Qj may be realized as a convolution operator Q,f =f * tij 
where tij E Y, 

I$j(X)l +2-j ld,$j(X)l < C,2j(l+2' Ixl)-N (3.1) 

for all N, uniformly in Jo Z, and 

I ljj=o. (3.2) 

Construct also +j E CF ({ l/2 < ) 51 < 2) ) but satisfying $. q = q. Define 

so that the identity operator may be resolved as 

1=x Qj=C QjQj, 

and Qj is realized by convolution with a Schwartz function $j satisfying 
(3.1) and (3.2). 
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Let A4 denote the maximal function of Hardy and Littlewood: 

Mj-(x)rsup (2r)-’ J-’ If(X-s,l &!s. 
r>o -i- 

LEMMA 3.2. For any g, 

Proof: 

I~.igW~,g(x)l <j I$i(y-rk$i(.u-z)I .I&)I dz. 

For any X, I~jg(.u)l <CMg(.x) because of the bounds (3.1). If IX--~/ 6 
C2-’ then 

l$i(l’-+lJj(.K-z)( dC2” Is-Jq ‘(1 +2-‘Is-4P~. 

again by (3.1). By a standard calculation this implies the desired estimate; 
see Stein [Ste. pp. 62-631. 1 

Proof qf Proposition 3.1. 

Q,F(u)(.*)= j F(u)(J~) Il/j(X- ~1 d) 

= [F(u)(g)- F(u)(x)] IC/i(.~-.v)dy s 

Note that 

= -0 ’ F’(tu(g)+(l -t)u(.u))dr (u(y)-u(s)) 
0 1 

+bj(.u - y) dy. (3.3 1 

I j 
I 

F’(tu(y) + (1 - t) u(x)) dr < 2M(F’(u))(.u). 
0 

To estimate (3.3) decompose u = x Qku = 1 &,.Qku to obtain 

IQiF(u)b)l < CWF’(u)N.u). f 
k= --x 

j I&Q&v) - ~kQku(x)l 

. II);(X - y)I dy. (3.4) 
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Break the sum over k into the cases k < j and k > j. Then 

+ck;jJ,.\--?,>2-k [MQkdX) + ~QkU(.Y)l 
.2’(1+2’Ix-y[)-3dJ 

< C 1 2”-‘MQ,u(x) + C c 2k-’ 
k-cj kcj 

. (hfQ,U(X) + kf*QkU(X)) 

< c 1 2k- ‘li’f*Q,U(X), 
kcj 

where of course M’ = A4g M. 
Likewise 

<c 1 j(MQkU(.\.)+MQkU(4’))2’(1+2j15--4’1)-*dl 
kTj 

(3.5) 

<C 1 A4'Qku(x). (3.6) 

Putting (3.5) and (3.6) into (3.4), we have 

f 2” lQ,F(u)(x)l’ “’ 
j= --% > 

Q C~M(F’(U))(X) 

. i 2-“‘“I ( f 22k’(M’a,U(~))2)“2, 
m = - I k= -SC 
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by substituting j = k - m after applying Minkowski’s inequality, where 

E = 2 . Min(cc, 1 - tl) > 0. 

To conclude, 

In the second-to-last inequality we have invoked the vector-valued 
maximal theorem of Fefferman and Stein [FeSt]: 

for all (hk} and all qE (1 co). 1 

Analogous to the chain rule is a version of Leibniz’s rule. Its proof is a 
straightforward application of ideas of Coifman and Meyer. 

~OFQSITION 3.3. Let cc~(O, 1), 1 <r, p,, pr,q1,q2< cc, and suppose 
r -Lply’+q;‘, for i= 1,2. Suppose that f E LPI, D’f E Lp2, gE Ly’, 
D”g E Lq’. Then D”( fg) E L’ and 

IlWfg)ll, Q C Ilf lIpI Wgllq, + C IIWII,, llgllqy 

Proof Alter q so as to be identically one on [l/4,4] and supported on 
(l/8, 8). Define 

Pkf = 1 Q,.r: 
/<k-3 

Since the Fourier transform of a product is the convolution of the Fourier 
transforms of the factors, 

Qkg.Pkf =&(Qkg%f) 

5x0 low1-7 
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for all f, g. Write 

k k Ii- il < 2 

=; 6?k(Qkt?Pkf )+I &(Qkf 'pkg) 
k 

+ C (Qif.Q/gh 
Ii- jl g2 

For the first term. 

