
Systems & Control Letters 17 (1991) 105-113 105
North-Holland

On nonconflicting languages that arise
in supervisory control of discrete
event systems *

Enke Chen and St6phane Lafortune
Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109-2122, USA

Received 27 December 1990
Revised 22 April 1991

Abstract: We study four classes of nonconflicting sublanguages
of a given language that arise in supervisory control of discrete
event systems. We first present closed-form expressions for the
supremal nonconflicting sublanguage and for the supremal
closed nonconflicting sublanguage of a given language. The
nonconflicting condition is with respect to a second given
language. We then present algorithms to compute the supremal
nonconflicting controllable sublanguage and the supremal
closed nonconflicting controllable sublanguage of a given lan-
guage. The regularity properties of these languages are also
investigated.

Keywords: Discrete event systems; supervisory control; formal
languages; nonconflicting languages; controllable languages.

1. Introduction

Let ~ be a non-empty finite set of events
(alphabet) and denote by X* the set of all finite
traces of elements of ~, including the empty trace
e. A subset L _c ,~* is a language over ,~. Lan-
guages are used to model the logical behavior of
(uncontrol led or controlled) discrete event
processes. Several properties of languages such as,
controllability, observability and normality, have
been studied extensively in supervisory control of
discrete event systems (see, e.g., [8]). This paper is
concerned with the nonconflicting property of lan-
guages. This property was first introduced in [10].
Two languages L 1 and L 2 are said to be noncon-
flicting if whenever they share a prefix, they al-

* Research supported in part by the National Science Founda-
tion under Grant ECS-9057967.

so share a trace containing this prefix, i.e.,
L 1 n L 2 = L 1 r3 L2, where the overbar notation de-
notes the prefix-closure of a set. Closed (in the
sense of prefix-closed) languages are always non-
conflicting with one another.

The concept of nonconflicting languages finds
applications in modular supervisory control [10]
and in nonblocking supervisor design [2] of dis-
crete event systems. For instance, it is shown in
[10] that nonconflicting is a sufficient condition
for the intersection of two controllable languages
to be a controllable language. It is also shown in
[10] that the conjunction of two nonblocking su-
pervisors is nonblocking if and only if the two
concerned languages are nonconflicting. In a dif-
ferent context, it is shown in [2] that the inner-
blocking measure of a supervisor is empty if and
only if two particular languages are nonconflicting
(see [2], Section 3.2, for details).

When solving supervisor synthesis problems for
discrete event systems, it is usually necessary to
first calculate the supremal element of a certain
class of languages, e.g., supremal controllable sub-
language [9], supremal normal sublanguage [6],
etc. The same situation arises for the class of
nonconflicting sublanguages of a given language
(with respect to another fixed language). For in-
stance, this is the case in [2], Section 3.3, where in
order to synthesize the so-called 'minimally re-
strictive non-innerblocking solution' of the super-
visory control problem with blocking, one must
calculate the supremal closed controllable noncon-
flicting sublanguage of a particular language, an
unsolved problem. The pr imary motivation of this
paper is to address this computat ion and find
algorithms to calculate the supremal closed con-
trollable nonconflicting sublanguage. For this pur-
pose, it is necessary to first deal with the computa-
tion of the supremal nonconflicting sublanguage,
and then introduce the requirements of prefix-

0167-6911/91/$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland)

106 E. Chen, S. Lafortune / Nonconflicting languages in supervisory control

closure and controllability. From a general point
of view, the results that we establish on these
special classes of nonconflicting sublanguages will
be of interest in other contexts as well.

More specifically, we introduce and study four
nonconflicting sublanguages of a given language
L: the supremal nonconflicting sublanguage (de-
noted L NC), the supremal closed nonconflicting
sublanguage (denote L~c) , the supremal noncon-
flicting controllable sublanguage (denoted LCN c),
and the supremal closed nonconflicting controlla-
ble sublanguage (denoted L~NC). Here, the non-
conflicting condition is with respect to a second
given language, and the controllability condition is
with respect to a third given language and a fixed
set of uncontrollable events. We present closed-
form expressions for the first two nonconflicting
sublanguages and present algorithms for the com-
putation of the last two nonconflicting sublan-
guages. We establish the finite convergence of
these algorithms in the regular case based on a
finite-state machine implementation of these al-
gorithms.

