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Abstract: We study four classes of nonconflicting sublanguages 
of a given language that arise in supervisory control of discrete 
event systems. We first present closed-form expressions for the 
supremal nonconflicting sublanguage and for the supremal 
closed nonconflicting sublanguage of a given language. The 
nonconflicting condition is with respect to a second given 
language. We then present algorithms to compute the supremal 
nonconflicting controllable sublanguage and the supremal 
closed nonconflicting controllable sublanguage of a given lan- 
guage. The regularity properties of these languages are also 
investigated. 

Keywords: Discrete event systems; supervisory control; formal 
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1. Introduction 

Let ~ be a non-empty finite set of events 
(alphabet) and denote by X* the set of all finite 
traces of elements of ~,  including the empty trace 
e. A subset L _c ,~* is a language over ,~. Lan- 
guages are used to model the logical behavior of 
(uncontrol led or controlled) discrete event  
processes. Several properties of languages such as, 
controllability, observability and normality, have 
been studied extensively in supervisory control of 
discrete event systems (see, e.g., [8]). This paper  is 
concerned with the nonconflicting property of lan- 
guages. This property was first introduced in [10]. 
Two languages L 1 and L 2 are said to be noncon- 
flicting if whenever they share a prefix, they al- 

* Research supported in part by the National Science Founda- 
tion under Grant ECS-9057967. 

so share a trace containing this prefix, i.e., 
L 1 n L 2 = L 1 r3 L2, where the overbar notation de- 
notes the prefix-closure of a set. Closed (in the 
sense of prefix-closed) languages are always non- 
conflicting with one another. 

The concept of nonconflicting languages finds 
applications in modular  supervisory control [10] 
and in nonblocking supervisor design [2] of dis- 
crete event systems. For  instance, it is shown in 
[10] that nonconflicting is a sufficient condition 
for the intersection of two controllable languages 
to be a controllable language. It is also shown in 
[10] that the conjunction of two nonblocking su- 
pervisors is nonblocking if and only if the two 
concerned languages are nonconflicting. In a dif- 
ferent context, it is shown in [2] that the inner- 
blocking measure of a supervisor is empty if and 
only if two particular languages are nonconflicting 
(see [2], Section 3.2, for details). 

When solving supervisor synthesis problems for 
discrete event systems, it is usually necessary to 
first calculate the supremal element of a certain 
class of languages, e.g., supremal controllable sub- 
language [9], supremal normal sublanguage [6], 
etc. The same situation arises for the class of 
nonconflicting sublanguages of a given language 
(with respect to another fixed language). For in- 
stance, this is the case in [2], Section 3.3, where in 
order to synthesize the so-called 'minimally  re- 
strictive non-innerblocking solution' of the super- 
visory control problem with blocking, one must 
calculate the supremal closed controllable noncon- 
flicting sublanguage of a particular language, an 
unsolved problem. The pr imary motivation of this 
paper is to address this computat ion and find 
algorithms to calculate the supremal closed con- 
trollable nonconflicting sublanguage. For this pur- 
pose, it is necessary to first deal with the computa-  
tion of the supremal nonconflicting sublanguage, 
and then introduce the requirements of prefix- 
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closure and controllability. From a general point 
of view, the results that we establish on these 
special classes of nonconflicting sublanguages will 
be of interest in other contexts as well. 

More specifically, we introduce and study four 
nonconflicting sublanguages of a given language 
L: the supremal nonconflicting sublanguage (de- 
noted L NC ), the supremal closed nonconflicting 
sublanguage (denote L~c) ,  the supremal noncon- 
flicting controllable sublanguage (denoted LCN c), 
and the supremal closed nonconflicting controlla- 
ble sublanguage (denoted L~NC). Here, the non- 
conflicting condition is with respect to a second 
given language, and the controllability condition is 
with respect to a third given language and a fixed 
set of uncontrollable events. We present closed- 
form expressions for the first two nonconflicting 
sublanguages and present algorithms for the com- 
putation of the last two nonconflicting sublan- 
guages. We establish the finite convergence of 
these algorithms in the regular case based on a 
finite-state machine implementation of these al- 
gorithms. 

Our presentation is organized as follows. Nec- 
essary background and preliminary results are 
presented in Section 2. L NC and L~Nc are defined 
and studied in Section 3, while Section 4 is de- 
voted to LCN C and L~N C. Section 5 concludes the 
paper. 

cg.~ has a supremal element (w.r.t. set inclusion) 
denoted L ~ := sup c~£~a i.e., L ~ ~ WA x' and K 
cg&a ~ K _c L T. L T is called the supremal con- 
trollable sublanguage of L. Its computat ion is 
discussed in several references, among these [9,1,4]. 