li(T22ku ~~k(Qkg'pkf)~2)'i2~~~ 

Gc ~(~(2"Q,,&'~p~f))* 
IK 

1;2 

> II r 

4z22k” Je*g12.(M/)2)"2~~r 
k 

The second term is the same, but with the roles off and g reversed. For 
the third, when Ii-j/ <2, Qk(Qif .Qjg)=O unless k<max(i,j)+4. Thus 

Max(i,j)ak-4 

QC C C (C’2”‘J’ iQ,~~.(Qj-,/-Q,g)l')';' 
r> ~-6 frl<2 j 

> 

I/2 
=C C C 2-‘* C IQj-~s(Qj-,f2”Qjg)I* . 

s> m-6 JrJ<Z J 

The L' norm is then estimated as above. i 

Almost exactly the same lemma appears in Kato and Ponce [KaPo], 
but with (I+D2)a’2 in place of D". See also Kenig, Ponce, and Vega 
[KPV]. 
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4. PR~~F OF THEOREM 1 (A) 

The point of departure is the integral equation (see also ( 1.10)) 

U(t)=S(I)g+S:S(t-r)~,F(u(r))dt. (4.1) 

where (S(t) g) ‘% (4) = e”@g( 5). The strategy is to derive a pair of estimates, 
for the LX and L6 norms of u(t). Roughly speaking each is proved by using 
(4,l) plus both the L’ and L6 estimates for U(T), 151 < ItI. Earlier work on 
the problem relied principally on one estimate, which was used to prove 
itself in the same fashion; the coupled system allows greater flexibility. The 
exponent 6 has been chosen simply because it appears to give the best 
results, not for any conceptual reason. 

To formulate the main estimates let us introduce the notation 

M6(f) = SUP <T>5 ” IIU(T)l/b (4.3) 
ITI <I 

and 
IAl = Ilgll, + Ilgll,.,. (4.4) 

The exponents l/3 and 5/18 correspond exactly to the decay estimates of 
Lemma 2.1 for the linear propagator. 

PROPOSITION 4.1. Let s > 4 and suppose that FE C*(R) satisfies F(0) = 0 
and IF’(u)\ =O(lul’-‘) as Iu( -+O. Then there exists C<xN such rhatfor all 
gE L’n Lf, any solution u of (gKdV) in the class C,.([O, T]; H’) with 
initial data g satisfies for 1 tI < T 

M,(t)bCIg(,+C’M,(I)‘M,(t)‘~’ (4.5 I 

~,(t)~CIgl,+C’~,(r)‘~,(t)“~“‘7’ (4.6) 

where C’ = C’( F, s, II gl12. 1) -+ 0 as II gll2. I -+ 0. 

The notation in the proof will be greatly simplified by a convention. Let 
b be a positive number which will eventually be chosen small enough, 
depending on s, for a certain inequality to hold. For any exponent CC, c1+ 
will denote an exponent p 2 c1 of the form fl= TV + O(6). Similarly we write 
x- and af. Thus II,I(p+ denotes the Lq norm, q = p + O(6), q > p. This 
inconvenience is forced on us by two technical nuisances: i3,~ D-’ is not 
bounded on L’, though it is on L1 + ; likewise our chain rule for fractional 
derivatives is unavailable for L’. 

We first derive Proposition 4.1, then deduce the theorem. 
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Proof of (4.5). Write 

~,zD”~- o(a,D-‘)oD’/2+. 

By the integral equation (4.1), 

using Lemma 2.4 in the last inequality plus the boundedness of 
d, 3 Do-‘-the Hilbert transform times a numerical factor-on I,‘+. By 
applying the chain rule we may continue 

,<c(T)-“3 (gl, 

+Cj; Jt-~l-“‘~+ J/D "2+U(T)112+ 11 b&)1'-'112 dT 

<C(t)--"'(gl, 

+cllgll,., [; It--l -'I'+ Ilu(T) Ib@)ll',-"dT 

by the conservation law, since (ID"2+u(~))12+ <C Ilu(~)ll~ + C jlaxU(T)l12 < 

C (Jg(l,., provided 6 is sufficiently small. Multiplying through by (T)':' we 
get 

<T)“3 llU(T)llx 

<c(gll+C'<r)1'3~; (t-Tl-"2+ (T)-'5"8(T)'5'18 IlU(T) 

