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1. Introduction 

Frame and Gilliland (1985, p. 38) conjectured that if X is a non-negative integer valued random variable 
with non-increasing probability mass function and with finite mean p then all its odd central moments are 
non-negative: 

E[(X-p)*‘:+‘] >o, k=l,2,3 ).... 

The conjecture has been established for a variety of special cases (Gilliland and Hsing, 1988) but the 
general problem has remained unsolved (see also Gill and Gilliland, 1989, p. 66). 

In the absolutely continuous case, the above odd central moment inequality does hold. In fact, inspired 
by a conjecture of Birnbaum (1950) on the sign of the skewness of truncated normal distributions, Hannan 
and Pitman (1965) have shown that if X has a symmetric unimodal probability density function and if 
E[ IX I] -C 00 then for every c with P[ X > c] > 0, the conditional distribution of X given that X > c has 
non-negative odd central moments of all orders. Their proof does not seem to work in the lattice case. 
More generally, Runnenburg (1978, Remark (a)) and MacGillivray (1981, Section 2) have shown that if X 
has a non-symmetric unimodal probability density function f such that (f(p + x) -f(p - x); x 2 0) 
changes sign at most once and does so from negative to positive, then all existing odd central moments are 
positive. Again, their proof does not seem to work in the lattice case. (See Remark 1 below.) 

The purpose of this paper is to present a simple geometric condition, condition (1) below, under which 
all existing odd central moments of a unimodal distribution are non-negative. Our criterion applies to both 
the lattice case and the absolutely continuous case. In the lattice case, our result generalizes the 
Frame-Gilliland-Hsing conjecture. In the continuous case it provides a different proof of the Runnen- 

0167.7152/91/$03.50 0 1991 - Elsevier Science Publishers B.V. (North-Holland) 97 



Volume 12, Number 2 STATISTICS & PROBABILITY LETTERS August 1991 

burg-MacGillivray result. In Section 2 we introduce some notation and we state the main result (Theorem 
2.1). The main idea of our approach is the decomposition result presented in Section 3. We show that if a 
unimodal distribution satisfies condition (1) below, then it can be written as a mixture of positively skewed 
bi-uniform distributions (see Definition 3.4 below) all having the same mean. In Section 4 we show that 
the positively skewed bi-uniform distributions have positive odd central moments. The main result then 
follows from the decomposition result. 

Remark 1. If X is integer valued and if Y = X + U where U is uniformly distributed over the interval 
(- f, i) and is independent of X, then X and Y have the same mean and the same third central moment. 
However their higher odd central moments need not be equal and therefore positively of the odd central 
moments of X is not an immediate consequence of the positivity of the odd central moments of Y. 

2. Statement of the result 

Let F be a probability measure on the real line Iw. For d > 0 let L, = { kd; k E B}, the lattice with span d, 

and let md be d times counting measure on L,. The real line Iw will also be denoted L,, the Bore1 u-field 
on Iw will be denoted 9, and the Lebesgue measure on Iw will be denoted m,. Now assume that F is 
unimodal, i.e. assume that for some d >, 0, F is absolutely continuous with respect to md and some version 
of its density function with respect to md is non-decreasing on ( - co, x0] n L, and non-increasing on 
[x,, cc) n L,, for some x0 E Iw. In the lattice case (d > 0) let f be the version of the density of F with 
respect to md given by 

f(x)=F({x})/d tlx~IW, 

and in the continuous case (d = 0) let f be the right continuous version of the density of F with respect to 
m,. With this choice of f, let 

Y max = supAx) 
XEW 

and for 0 <y < y,,,,,, let 

h 
F 

(y)= inf(xE08: f(x)>y}+sup{xElR: f(x)>y} 
2 

Thus hF( y) is the middle of the horizontal cross section of the graph of f at y. (See Figure 1 and Figure 2 
below.) Recall that F is said to be symmetric if there is an x such that F(x - B) = F( x + B) for every 
Bore1 set B. Otherwise it is said to be non-symmetric. Observe that if F is symmetric and has mean pF 
then hF( y) = pLF for all y E (0, y,,,,,) where if F is non-symmetric and has finite mean pF then the sets 

{Y E(O, ymax): hF(y)cpF} and {Y E&4 ymax): hF(y)>pF) are both non-empty. 