We recall a property which is stated in [1]. 

l~mma 2.1 [1]. I f  B c Z*  is closed, then for V L  c_ 
S*,  the language B - L~,* is also closed. [] 

The following result (whose proof is straight- 
forward) will also be needed. 

Lemma 2.2. Let L,  R c ,~* and L n R = ~J. Then 
Z A R Z *  = ~J and L N R Z *  = fJ. [] 

3. Supremal nonconflicting sublanguages 

3.1. General case 

Consider the following class of languages: 

,,2°NC ;= { K :  ( K C L )  A ( K N P = K N P ) }  (3.1) 

where L, P c , ~ *  are two fixed languages. In 
words, Z, aNC is the class of sublanguages of L 
that are nonconflicting with P. We characterize 
the supremal element (w.r.t. set inclusion) of ZaNc 
by the following result. 

2. Preliminaries 

We need to introduce some necessary back- 
ground for the work that follows. If s, s ' ,  t ~ X* 
with s ' t  = s, then s '  is a prefix of s; thus both e 
and s are prefixes of s. The closure L of L is the 
language consisting of all the prefixes of traces in 
L; if L=~J  then L = J J ,  and if L 4 : ~  then e ~ L .  
Clearly L _c L L is closed if L = i.. A language is 
regular if and only if it is accepted by a finite 
automaton [3]. 

Let M be a fixed language over X, and let Xu 
be a fixed subset of ~ denoting the set of 'uncon-  
trollable' events (in the sense that their occurrence 
cannot be disabled). A language K _c ,~* is said to 
be controllable with respect to (w.r.t.) M and Xu 
if ~"~u n M _c K [8]. The class of controllable 
sublanguages of a given language L is defined as 

9'.,.~:= { K: ( K c  L)  A (,K~',  n M c: ,K)}. 

Theorem 3.1. (i) LNC := sup,~VNC is well defined. 
(ii) LNC = L - (L  n P - L n P)2~*. 

(iii) L N c G P = L N c A P = L A P .  

Proof. (i) We assume that K~ ~Z~aNC for a in 
some index set, i.e., 

K c_L, K ~ A P = K ~ A P .  

Then, (U~K~) _ L. Also, 

(U~,K,,) n P = U~,(K,~ n P )  

= uo(K-T  ) 

= (uo ) 

=U~K~ n P. 

This shows that .L~aNC is closed under arbitrary 
unions. Thus, LNC := sup&aNc is well defined. 
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(ii) Let 

RHS := L -  ( L  n P -  L n  P)X*.  

Obviously, when ~L n P = L n P (e.g., if L = ~f or 
P =~) ,  then LNc = RHS = L. The equation LNc 
= RHS is valid in this case. The proof that LNc 
= R H S w h e n L n P c L n P ( t h u s L 4 = ~ a n d  P4= 

~f) is organized into three steps. 
Step 1. We need to show that RHS c L, which 

is obviously true. 
Step 2. We need to show that RHS is noncon- 

flicting with P, i.e., 

RHS n P =  RHS N P. 

Let 

L n P = L n P O R  (3.2) 

where © denotes disjoint union, R ¢ ~ and L n P 
n R = ~. Lemma 2.2 implies that 

L n P n RX* = ~, (3.3) 

( L n P ) n RX* = ~f. (3.4) 

Then, RHS = L - R X *  c L - RX* .  Hence: 

RHS c L - RX* 

= L -  RX* (by Lemma 2.1). 

RHS n P_C ( L -  R 2 * )  n P  

= ( L A P )  - R 2 *  

= + R )  - R Z *  

= L A P - R X *  ( s i n c e t ~ X * )  

= L n P  (by (3 .3) ) .  

RHS A P =  ( L - R X * ) A P  

= ( L A P ) - R X *  

= L n P  (by (3.4)). 

Therefore 

RHS n P c RHS n P. (3.5) 

Since the reverse inclusion of (3.5) is always true, 

RHS n P = RHS n P = L n P (3.6) 

which completes Step 2. 
Step 3. It remains to show that RHS is the 

supremal nonconflicting (with P)  sublanguage of 

L. Let us proceed as in (3.2). Thus (3.3), (3.4) and 
(3.6) are still valid. Also, let 

LN c = RHS © R m. (3.7) 

As we know, 

LNC C L, (3.8) 

LNC n P c LNC n P. (3.9) 

Since 

RHS = L -  RX* = L -  ( L  n R X * ) ,  

it follows that 

L = [ L - ( L n R Z * ) ]  0 ( C n R Z * )  

= R H S  ©(Ln R Z * )  

and 

LNC = RHS tJ R m 

_ L  (by (3.8)) 

Thus 

RrnC ( L  n Rz~*) (3.10) 

and so 

R m A P C  ( L A P )  ARz~* 

= ~  (by (3.4)). 