Our presentation is organized as follows. Nec-
essary background and preliminary results are
presented in Section 2. L NC and L~Nc are defined
and studied in Section 3, while Section 4 is de-
voted to LCN C and L~N C. Section 5 concludes the
paper.

cg.~ has a supremal element (w.r.t. set inclusion)
denoted L ~ := sup c~£~a i.e., L ~ ~ WA x' and K
cg&a ~ K _c L T. L T is called the supremal con-
trollable sublanguage of L. Its computat ion is
discussed in several references, among these [9,1,4].

We recall a property which is stated in [1].

l~mma 2.1 [1]. I f B c Z* is closed, then for V L c_
S*, the language B - L~,* is also closed. []

The following result (whose proof is straight-
forward) will also be needed.

Lemma 2.2. Let L, R c ,~* and L n R = ~J. Then
Z A R Z * = ~J and L N R Z * = fJ. []

3. Supremal nonconflicting sublanguages

3.1. General case

Consider the following class of languages:

,,2°NC ;= { K : (K C L) A (K N P = K N P) } (3.1)

where L, P c , ~ * are two fixed languages. In
words, Z, aNC is the class of sublanguages of L
that are nonconflicting with P. We characterize
the supremal element (w.r.t. set inclusion) of ZaNc
by the following result.

2. Preliminaries

We need to introduce some necessary back-
ground for the work that follows. If s, s ' , t ~ X*
with s ' t = s, then s ' is a prefix of s; thus both e
and s are prefixes of s. The closure L of L is the
language consisting of all the prefixes of traces in
L; if L=~J then L = J J , and if L 4 : ~ then e ~ L .
Clearly L _c L L is closed if L = i.. A language is
regular if and only if it is accepted by a finite
automaton [3].

Let M be a fixed language over X, and let Xu
be a fixed subset of ~ denoting the set of 'uncon-
trollable' events (in the sense that their occurrence
cannot be disabled). A language K _c ,~* is said to
be controllable with respect to (w.r.t.) M and Xu
if ~"~u n M _c K [8]. The class of controllable
sublanguages of a given language L is defined as

9'.,.~:= { K: (K c L) A (,K~', n M c: ,K)}.

Theorem 3.1. (i) LNC := sup,~VNC is well defined.
(ii) LNC = L - (L n P - L n P)2~*.

(iii) L N c G P = L N c A P = L A P .

Proof. (i) We assume that K~ ~Z~aNC for a in
some index set, i.e.,

K c_L, K ~ A P = K ~ A P .

Then, (U~K~) _ L. Also,

(U~,K,,) n P = U~,(K,~ n P)

= uo(K-T)

= (uo)

=U~K~ n P.

This shows that .L~aNC is closed under arbitrary
unions. Thus, LNC := sup&aNc is well defined.

E. Chen, S. Lafortune / Nonconflicting languages in supervisory control 107

(ii) Let

RHS := L - (L n P - L n P)X*.

Obviously, when ~L n P = L n P (e.g., if L = ~f or
P =~) , then LNc = RHS = L. The equation LNc
= RHS is valid in this case. The proof that LNc
= R H S w h e n L n P c L n P (t h u s L 4 = ~ a n d P4=

~f) is organized into three steps.
Step 1. We need to show that RHS c L, which

is obviously true.
Step 2. We need to show that RHS is noncon-

flicting with P, i.e.,

RHS n P = RHS N P.

Let

L n P = L n P O R (3.2)

where © denotes disjoint union, R ¢ ~ and L n P
n R = ~. Lemma 2.2 implies that

L n P n RX* = ~, (3.3)

(L n P) n RX* = ~f. (3.4)

Then, RHS = L - R X * c L - RX* . Hence:

RHS c L - RX*

= L - RX* (by Lemma 2.1).

RHS n P_C (L - R 2 *) n P

= (L A P) - R 2 *

= + R) - R Z *

= L A P - R X * (s i n c e t ~ X *)

= L n P (by (3 .3)) .

RHS A P = (L - R X *) A P

= (L A P) - R X *

= L n P (by (3.4)).