Theorem 2.1. Let F be a unimodal probability measure with finite mean pF. Suppose that F is non-symmetric 

and that 

inf{YE(O, ymax): hF(y)<pF) 2 suP{ Y E (0, Ymax): hF(Y) +F}- (1) 

Then, fork=1,2,3 ,..., 

/ R(x--F) 2k+‘F(dx) > 0 

whenever the left hand side is well defined. 
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Observe that if F is non-symmetric and h, is non-increasing then condition (1) is satisfied. And if F is 
symmetric then all existing odd central moments are null. Thus the following corollary is an immediate 

consequence of Theorem 2.1. 

Corollary 2.2. Let G be a symmetric unimodal probability measure with mean pc. Let c > - 00 be such that 
G (( c, m)) > 0, let F be the probability measure defined by 

F(B)=G(Bn( c, 4)/G((c, ~1) VB=.@ 

and let pF. denote its mean. Then, for k = 1, 2, 3,. . . , 

J (x - pF)2k+‘F(dx) >, 0. 
R 

Furthermore, equality holds if and only if F is symmetric. 

Proof. Let G and c be as in the statement of the corollary. If G(c, 00) = 1, then F is symmetric (since it is 
equal to G itself) and its odd central moments exist (since F then has bounded support). Thus 

h(x-PF1F) 2k+‘F(dx)=0 for k=l,2,3 ,.,.. If G(c, co) < 1, then clearly F is non-symmetric and h, is 

non-increasing. Furthermore F has finite mean (since G does) and all its odd central moments are well 

defined (possibly equal to + co) since the support of F is bounded below. Thus Theorem 2.1 yields 
j,(x - pF)2k+1F(dx) 10 for k = 1, 2, 3,. . . . 0 

Our proof of Theorem 2.1 is based on the following elementary application of Fubini’s theorem which 
we state as a lemma for easy reference. Roughly speaking, it says that if a probability measure F is a 
mixture (see Definition 3.5 below) of probability measures all having the same mean and all having 
positive (2k + 1)st central moment, then F itself has positive (2k + l)st central moment. 

Lemma 2.3. Let F be a probability measure with finite mean ~1~. Suppose that 

where (Y, CV, Q) is a probability space and where (F,(B); y E Y, B E .S?) satisfies 
(i) for all B E 98, F.(B) is Smeasurable, 

(ii) for every y, F,( .) is a probability measure on R with mean p!,, 
(iii) for every y, pFV = pLF. 

Let k be a positive integer. Assume that for every y, J,(x - pLF) 2k+‘Fy(dx) is well defined. Assume also 

that lR(x - CL~) 2k+‘F(dx) is well defined. Then: 

(a) If 

y E Y: s,(x -/+)‘“+?$(dx) > 0 
i) 

= I, 

then 

/ p - PF> 2k+‘F(dx) >, 0. 
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(b) Zf 

qyt Y: ~(x-~,)2*ilF~(dx)>o)) =1 

and 

p(ty E Y: /,(x - ,uF)2k+1q..(dx) >O)) ‘0, 

then 

/ 
(x - /.+)“+‘F(dx) > 0. 0 

R 

Note that in the statement of this lemma, one can (in view of conditions (i), (ii) and (iii)) think of 
(I$( B); y E Y, B E 9?) as a Markov kernel (of transition probabilities from (Y, 9’) to (W, 9?)) with 
constant mean. 

Remark 2. In the absolutely continuous case, condition (1) of Theorem 2.1 is equivalent to the condition of 
Runnenburg and MacGillivray stated in Section 1 above. 