Hence 

R m n P = ~ .  (3.11) 

Substituting (3.7) in (3.9), we have 

R H S O R m A P  (RHS U Rm) A P  

so that 

(RHS U Rm) n P c  (RHS n P )  0 ( R m  r i P )  

and thus 

(RHS n P )  U (Rmm n P )  _ RHS n P 

But by (3.6), we know that 

R H S A  P =  R H S A P =  L A P ,  

which yields 

)~m (') P ~ t n P. (3.12) 

(by (3.11)). 
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If L A P = f J ,  then by (3.12) we have Rm A P = ~ J .  
Since e ~ P, then e ~ R~ which implies that R m 

= J~. Thus 

LNC = RHS = L - ( L n P ) Z *  = f~. 

concatenation operations involved in the expres- 
sion of LN c [3]. 

3.2. Special case 

If L N P ¢ ~ J ,  then e ~ L A P .  Since e ~ L N P ,  it 
follows e ~ R = L n P - L n P. Also by (3.10) we 
have 

R m C _ R Z *  = ( L A P - L A P ) Z * .  (3.13) 

Since e ~  R, then e ~  R m. Assume that R m :/:j~. 

Then ]s  ~ R m ,  Is[ ~ 1. Then by (3.13) and by the 
facts that RCf~  and e ~ R ,  we have that 3s~ 

f s ' j - C R m ,  Is~l > 1 ,  such that s ~ R = L N P  
- L n P. Thus 

s, E L A P G P ,  s I ~ L A P .  (3.14) 

Since s 1 ~ R m and s 1 ~ P, we have s 1 ~ R m n P 
G L n P (by (3.12)). This contradiction with (3.14) 
shows that R m = ~ ,  and thus LNC = RHS. 

(iii) This is immediate from the proof of (ii). 
[] 

Recall the definition of the closed sublanguage 
of L that is given in [5]: 

It is easy to show that L is regular whenever L is 
regular (see [5]). 

Consider the following class of languages: 

,LPr~c :--- {K:  ( K G L )  A ( K = K )  

(3.15) 

where L, P G Z *  are two fixed languages. In 
words, £P~c is the class of sublanguages of L 
that are closed and nonconflicting with P. 

Theorem 3.2. (i) L%c :--sup ~ c  is well defined. 
(ii) L~NC = _L - (_L N P )  - _L N P ) Z * .  

Since L n P _c_ P, L N P is nonconflicting with 
P. Then we have the following result which will be 
used in Section 4.1. 

Corollary 3.1. Let L, P G ~ * .  Then 

L N P c L - ( L N P - L A P ) ~ * .  [] 

Theorem 3.1(ii) provides a closed-form expres- 
sion for the supremal nonconflicting sublanguage 
LNc of L. Since all the operations in the expres- 
sion of LN e. preserve regularity, we have: 

Corollary 3.2. I f  L and P are regular, then LNC is 
also regular. [] 

In the regular case, given finite automata gener- 
ating the languages L and P, a finite automaton 
generating L N c could thus be obtained by invok- 
ing standard methods from automata theory to 
implement the set difference, intersection, and 

Proof. (i) This result follows from Theorem 3.1(i) 
and the fact that arbitrary unions of closed lan- 
guages yield a closed language. 

(ii) We know that L is the supremal closed 
sublanguage of L, so L~c  G L. But by Theorem 
3.1(ii), 

L-(cne-Lnp)z* 

is the supremal nonconflicting sublanguage of _L, 
and it is also closed by Lemma 2.1. Thus the 
equation is true by the definition of L%c. [] 

Remark 3.1. (i) If e ~ L, then L = £[ and L ~ c  = fJ. 
(ii) When L = I_,, then L = L and thus L~NC = 

LNC- 

Theorem 3.2(ii) provides a closed-form expres- 
sion for the supremal closed nonconflicting sub- 
language 5e~c of L. Again, it follows that: 

Corollary 3.3. I f  L and P are regular, then L~NC is 
also regular. [] 
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4. Supremal nonconflicting controllable sublan- 
guages 

Theorem 4.2. (i) L~ := l i m , ~ L ,  exists. 
(ii) LCN c C L~. 