Therefore

RHS n P c RHS n P. (3.5)

Since the reverse inclusion of (3.5) is always true,

RHS n P = RHS n P = L n P (3.6)

which completes Step 2.
Step 3. It remains to show that RHS is the

supremal nonconflicting (with P) sublanguage of

L. Let us proceed as in (3.2). Thus (3.3), (3.4) and
(3.6) are still valid. Also, let

LN c = RHS © R m. (3.7)

As we know,

LNC C L, (3.8)

LNC n P c LNC n P. (3.9)

Since

RHS = L - RX* = L - (L n R X *) ,

it follows that

L = [L - (L n R Z *)] 0 (C n R Z *)

= R H S ©(Ln R Z *)

and

LNC = RHS tJ R m

_ L (by (3.8))

Thus

RrnC (L n Rz~*) (3.10)

and so

R m A P C (L A P) ARz~*

= ~ (by (3.4)).

Hence

R m n P = ~ . (3.11)

Substituting (3.7) in (3.9), we have

R H S O R m A P (RHS U Rm) A P

so that

(RHS U Rm) n P c (RHS n P) 0 (R m r i P)

and thus

(RHS n P) U (Rmm n P) _ RHS n P

But by (3.6), we know that

R H S A P = R H S A P = L A P ,

which yields

)~m (') P ~ t n P. (3.12)

(by (3.11)).

108 E. Chert, S. Lafortune / Nonconflicting languages in supervisory control

If L A P = f J , then by (3.12) we have Rm A P = ~ J .
Since e ~ P, then e ~ R~ which implies that R m

= J~. Thus

LNC = RHS = L - (L n P) Z * = f~.

concatenation operations involved in the expres-
sion of LN c [3].

3.2. Special case

If L N P ¢ ~ J , then e ~ L A P . Since e ~ L N P , it
follows e ~ R = L n P - L n P. Also by (3.10) we
have

R m C _ R Z * = (L A P - L A P) Z * . (3.13)

Since e ~ R, then e ~ R m. Assume that R m :/:j~.

Then]s ~ R m , Is[~ 1. Then by (3.13) and by the
facts that RCf~ and e ~ R , we have that 3s~

f s ' j - C R m , Is~l > 1 , such that s ~ R = L N P
- L n P. Thus

s, E L A P G P , s I ~ L A P . (3.14)

Since s 1 ~ R m and s 1 ~ P, we have s 1 ~ R m n P
G L n P (by (3.12)). This contradiction with (3.14)
shows that R m = ~ , and thus LNC = RHS.

(iii) This is immediate from the proof of (ii).
[]

Recall the definition of the closed sublanguage
of L that is given in [5]:

It is easy to show that L is regular whenever L is
regular (see [5]).

Consider the following class of languages:

,LPr~c :--- {K: (K G L) A (K = K)

(3.15)

where L, P G Z * are two fixed languages. In
words, £P~c is the class of sublanguages of L
that are closed and nonconflicting with P.

Theorem 3.2. (i) L%c :--sup ~ c is well defined.
(ii) L~NC = _L - (_L N P) - _L N P) Z * .

Since L n P _c_ P, L N P is nonconflicting with
P. Then we have the following result which will be
used in Section 4.1.

Corollary 3.1. Let L, P G ~ * . Then

L N P c L - (L N P - L A P) ~ * . []

Theorem 3.1(ii) provides a closed-form expres-
sion for the supremal nonconflicting sublanguage
LNc of L. Since all the operations in the expres-
sion of LN e. preserve regularity, we have:

Corollary 3.2. I f L and P are regular, then LNC is
also regular. []

In the regular case, given finite automata gener-
ating the languages L and P, a finite automaton
generating L N c could thus be obtained by invok-
ing standard methods from automata theory to
implement the set difference, intersection, and

Proof. (i) This result follows from Theorem 3.1(i)
and the fact that arbitrary unions of closed lan-
guages yield a closed language.

(ii) We know that L is the supremal closed
sublanguage of L, so L~c G L. But by Theorem
3.1(ii),

L-(cne-Lnp)z*

is the supremal nonconflicting sublanguage of _L,
and it is also closed by Lemma 2.1. Thus the
equation is true by the definition of L%c. []

Remark 3.1. (i) If e ~ L, then L = £[and L ~ c = fJ.
(ii) When L = I_,, then L = L and thus L~NC =

LNC-

Theorem 3.2(ii) provides a closed-form expres-
sion for the supremal closed nonconflicting sub-
language 5e~c of L. Again, it follows that:

Corollary 3.3. I f L and P are regular, then L~NC is
also regular. []

E. Chen, S. Lafortune / Nonconflicting languages in supervisory control 109

4. Supremal nonconflicting controllable sublan-
guages

Theorem 4.2. (i) L~ := l i m , ~ L , exists.
(ii) LCN c C L~.