Remark 3. In the discrete case we are requiring that F be lattice unimodal, i.e. we are requiring that there 
exist a d > 0 and an x0 E [w such that F( Ld) = 1 and F(x) is non-decreasing on (- co, x0] n L, and 
non-increasing on [x0, cc) n L,. The following example shows that if F is merely ‘unimodal on its 
supports’, then the conclusion of Theorem 2.1 need not hold, even if condition (1) is satisfied. Put mass 
0.42 at 0, mass 0.38 at 2, and mass 0.2 to 3. Then F is ‘unimodal on its support’ and condition (1) is 
satisfied, but the third central moment of F is negative. 

3. Proof of Theorem 2.1 

First we consider the case where the set { y E (0, ymax): h,(Y) = pF} has Lebesgue measure 0. In this case 
equality holds in (1). Let 

y, = inf{ y E (0, y,,, ): h,(y)<pF} =sup(y+O, ymax): h,(y)>/+) 

and for y E (0, y*) let p(y) be the unique number in (y,, y,,,) such that 

P(v) 
/ / 

(x - &m,(dx) du = 0 (2) 
Y [h-(u).h +(u)l 

where h+(u)=sup{xEL,: f(x)>u} and h_(u)=inf{xEL,: f(x)>u}. For the case d=O, the 
geometric interpretation of p(y) is that in Figure 1, the x-coordinate of the center of gravity of the shaded 
region is pF. A similar geometric interpretation holds for the case d > 0. 

Proposition 3.1. 
(a) p is strictly decreasing on (0, y*). 
(b) /3 is absolutely continuous on (0, Y*). 
(c) For almost every y in (0, y*), the derivative p’(y) exists, is negative, and satisfies 

(h,(y) -/-+_)m,([hUy), h+(Y)]) 

p’(y) = (I+.(P(~)) -p&,([h-(P(Y)), h+@(y))]). (3) 
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h-(y) PF b-(Y) h+(Y) 
Fig. 1. 

Proof. Observe that h_(u) and h+(u), and hence jth_CuJ,h+CuJj( x - pF)m,(dx), are continuous in u almost 

everywhere in (0, y,,,). Parts (a) and (b) follow at once. Now fix y E (0, v*). For Ay # 0 such that 
y + Ay + (0, y*), equation (2) yields 

(x - /tl)m171(dx) du - sy+“j- (x - j.tf)m,(dx) du = 0. 
Y [k(u).h+(u)l 

Thus by continuity we obtain, for almost every y E (0, vd, 

(x - I/.&,(dx) + 41) (P(Y + AY> - P(Y)) 
i 

- (1 (x-,u,)m,(dx)+o(l) Ay=O asA_v-rO. 
Ck(Y).h+(.Y)l i 

Note that for every y E (0, ye>, 

J 
(x -I.lF‘)q,(dx) = (h-b) -cl.>h,@-(I+ h+(y)])) ‘0, 

lhm(Y).h+(Y)l 

Thus solving for (,G(y + AY) - ,B(y))/Ay and letting Ay + 0 yields part (c). q 

If y is such that /3’(y) exists, is negative, and satisfies (3, then let 

q B) = 
m,([h_(y), h+(y)] f=q -P’(Y)m,([h-(Hy))~ h+(Pb))l w 

m,([h_(y), h+(y)]) -P’(Y)%([k(P(Y)L h+(P(y))l) 
VBEgq 

3 

(4) 
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and 

q(y) =m,([h_(y), h+(y)]) -P’(Y)m,([~-(#wy))~ h+(fl(y))l). 

Otherwise, let I$( .) be point mass at ~1~ and let q(y) = 0. Finally, let 

Q(B)= j q(y) dy 
(o.Y*)nB 

VB E S(O,~,) 

where -qo. .y* ) denotes the Bore1 o-field on (0, y*). 