.(T)- ('/3l(s-4) (T)i'/3)(s-4) ~~"(y-4 dT 

<c' lgl, + C'bf,(t)3 hf,(t)"-4 (,>'I3 

. it--l -1i2r (T)-~151'8)~('i31(s~~4) dT. 
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The integral is bounded uniformly as [ r( -+ ,;c’, provided that b is chosen 
sufficiently small and 

I 15 S-4 1 

z+iX+ 
-------> 1, 

3 3 

which holds if and only if s > 4. Then we’ve proved 

M,(t)< c lgl, + C’M,(f)’ M,(t)“-.4 

as desired. 1 

Proof of(4.6). By Lemma 2.3, D”3S(c) maps LG.‘” to L6 with a bound 
O(t- 1.‘3). Therefore since L?~D-’ is bounded on L6, by the integral equation 

where (s - 1 )/p + l/q = 5/6. Choose qp ’ = 7/18 so that (S - 1 )/p = 4/9. The 
choice is dictated by the exponent 2/3 on D, for 7/18 = (2/3). (l/2) + (l/3). 
(l/6), whence an interpolation gives 

provided jr! < It/. 
To estimate the LF norm in (4.7) write p-’ =0/6+(1 -iJ)/ix, and 

estimate 

whence p=9(s- 1)/4>27/4>6 as long as s>4. Putting (4.8) and (4.9) 
together gives 
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where 
51 s-l 

a=rsj+ 3 -(l-p-l) 

5 s-l 14 ---- 
=54+ 3 39 

s 7 =--- 
3 18’ 

Inserting (4.10) into (4.7) yields 

Il~(t)l16aYw5~18 IA, 

+ C’M,(t)3 M,(j)“- lU3. s 
; IjmTl -I,‘3 (5) -s/3+7!18& 

TheintegralontherightisO((t)~P),~=1/3+s/3-7/18-l=(6s-19)/18. 
We need /I > 5/l 8, which means 6s > 24, or s > 4 once again. Thus we’ve 
proved that if s > 4, 

Mg(t)~Clg(l+C’Ms(t)3M,(t)“-“~3, 

which is (4.6). So Proposition 4.1 is established. 1 

To deduce Theorem l(A) define 

M(r)=M,(t)+M,(t). 

We’ve proved that there exist C < co and LX, /I > 0 such that for any so > 0, 
if 1 gl , is sufficiently small then for all t, 

By the assumption that u E C(R; L’) n C,.(R; H’) plus interpolation and 
Sobolev embedding, llu(t)116 and /Iu(T)[~, are continuous functions of T, 
hence M is also continuous. Therefore M(t) remains in the connected com- 
ponent of { y > 0: y < CE,( 1 + ybl + yB)} containing the origin, for all time. 
But if e. is chosen small enough, which means (gl , is small enough, t’hen 
that connected component is bounded. 1 

5. PROOF OF THEOREM 1 (B) 

More is now required of the initial data, namely g E L', d, g E L', and 
g E L:, and we define 

lgl2= IlgllL,1+ ll~r~llL~+ Ilgll2.2~ (5.1) 
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Now control of the H’ norm will allow us to bound a,u(r) in various 
norms, and to use the fact that for the linear propagator, S,S( t) g decays 
faster in Lp norms than S(r) g (assuming g has one derivative), as 
suggested by Lemma 2.2. In the proof of Theorem l(A) our only estimate 
on 8,~ was the conservation law, but now we shall prove various decay 
estimates which in turn can be used to control u itself for a better range of 
nonlinearities. The idea of exploiting the faster decay of derivatives of zl is 
already present in the work of Ponce and Vega [PV]. 

Henceforth let FEC’~ satisfy F(O)=F’(O)=O and IF”(u)1 =O(\U~“~~‘). 
Let gg L’ n HZ with S, gE L’, and let u be the unique solution of (gKdV) 
with initial data g, in the class C(R, H’): this solution exists by 
Kato [Ka]. 