4.1. General case

Consider the following class of languages:

,~'OCNC := {K: (K G L) A (K n P = K n P)

A (K2 ' . n M c::: K) } (4.1)

where L, P, M G 2 * are fixed l___anguages, 2 u __ 2
is a fixed set, and L, P c M = M. In words, &°cN c
is the class of sublanguages of L that are noncon-
flicting with P and controllable with respect to M
and Z~. Recall from Section 2 that 1' denotes the
computat ion of the supremal controllable sublan-
guage. We have the following result:

Proof. (i) { L, } is a monotonically decreasing se-
quence lower bounded by f[, thus L~ -'= l im, + ~ L ,
exists and L~ = f'),~__0L,.

(ii) We know that LcN c _ L 0 = L ¢ . Assume
that LcN c __G L k. Since L k +, is the supremal non-
conflicting sublanguage of L k and LcN c is also
nonconflicting with P, we have LcN c __G Lk + ~.

Then,

LCNcmL~cNcC__(Lk+I2) "f = L k + l ,

which completes the induction step. Thus, LcN c
G L~, i = 0, 1, 2 which implies that LCN c G
('l,°°=0L, = Loo and completes the proof. []

Theorem 4.1. (i) LCN C := sup.~CN C is well de-
fined.

(ii) LCN C is the largest fixed point of the oper-
ator (on the sublanguages of L) I2:2 L ---> 2 L defined
by

f d (K) : = [K - (K n P - ~) X *] ' (4.2)

Proof. (i) This follows from Theorem 3.1(i) and
the fact that arbitrary unions of controllable lan-
guages yield a controllable language.

(ii) The proof of this result is straightforward
and hence omitted. []

LCN C is the supremal nonconflicting controlla-
ble sublanguage of L. Theorem 4.1(ii) suggests the
following algorithm for the computation of LCNC:

L 0 = L r, (4.3a)

Li+ 1 = [2(L,) , i = 0, 1, 2 (4.3b)

which is equivalent to

L 0 = L t, (4.4a)

L i + , = L i - (Lii (~ P - t i ~ P)~,*, (4.4b)

Li+I=(Li+,2) r, i = 0 , 1 , 2 , (4.4c)

Algorithm (4.4) is an iterative algorithm since each
of the two steps in this algorithm may destroy the
property of the other step. Observe that we could
also have chosen L 0 = L as the initial condition.
Also, the two steps in (4.4) could be interchanged.

We now prove that L~ = Lcn c in the regular
case (i.e., when L, P and M are regular lan-
guages) by showing that Algorithm (4.4) converges
in a finite number of steps. Our approach for
proving this result is based on the representation
of regular languages by generators and it requires
the subgenerator relation discussed in [4] and two
lemmas that follow.

A generator G = (Q , 2/, 3, qo, Qm) is a de-
terministic finite automaton with a partially-de-
fined transition function 3 : ~ * x Q ~ Q, where Q
is the state space, 2/ the set of events, ,~* the
Kleene closure of 2/ [3], q0 the initial state, and
Qm G Q the set of marked states. G is said to be
trim if it is accessible (i.e., every state q ~ Q is
reachable from q0) and co-accessible (i.e., Qm is
accessible from any state q ~ Q). As usual [7],
L (G) denotes the closed language generated by G,
and Lm(G) denotes the language marked by G.
L (G) = Zm(- ~ if G is trim. We recall in the
Appendix the definitions of the subgenerator rela-
tion (denoted G) and the biased synchronous
composition (denoted lit) from [4]. When (q) is a
set of states and G is a generator, we will use the
notation G - (q) to denote the generator G re-
stricted to the states Q - (q) , i.e.,

G - (q) := (O - (q) , 21, 8] Q_(q>, qo, O m - (q))

where

, [q0 if q0 ~ Q - (q) ,
q0 '= ~ undefined otherwise.

110 E. Chen, S. Lafortune / Nonconflicting languages in supervisory control

It is not difficult to prove that this restriction
operat ion possesses the following properties:

IA~mma
= (Q 2 ,

E G 2.
have

(i)
(ii)

(iii)
(iv)

if Lm(G,) c Lm(G2).