Proposition 3.2. 
(a) VB E 9, F.(B) is measurable. 
(b) For ally E (0, y*), F,( .) is a probability measure on L,. 

(c) For ally E (0, y*), F,( .) has mean Pi. 

(d) Q is a probability measure on (0, y*). 

(e) VB E -% F(B) = l(O,y.&AB)Q(dy)- 

Proof. Parts (a) and (b) are consequences of the definitions and part (c) follows from (3). For B E 9, 

F(B) = j8f(x)md(dx) 

zz? 

// 
R of(x)lB(x) dym,(dx) 

Yma 
= 

/ / 0 
[h_(y) h (y)lbbhw dY 

+ + 

b(x)md(dx) dy 

= 
/ y*F,(B)e(dyh 
0 

This proves part (d) and (e). 0 

Proposition 3.3. For every integer k 2 1, 

Qii 

y E (0, y*): /,(x - PF)2k+‘F,w ’ O 
ii = l* 

Proof. For u, u E L,, with u < v let UCd) denote the uniform probability measure on [u, v] n L,. 
For almost every y in (0, y*), the prob;&lity measure F, defined in (4) is of the form F, =pU:f’ 

+(I - P)U,If’ with 0 cp x 1 and r, s, t, u E L, such that r < s < t < u, i(r + u) > i(s -t t), and tp(s + t) 
+ i(l - p)(r + u) = pF. Theorem 4.5, below, asserts that such probability measures have strictly positive 
(2k + 1)st central moments for every positive integer k. 0 
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The conclusion of Theorem 2.1 now follows at once from Proposition 3.2, Proposition 3.3 and Lemma 
2.3. Finally, consider the case where the set { y E (0, y,,,):h,(y) = pF} has strictly positive Lebesgue 
measure. Let 

s= (Ye-4 YInax): MY)=PFL a=jq.,([k(u). h+(u)]) du, 
s 

F”‘(B)= $jim,([h_(u), h+(u)] nB) du VB~.%‘, 

F’*‘(B) = &{F(B)+,([kb). h+(u)] nB)du) ~‘BE.GY’. 
s 

Then F = aF(‘) + (1 - a)F (*) Observe that 0 < (Y < 1 and that F(l) and F(*) are both probability . 
measures with mean Pi. By symmetry 

J Jx - PF) 2k+‘F”‘(dx)=0, k=1,2,3 ,.... 

By the special case treated above, 

I - PF) 2k+‘F(2)(dx)>0, k=l,2, Jx 3 ,.... 

Theorem 2.1 now follows from Lemma 2.3. 0 

Definition 3.4. A probability measure on L, is called a nested bi-uniform distribution (on Ld) if it is of 
the form pCJ$) + (1 -p)U,if’ for some 0 QP < 1 and some r, s, t, u E L, with r < s < t =Z u. It is called a 

positively skewed nested bi-uniform distribution (on Ld) if, in addition, +(s + t) < i(r + u). 

P(Y) 

P(Y + AY) 

Y+AY 

Y 

h-My)) h.+(Y)) *+(P(YN 

Fig. 2. 
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The probability measure cs defined by equation (4) is a nested bi-uniform distribution on L,. Figure 2 
gives, for the case d = 0, a geometric interpretation of c,,q( ,v)Ay as a mixture of a ‘horizontal slice’ of F 

at y and a ‘horizontal slice’ of F at p(y) where the relative ‘thickness of the slices’ is such that Fy has 
mean pp. By ‘piling up’ the c,q(y)Ay ‘s we recover F. A similar geometric interpolation holds for the case 
d > 0. The following definition is standard: 

Definition 3.5. Let F be a probability measure on R. Let ( FP; y E Y) be a family of probability measure 
on R. We say that F is a mixture of the <,.‘s if there exists a u-field CV on Y and a probability measure Q 
on (Y, CV) such that for every Bore1 set B in R, the function F,(B) is gmeasurable and F(B) = 

l,F,.( B)Q(dy). The probability measure Q is called the mixing measure. If the support of Q is a finite set, 
we say that the mixture is finite. If the support of Q is countable, we say that the mixture is countable. 