The notation will be simpler if we restrict ourselves to the case s0 <s < 4. 
If F”(u) = O( l1~1~‘+‘) as u + 0 then the same holds for smaller S, so there is 
no loss whatever in taking s < 4. Unfortunately our strategy is to estimate 
each of the following: 

h’f4(U,t)= SUP (T)14-’ IlZl(T)l\4 
ITI $ I 

bf,((?,Zl, t) 3 SUP (T)’ 3+a jl(‘,U(T)II ‘I 
1rI G, 

M,(D"*U, t)= SUP (T)L’4 \ID’ ‘U(T)114 
/?I $ I 

b’Ifr(~“‘Zl, t)r SUP (T)’ 3+r \lD’ ‘Zd(T)ll / 
ITI G I 

M,(d34, f) = SUP IldtL4(T)lir, 
ITI G, 

where 6 =6(s) is positive but will be chosen sufficiently small for various 
inequalities to work out; it should be regarded as a technical nuisance. On 
the other hand E is positive and is essential to the argument. It must satisfy 

4-s 

-3. 
(5.2) 

We write E = (4 - s)/3 + 6’. We will prove that for each SE (so, 4) 
there exists E > (4 -s)/3 such that for all 6 > 0, the quantities 
M,(u, f), . . . . M2(a5,u, t) remain uniformly bounded as ItI -+ rxj. Of course it 
suffices to prove that for small a. When it should cause no confusion we 
write M4(z.4), . . . . M,(d’,u) to simplify the notation. 

PROPOSITION 5.1. Let SE(S,, 4), FE C’, and suppose F(O)= F’(O)=0 
and ~F”(u)(=0(l~J”~~). Let gEL’nH2 wifh 6,geL’ and let u be a 
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solution of (gKdV) with initial data g in the class C(R, H2). Let E = 
(4 -s)/3 + 6’ where 6’ > 0. If 6’, 6 are chosen sufficiently small, depending 
only on s, F, then for all times t, the following six inequalities are valid: 

M2(dfu) 6 c’ exp[CM,m(u)” -’ M,(d,u)] 

M,(u)~C’+C’M4(u)“-‘M,(D’!2U)(“-3)’2+ 

M,(d,u) < C’+ C’M,(u)“-’ M,(a,u)(S-3’~2M2(D2U)“2+ 

+ c’M,(u)“-2 kf,$(D”2u)1- M,(a,u)(3-3’~2 

M,(D’~2u) < c’+ eM4(u)s-’ M73(d.yU)(S-3)~2+ 

M,(u) < C’ + C’M,z(u)S-‘~2 M4(up2 M4(D”2u)‘~2. M,(a,u)“2 

M,(D’:2u) d C’ + CM2(D2fp M,(d,U)3~4 M,(u)” -7’2 M4(up2 

+ CIMx(dxU)(S-z’~2 M,(D”2u)‘~2 M4(U)S-3’2, 

where C’ = C’(F, s, 6, 6’, 1 gJ *) + 0 as Ig( 2 --) 0. 

As in section 4, an exponent tl f means c1+ O(6). 

Proof for M2(a.tu). By Eq. (3.10) of [PV], 

Ilb4t)l12~ C llgl12,2ew 
( 

Cji Il4~)llS;’ IlQ44lL d?) 

< C’exp CM,(u, t)s-2M,(d,u, t) 
( 

. 
s 
; (r)-(se2).i3 (T)-1,‘3-EdT 

> 

< c’exp(CM,(u, tY2 M,(d,u, t)) 

provided (S - 2)/3 + l/3 + E > 1, which means E > (4 - s)/3. 

Proof for M, (24). By the integral equation (4.1), 

Il4t)ll6 1 < C IIS(t)gll m +- j-! IlWt - t) ~J’(u(r))ll cc dr 
0 

<C(t)-‘.31g12+Cj; Ilo”2-s(t-r)o(a,o-‘) 

“D”2+F(~(r))llx dT 

<c(t)-li3 (g(,+cl‘d It--I-“‘+ 11~“2+F(~(~))(11+ dT, 

using Lemma 2.4. 
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The chain rule for fractional-order derivatives, interpolation, and the 

uniform boundedness of u(r) in H* imply 

. (ID1’2u(T)(l $- 3):2+ (1@‘2+~(~)11\5-s) 2- & 

<CC(t)-‘:‘3 ~gj2+C’M,(u)“-’ A!f,(D1,2u)(S-3’:2+ 

_ 

J‘ 

; It_-rl -1:2+ (,)-,-~I.‘~+ (T)m (~.3+El(~-~31,2& 

Qzyt) -“3 (1 + M4(u)s- ’ M,(D1’%)“-3~~2*) 

provided 
s-l 

I/2+- 
s-3 

4 + (l/3 l tE)T> 1 + I/3 

and 6 is chosen sufficiently small. Using the restriction E > (4 -s)/3, the 

requirement becomes -2s’+ 19s -43 > 0, which (for s < 4) holds for 
s > (19 - ,,fi)/4. The lower bound is < 15/4 = 3.75, which is less than 
so z 3.86. That takes care of M,,(u). 