4.1. Let G 1 = (Q1, z~, 81, q0, Qml) and G 2

X, 82, q0, Qm2) be generators such that G 1
Let (q) c Q2 be a set of states. Then we

G~ - (q) t::: G 2 - (q) .
L(G, - (q)) = L(G 2 - (q)) n L(G,) .
L~(G, - (q)) = L (G 2 - (q)) C~ Lm(G,) .
Lm(G , - (q)) = Lm(G 2 - (q)) n Lm(G,)

[]

Let

Qco := { q ~ Q : q s ~ S * , 6(s , q) ~ Q m } ,

i.e., Qco is the set of co-accessible states. Define
Q,co := Q - Qco, i.e., Quco is the set of un-coacces-
sible states. We have:

L e m m a 4.2. Let G = (Q, Z, 8, q0, Qm) be accessi-
ble and L (G) = L, Lm(G) = N. Let G =
(Q, Z, 8, q0, Q~co)- Then L (G) = L and Lm(G) =
L - N .

Proof. The first equat ion is obviously true since
marked states only affect the marked lan_guages.
To prove the second equation, let s ~ L - N. Then
8(s, q0) ~ Qoco and thus s ~ Lm(G). This shows
that Lm(G) D L - ffL The reverse inclusion L ~ (G)
_ c L - N is true due to the facts that Lm(G)C_
L(67) = L and Lm(G) n / V = ~ . This completes
the proof. []

We now present:

Theorem 4.3. When L, P and M are regular lan-
guages, Algorithm (4.4) converges in finite steps.

Proof. If L is regular, so is L 0 = L r . Let G, H
and k be generators such that

L ((~) = L m (d) = M,

L(/4) =L- o, Lm(/1) =Lo,

L (/ ~) = P , tm(J~) = e .

Let

R0 := Ac[Ac(k x ,q) x

" o :~- Ac[Ac(/~ [[r /tt) X (~],

G : = g c [a c (/ ~ [[r /~)[] r G] ,

where Ac denotes taking the accessible c o m p o n e n t
[7], × denotes the produc t opera t ion (also termed
intersection, see, e.g., [4]), and lit denotes the
biased synchronous composi t ion (BSC) defined in
[4] (see also the Appendix) . By L e m m a 5.1 in [4]
(also recalled in the Appendix) , we have

R o E HoE_ G,

L (G) = L (G) = M ,

Lm(G) = t m (G) = m ,

nr()=Gn M = G ,

Lm(Ho) = L m (t t) N Lm((~) = L o N M = Lo,

L (R o) = L (R) n L (/ 1) n L (G)

= L o n P N M = L 0 n P,

L m (R 0) = Lm(/~) N t m (/ q) f~ l~m(d)

= L o N P N M = L o N P .

The following steps demons t ra te that Algor i thm
(4.4) can be implemented on generators by remov-
ing certain transit ions f rom R 0 and H 0. This
implementa t ion of (4.4) proceeds as follows.

Step O. Let i = 0.
Step 1. Given accessible generators H i and R i

satisfying

t m (n i) = L i , L (H ,) = L , , (4.5a)

t m (R i) = L i N P, L (R i) = L , N P, (4.5b)

R i ~ H i E G , H i ~ H o , R, E Ro, (4.5c)

build Hi+ 1 and Ri+ 1 by following Steps l a - l d .
(Observe that the above R o and H o satisfy (4.5)

as shown before.)
Step la. R,+ 2' is obta ined f rom R i by removing

its un-coaccessible states. Then R,+ '2 is trim, and

Lm(R i+ '2) = L m (R i) = L i N P ,

L (R i + , 2) = L m (R i + ,) = L i N P .

1 The first two conditions in (4.5) show that generator H,
indeed implements (4.3)-(4.4), while the other conditions
are for the purpose of this proof.

E. (?hen, S. Lafortune / Nonconflicting languages in supervisory control 111

By Lemma 4.2, L i n P - L i n P is the set of
traces of L (R i) lost due to the above removal of
states. Denote by (3) the set of all the transitions
(q~, o, q2) of R i where ql or q2 is being removed.