We have proved the following decomposition result: 

Theorem 3.6. Fix d 2 0. Let F be a probability measure on L,, with finite mean. Assume that F satisfies 

condition (1). Then F is a mixture of positively skewed nested bi-uniform distributions on L,, all having the 
same mean. 0 

Remark 4. A close look at the proof of the above theorem shows that if f has finite range then the mixture 
can be made finite and if f has countable range then the mixture can be made countable. (This follows 
from the fact that if f has finite (respectively countable) range, then the functions h,, h_, and h, are all 
finite (respectively countable) linear combinations of indicator functions of disjoint intervals. The details 
are omitted.) In particular this always applies when d > 0. 

4. Odd central moments of nested bi-uniform distributions 

If it exists, the mean of a probability measure F will be denoted p(F) or simply ~1 if there is no ambiguity. 
The jth central moment, if it is well defined, will be denoted p(,,( F). The probability measure 
F(B) = le( a), B E %?, will be called the point mass at a and will be denoted 6,. In the following four 
lemmas, F is a probability measure with mean CL. 

Lemma 4.1. Suppose that pC3,( F) > 0 and that the probability measure F( B n (- 00, p))/F(( - 00, p)), 
B E 93, is a point mass. Then pCzk + ,, (F) > 0 for every positive integer k. 

Proof. Under the stated assumptions, F can be written as F =pS, + (1 - p)G for some a -c p, some 
0 < p < 1, and some probability measure G concentrated on the interval [p, cc). Hence 

P(x+l,(F) 
(p-a)*‘+’ 

= -p + (1 -p)i, 
.oo 

,( E - l)2i+‘G(dx). 

If x > p, then (x - a)/(x - p) - 1 > 0 and therefore ((x - a)/(x - p) - l)2k+’ is convex in k. Thus the 
above integral is convex in k. Thus the quantity pCzk+, ,( F)/( p - a) 2kt1 is convex in k. It is equal to 0 at 
k = 0 and it is strictly positive at k = 1. This proves the lemma. q 

Lemma 4.2. Suppose that F is of the form 

F= 
r=O r=m+l 
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where m is a non-negative integer, n is a positive integer, and (m + n)/(m + n + 1) <p < 1. Then 
pczL+ ,,( F) > 0 for every positive integer k. 

Proof. Induction on m. The cases m = 0 and m = 1 follow easily from Lemma 4.1. Consider the case 
m > 1. One can write F= rF(‘)+ (1 - n)Fc2’ with n =p/(m + 1) + b + (1 -p), with 

and 

and with b such that p( F”‘) = p( F”‘) = p. The induction hypothesis yields IJ.(~~+,,( F(“) > 0 and Lemma 
4.1 yields u (2x+,j( F”‘) > 0. Thus Lemma 2.3 yields pcZk+ij( F) > 0. 0 

Lemma 4.3. Suppose that F is of the form 

where n is a positive integer and where l/(n + 1) <p < 1. Then pczk+ ,,( F) > 0 for every positive integer k. 

Proof. Induction on n. The case n = 1 follows from Lemma 4.1. Consider the case n > 1. If 2/( n + 1) < p 

< 1, one can write F = 7rF”’ + (1 - T)F”‘, with r = (1 -p)/n + b, with 

1 F”‘: - b,j 1-P 
77 0 + -4l n i 

and F”’ = (p-b)&+ +$Y, 
I=1 

and with b such that p( F”‘) = p( Fc2’) = p. The induction hypothesis yields P.(~~+ ,)( Fc2)) > 0 and Lemma 
4.1 yields p(2k+ ,)( F”‘) > 0. Thus Lemma 2.3 yields TV 
write F = 7rF”’ + (1 - r) Fc2) 