Prooffbr M,,(S.u). Since g and d,gEL’ it follows that d,W”‘gEL’. 
Hence 

+ c s I If-T1 -1.‘2+ ((P+~?J(u(T))((~+ dr. (5.3) 
0 

To estimate the integrand, apply the chain and Leibniz rules: 

lw’+ &w~~)lll+ 

= II~“2+CF’b) Q4ll I+ 

G c tlw4ltp ll~3~2+~Ilq+ + c Ilw4ll,, IID’~‘+ull,z+ Ild,ull,, (5.4) 
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wherep-‘+q-‘= 1 =p,’ + pi- ’ + r-’ and all exponents belong to ( 1, x ) 
but are otherwise at our disposal. 

To handle the first term in (5.4) take p = 4/(s - 1) and therefore 
q = 4/(5 - s) to obtain 

II~‘(u)ll, llD3/2+4y+ 

<c Ilull;;-’ ll~3~2+~l14,~(5-s,+ 

<c Ilull;;-’ ((D3”+z4JI;-h- IID3:2u(l;-3 

by interpolation since 2 < 4/(5 - s) < 4. Two more interpolations give 

and 

In all, the first term in (5.4) is 

<c Ilull;-’ lld,ull~-3’~2 ~~,~uI~:,-3’~2~(c’ Ilaz,u,,;~2+)4-s- 

,<C’ (lulls-1 I@ 
4 .u * I((3--3’f2 Ipp )l’.12* (5.5) 

.,u2 . 

Now, turn to the second term in (5.4). Taking p1 = 4/(s - 2), p2 = 4, and 
r = 4/(5 -s) and applying the hypothesis that F”(u) = O( Iu[‘-~) leads to 

and 

IID 1:2+4Pz+ <C (ID"2uJI:- llD':2+uI(~+ 

d C' IID"2ull:-; 

the exponent 6 is of no particular significance and any finite exponent 
larger than 4 would do as well. The last inequality follows from the H' a 
priori bound (1.11) and Sobolev embedding. Combining the last three 
estimates, our bound for the second term in (5.4) is 

C' I~uII;;-~ (JDL'*ull~- I(&uI('-~"~. (5.6) 

Majorizing (5.4) by (5.5) + (5.6) and inserting the result into (5.3) we 
obtain the elegant estimate 
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(t> “‘+’ il~,u(T)ll x 

d c’+ C’M,(u)“-’ M,(S,u)‘” -3”2 M,(S$)’ 2k 

.<r)l.3+.jl (t-Tr(-l’2+ (T)-z’ (jT 

+ C’M,(u)“-2 Mx(Q4)‘~-3’~2 M,(D’ $0 

(t)‘.3+& It-TIP”+ (T)mp+ dT, 

where 

s-l s-3 
n=4+(1/3+@7- 

and 

s-2 1 
p=---- 

s-3 
4 +4(lj3+&)z=b. 

We want to know that there exists E > (4 - s)/3 such that the two integrals, 
times (t)li3+‘, remain bounded as 1 t 1 -+ ,CC. This happens, provided that 
6, 6’ are chosen sufficiently small, if 

Some computation reduces this to - 2s’ + 23s - 59 > 0, which means 

(23 - J57)/4 < s < (23 + $7)/4. 

The lower bound is our sO. That finishes the estimate for M,,(d,u); it is a 
pivotal step in that it entails the most stringent limitation on s. 1 

Proof for M,z(B1’2u). In the usual manner we estimate 

IlD”2~(t)ll 35 f c IID”2S(t)gll x 

+ c s ’ IID”‘S(t - T) d,F(U(T))(l 1c dT 
0 

<c’(t)-‘:2 

+C ’ lt-T(p’i2 IlF'(~(t))~.,~(t)ll,d~. 
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By Holder’s inequality and interpolation, 

IIF’( &dT)ll I 

d c Ib(T)il:--’ Ik%~~T)~~4,,5--s~ 

<c IlU(?)ll” Ild,U(T),,1?‘-““’ ~li+d(T),,~-“” 

<c’ IIU(T)Il;I-’ Ild,Z4(T)ll~-3”2. 