Step lb. Hi+, is obtained from H i by removing
the transitions (3) of Step l a and then taking the
accessible component. Then

L~(Hi+,) = L i - (L iN P - L iN IS)X * = L i + , ,-

Clearly, Ri+ , G Hi+ 1. Moreover,

Lm(Ri+'~)CLm(Hi+~2)

by Corollary 3.1.
Step lc. Hi+ 1 is obtained from Hi+, by first

taking the trim operation, and then applying the
algorithm in [4], Section V, for the computation of
the 1' operation (this corresponds to comparing
Hi* '2 with G and removing states for controllabil-
ity - of. Step 2 of the above mentioned algorithm
- and then taking the trim operation again). De-
note by (q) the set of all the states removed in
this process. Then

Lm(Hi+,) = Lm(Hi+, 2 - (q)) = Li~+, = Li+,,

L (H , + ,) = Lm(H,+ ,) = L,+,.

Step]d. Ri+ 1 is obtained from Ri+ ~ by re-
moving (q) and then taking the accessible compo-
nent. By Lemma 4.1, we have

L m (R i + l) = L m (R i + ~ 2 - (q))

= Lm(g i+~ 2 - (q)) n Lm(Ri+~2)

= L m (H i + l) O L m (R i + ,)

= Li+ 1 n (L i 0 P)

= Li+ 1 n P (since Li+ a c Li) ,

L (R i + ,) = L (R i + ' 2 - (q))

= L(H,+,2 - (q)) n Z.(R,+,)

= L (H i + ,) A L (R i + ,)

= L i + l o L i (h P

G Li+ 1 (q P.

Since

Li+ 1 (q P c_ Li+ ~ ~ A P

= L i A P

(because Li+ 1 = LJ+, G Li+ ,)

(by Theorem 3.1(iii))

and

Li+ 1 n P G L i + 1 ,

it follows that

Li+ 1N P G Li+ 1 0 L i n P

and hence

L (R i+I) = Li+ 1 f-) p .

Observe that Ri+ 1 _ Hi+ ~ G G remains valid. Also,
Hi+ 1 and Ri+ 1 are accessible and satisfy (4.5)
(with i + 1 in place of i).

Step 2. Let i ~ i + 1. If states or transitions
were removed in Steps la or lc, return to Step 1.
Else stop.

Since the number of states and transitions in
H 0 is finite, the algorithm will converge in a finite
number of steps. []

C o r o l l a r y 4 . 2 . When L , P a n d M are regular lan-
guages, L~ = LCN C and thus LCN C is also regular.

Proof. From Theorem 4.3, we know that 3N,
0 < N < ~ , such that L i = Li+ ~ = LN, Vi _> N, and
thus L~ = L N. But (Li} is a controllable se-
quence, and (L i+ '2 } is a nonconflicting sequence,
so Lo¢ must be both controllable and nonconflict-
ing and thus L~ _ LCN C. Together with Theorem
4.2(ii), we have Loo = LCN C. The regularity follows
by observing that each step in Algorithm (4.4)
preserves regularity (Theorem 3.1 [9] and Corollary
3.2). []

At present, it remains an open problem whether
or not L~ G LCN C in the irregular case.

4.2. Special case

Consider the following class of languages:

'= (K: (K _ L) ^ (K =

^(KnP=rnP)
A (KXo C~ M G/~') } (4.6)

where L, P, M G X* are fixed languages, -Y'u - X
is a fixed set and L, P G M = M. In words, L'O~N c
is the class of sublanguages of L that are closed,
nonconflicting with P, and controllable w.r.t. M
and Xu.

It is straightforward to show that LbN c :=

112 E. Chen, S. Lafortune / Nonconflicting languages in supervisory control

s u p ~ N c is well defined. L~N c is the supremal
closed, nonconflicting, and controllable sublan-
guage of L. For the computation of L~cyc, con-
sider the following algorithm:

L 0 = (L) T, (4.7a)

L,+, = $2(L,), i = 0 , 1 , 2 (4.7b)

where I2 is as defined in (4.2). Observe that each
step in the above algorithm preserves closure of
languages. Proceeding similarly to the previous
section, we obtain the following results.

Appendix

Definition of subgenerator relation [4]

Consider two generators with the same al-
phabet Z:

G1 = (Q1, 2;, 81, qm) and G2 = (02, Z, 82 , %2).