(2k+1J(F) > 0. If l/(n + 1) <p < 2/(n + l), one can 
with z- =p + (1 -p)/n + b and with 

and with b such that p(F”‘) = p(F”‘) = I*. Lemma 4.1 yields 

ptzk+,,( F”‘) > 0. Thus Lemma 2.3 yields p 

p c2k+ ,,( F”‘) > 0 and Lemma 4.2 yields 

pF(‘) + (1 - p) F”’ with 
(2k+ ,,( F) > 0. Finally if p = 2/( n + l), one can write F = 

F(‘$ 1-P p-. 
i 

8 + l-PC3 o n n 
i 

and Fc2) = i ni1 6,. 
1=l 

Again we have p( F”‘) = p( F”‘) = p. By symmetry p(2k+1,( Fc2’) = 0 and by Lemma 4.1 ~~2k+lj( F(l)) > 0. 
Thus Lemma 2.3 yields pczx+ r)( F) > 0. 0 

Lemma 4.4. If F is of the form 
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where m is a non-negative integer, n is a positive integer, and (rn + l)/( m + n + 1 
> 0 for every positive integer k. 

August 1991 

) <P < 1, then P.~~++~(O 

Proof. Induction on m. The case m = 0 is Lemma 4.3. Fix m > 0. If (m + n)/(m +n+l)<p<l,thenthe 
result follows from Lemma 4.2. If p = (m + n)/(m + n + l), one can write F = nF(‘) + (1 - v)F(‘) with 
r = p/( m + 1) + (m + n)(l - p)/n and with 

Again we have p(F(‘)) = p(FC2)) = ~1. By symmetry p 
j*C2k+lj(F(‘)) > 0. Thus Lemma 2.3 yields 

CZk+l)( F’*‘) = 0 and by the induction hypothesis 
p C2k+lj(F) > 0. Finally if (m + l)/(m + n + 1) <p < (m + 

n)/(m + n + l), one can write F = mF(‘) + (1 - m)F(*) with rr =p/(m + 1) + (m + n)b, with 

m+n 

&S,+b c 4 
i=l 

and 

and with b such that p( F”‘) = p( F’*‘) = p. The induction hypothesis yields P~~~+~)( F”‘) > 0 and 
P(~~+,)( F”‘) > 0. Thus Lemma 2.3 yields pCzk+ ,)( F) > 0. 0 

Recall that for U, v E L,, Vi’,:’ denotes the uniform distribution on [u, v] n L,. 

Theorem 4.5. Let F be a probability measure of the form F =plJ:p’ + (1 - p)UJ,d’ with 0 <p < 1 and r, s, t, 

u E L, such that r < s < t < u and i(s + t) < t(r + u). Then pCzk+,,(F) > 0 for every positive integer k. 

Proof. If r < s, a little algebra shows that F can be written as 

F=P,(P~U,I~‘+(~-P,)U,I~‘)+(~-P,)(P,U,I:”+(~-P,)U,!~‘) 

for some p,, p2, p3 E (0, 1) such that p(F) = p(p2U>t) + (1 -p2)U:f)) = ~((p#f) + (1 -p3V4:f)). Thus, 
in view of Lemma 2.3, it suffices to consider the case r = s. First, consider the case d = 0. If s < t, then 
after some elementary integration and algebra one can write the (2k + 1)st central moment of pU,!,d’ + (1 
- p)U,I,d’ as 

where p = :p(s + t) + i(l -p)(s + u). The quantity (s - p)2k+2 /(2k + 2) is strictly positive for every 
positive integer k. Now consider the quantity inside the curl braces. It is equal to 0 if k = 0, it is strictly 
positive if k = 1, and it is convex in k, for k E (0, 1, 2, 3,. . . }. Thus it is strictly positive for every positive 
integer k. The case s = t can be treated similarly. Now consider the case d > 0. Without any loss of 
generality one can assume that d = 1 and s = 0. In this case the desired result is just a restatement of 
Lemma 4.4. 0 
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