Thus, 

. (l)liJ+E 
f ’ It-Tl-"2 (t)-‘+ dt, 

0 

where this time 

S-l s-3 1 4-S 
a=4+ 2 - j+ 

( 
3+6’ . 

> 

Now l/3 + E < l/2 (provided 6’ is sufficiently small) since E = (4 - s)/3 + 6’ 
and s I=- so > 7/2, so for the integral to remain bounded as (tJ + co we 
need only have a + l/2 > 1 + l/3 + E. This is exactly the restriction we 
encountered in estimating AI,( 1 

Proof for M4( u). 

I/u(l)l14<C’(t)-‘!4+ +cj-1 jl~“4s(+T)~3’4&l(T))(14dT 

gC’(f)-“4+ ++-Tr/- I” 11~3’4&(T))114,3 dT 
0 

by Lemma 2.3. By the chain rule and interpolation, 

11~3’4%dT))114/3 < c IIF'(u)llti,5 Il~3,'4Uils 

< c I(uIJ ",- (7i2' Ilull:". Ild,ull~' llD"2#I(:/2. 

Consequently 

(t)114- Ib(~)ll, 
<C’+ CM,(u)‘- (‘0’ M4(u)5’* M4(D”2u)“2 M,(d,u)L’2 

(t)‘:4- 
s ; lt-Tl-"4 (t)-a+ h, 
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where 
cr=(f+&)(S--)+$~+$~+(5+&)~ 

and we need o! + l/4 > 1 + l/4. When E = (4 - s)/3, this happens if and only 
if 712 <s < 912, by the quadratic formula. 

Proqf for M4( D%). 

IID’ 24tN4 

dC’(r)-‘:4+C (‘Ir-rl-‘,’ ilo’4(F’(~(~))~~~(~))(14,3dr. 
‘0 

Let us gather our strength for the last time to estimate the integrand. By 
the chain and Leibniz rules, 

IlD’~“(F’(U) f3,~N,:, d c IIF’(u)ll, llD5 4dy, 

+ c IIF”(u)ll,, IW4~411,, ll~.yUlly:r (5.7) 

wherepP’+q;‘=3/4=r;-’ + r;’ + q;’ and all are in (1, ‘Y”). 
To estimate the first term on the right in (5.7) choose q, = 8 and p = S/S. 

Then since s > 712, 

lIf-‘(~)IIS/5 d c II Id- ‘118 5 

And 

,< c Ilull;’ Ilull’-:- “-5’2 

= c llz411:~2 Ilz4l~;y. 

lJD5’4uII * d c IlQ4ll ;i4 Ilf3yull y 

by interpolation. So for the first term in (5.7) we have the bound 

c 11~11:‘2 Ilull”,-” ll&~ll~4 Il~z,z#4. (5.8) 

For the second term in (5.7), take rz =4, r, =4/(s- 2), and therefore 
q2 = 4/(4-s). 

IIF”(U)II,, d c II I~ls--2114~,s- 2) 

= c Ilull”,-’ 

W4~llrz= 11~‘~4~114 

< c 11D’%11:‘2 IIuIIy, 

580 loo l-8 
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and 

Combining the last three estimates with (5.8) we obtain a bound for (5.7): 

c lluII:~2 Ilull”,-7f2 Ila;ull;;4 Ild,L4ll~ 

+ C’ Ilull;-3’2 llDL12uIJ;.‘2 Ilirrull;-2”2. 
So we have 

(t)‘:4 JILP2U(f)l14 

where 

and 

<C’ + CM4(zl)5~2 M,(u)S-‘7’2’ M2(a34p4 M,(d,u)3’4 

. (r)If4j-; lt-Tl-"4 (T)-'+ dT 

+ c’~~(~).~-(3.;2) ~~(@‘241/2 M~(Q)(J-~)I~ 

. (I)Ii4 jr It-T/ -Ii4 (5) -‘+ dr, 

a=~~+(s-~)~+~(~+~+~~) 

We need both exponents to be larger than 1. Now 

This last quantity is > 1 if and only if s > 19/5 = 3.8 <so. And 

2s - 7 
a=r+ 1, 

so all is well since s > s0 > 7/2. i 

Theorem l(B) follows directly from Proposition 5.1 by the standard 
argument at the close of Section 4. 
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