We say that G 1 is a subgenerator of G2, denoted
G I E G 2, if 81(s, qm)=82(s, %2) for all s ~
L(G~). (Note that this condition implies that qm
= q02 and L(G1) c L(G2) .)

Theorem 4.4. (i) In (4.7), L~ -'= lim, ~ ~ L , exists.
(ii) L~N C C Lo~.

(iii) When L, P and M are regular languages,
L~,Nc = L~ and L~N c is also regular. []

Algorithm (4.7) can be applied for the compu-
tation of the minimally restrictive non-inner-
blocking solution of the supervisory control prob-
lem with blocking studied in [2] (see Section 3.3 in
that reference for further details on this problem).

5. Conclusion

We have discussed four classes of nonconflict-
ing languages that arise in supervisory control of
discrete event systems and proved several results
pertaining to these classes. Our two main results
are:

• Theorem 3.1, which provides a closed-from
expression for the supremal nonconflicting sub-
language of a given language.

• Theorem 4.3, which demonstrates that
whenever L, P and M are regular languages, the
supremal nonconflicting (with P) controllable
(w.r.t. M) sublanguage of L can be computed by
a finite-step algorithm using generators of L, P
and M and is thus also a regular language.

Biased synchronous composition of generators [4]

Input:

G1 = (Q1, Z~l, 81, q01, Oral)

and

G2 = (02, ~'2, t]2, qo2, 0m2)"

Output:

G111rG2 := (Q1 × Q2, Z2, 6, (%1, q02),

Q1 × 0-,2)

where

(61(0, ql), 82(0, q2))
if o ~ Zl(qt) n Z2(q2),

8(0, (ql , q2)) := { (ql, 82(0, q2))
/

I if a E r ' 2 (q 2) - - ~ q (q l)
undefined otherwise.

Lemma A.I [4]. Let G 1 and G 2 be two generators
with ~'1 = ~2- Let G 1 × G 2 denote the product of G 1
and G 2. Then:

(i) (G 1 × G2) E (G t]lrG2).
(ii) L(G1 lit a2) = L(G2).

(iii) L m (G 1 IIrG2)= Lm(G2). []

References

Acknowledgment

The authors would like to acknowledge useful
discussions with Peter J. Ramadge concerning Sec-
tion 3.1.

[1] R.D. Brandt, V. Garg, R. Kumar, F. Lin, S.I. Marcus and
W.M. Wonham, Formulas for calculating supremal con-
trollable and normal sublanguages, Systems Control Len.
15(2) (1990) 111-117.

[2] E. Chen and S. Lafortune, Dealing with blocking in
supervisory control of discrete event systems, 1EEE Trans.
Automat. Control 36(6) (1991) 724-735.

E. Chen, S. Lafortune / Nonconflicting languages in supervisory control 113

[3] J.E. Hopcroft and J.D. Ullman, Introduction to Automata
Theory, Languages, and Computation (Addison-Wesley,
Reading, MA, 1979).

[4] S. Lafortune and E. Chen, The infimal closed controllable
superlanguage and its application in supervisory control,
IEEE Trans. Automat. Control 35(4) (1990) 398-405.

[5] S. Lafortune and E. Chen, On controllable languages in
supervisory control of discrete event systems, in: M.A.
Kaashoek, J.H. van Schuppen, and A.C.M. Ran, Eds.,
Realization and Modelling in System Theory, Proceedings of
the International Symposium MTNS-89, Vol. 1 (Birkh~iuser,
Basel-Boston, 1990) 541-548.

[6] F. Lin and W.M. Wonham, On observability of discrete-
event systems, Inform. Sci. 44(3) (1988) 173-198.

[7] P.J. Ramadge and W.M. Wonham, Supervisory control of
a class of discrete event systems, SlAM J. Control Optim.
25(1) (1987) 206-230.

[8] P.J. Ramadge and W.M. Wonham, The control of discrete
event systems, Proc. IEEE 77(1) (1989) 81-98.

[9] W.M. Wonham and P.J. Ramadge, On the supremal con-
trollable sublanguage of a given language, SlAM J. Con-
trol Optim. 25(3) (1987) 637-659.

[10] W.M. Wonham and P.J. Ramadge, Modular supervisory
control of discrete-event systems, Math. Control Signals
Systems 1(1) (1988) 13-30.