4.1. General case 

Consider the following class of languages: 

,~'OCNC := {K:  ( K G L )  A ( K n P = K n P )  

A (K2 ' .  n M c::: K ) }  (4.1) 

where L, P, M G 2 *  are fixed l___anguages, 2 u __ 2 
is a fixed set, and L, P c M = M. In words, &°cN c 
is the class of sublanguages of L that are noncon- 
flicting with P and controllable with respect to M 
and Z~. Recall from Section 2 that 1' denotes the 
computat ion of the supremal controllable sublan- 
guage. We have the following result: 

Proof. (i) { L,  } is a monotonically decreasing se- 
quence lower bounded by f[, thus L~ -'= l im,  + ~ L ,  
exists and L~ = f'),~__0L,. 

(ii) We know that LcN c _ L  0 = L ¢ .  Assume 
that LcN c __G L k. Since L k +,  is the supremal non- 
conflicting sublanguage of L k and LcN c is also 
nonconflicting with P, we have LcN c __G Lk + ~. 

Then, 

LCNcmL~cNcC__(Lk+I2)  "f = L k + l ,  

which completes the induction step. Thus, LcN c 
G L~, i = 0, 1, 2 . . . . .  which implies that LCN c G 
('l,°°=0L, = Loo and completes the proof. [] 

Theorem 4.1. (i) LCN C := sup.~CN C is well de- 
fined. 

(ii) LCN C is the largest fixed point of the oper- 
ator (on the sublanguages of L )  I2:2 L ---> 2 L defined 
by 

f d ( K ) : = [ K - ( K n P - ~ ) X * ] '  (4.2) 

Proof. (i) This follows from Theorem 3.1(i) and 
the fact that arbitrary unions of controllable lan- 
guages yield a controllable language. 

(ii) The proof of this result is straightforward 
and hence omitted. [] 

LCN C is the supremal nonconflicting controlla- 
ble sublanguage of L. Theorem 4.1(ii) suggests the 
following algorithm for the computation of LCNC: 

L 0 = L r,  (4.3a) 

Li+ 1 = [2(L,) ,  i = 0, 1, 2 . . . . .  (4.3b) 

which is equivalent to 

L 0 = L t,  (4.4a) 

L i + ,  = L i - (Lii (~ P - t i ~ P)~,*,  (4.4b) 

Li+I=(Li+,2)  r, i = 0 , 1 , 2 ,  . . . .  (4.4c) 

Algorithm (4.4) is an iterative algorithm since each 
of the two steps in this algorithm may destroy the 
property of the other step. Observe that we could 
also have chosen L 0 = L as the initial condition. 
Also, the two steps in (4.4) could be interchanged. 

We now prove that L~ = Lcn c in the regular 
case (i.e., when L, P and M are regular lan- 
guages) by showing that Algorithm (4.4) converges 
in a finite number of steps. Our approach for 
proving this result is based on the representation 
of regular languages by generators and it requires 
the subgenerator relation discussed in [4] and two 
lemmas that follow. 

A generator G = ( Q ,  2/, 3, qo, Qm) is a de- 
terministic finite automaton with a partially-de- 
fined transition function 3 : ~ *  x Q ~ Q, where Q 
is the state space, 2/ the set of events, ,~* the 
Kleene closure of 2/ [3], q0 the initial state, and 
Qm G Q the set of marked states. G is said to be 
trim if it is accessible (i.e., every state q ~ Q is 
reachable from q0) and co-accessible (i.e., Qm is 
accessible from any state q ~  Q). As usual [7], 
L ( G )  denotes the closed language generated by G, 
and Lm(G ) denotes the language marked by G. 
L ( G ) =  Zm(- ~ if G is trim. We recall in the 
Appendix the definitions of the subgenerator rela- 
tion (denoted G) and the biased synchronous 
composition (denoted lit ) from [4]. When ( q )  is a 
set of states and G is a generator, we will use the 
notation G - ( q )  to denote the generator G re- 
stricted to the states Q - ( q ) ,  i.e., 

G - ( q )  := (O - ( q ) ,  21, 8 ] Q_(q>, qo, O m -  ( q ) )  

where 

, [ q0 if q0 ~ Q - ( q ) ,  
q0 '= ~ undefined otherwise. 
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It is not difficult to prove that  this restriction 
operat ion possesses the following properties:  

IA~mma 
= ( Q 2 ,  

E G 2. 
have 

(i) 
(ii) 

(iii) 
(iv) 

if Lm(G,)  c Lm(G2). 

4.1. Let G 1 = (Q1, z~, 81, q0, Qml) and G 2 

X, 82, q0, Qm2) be generators such that G 1 
Let ( q )  c Q2 be a set of states. Then we 

G~ - ( q )  t::: G 2 - ( q ) .  
L(G,  - ( q ) )  = L(G 2 - ( q ) )  n L(G,) .  
L~(G,  - ( q ) )  = L (G  2 - ( q ) )  C~ Lm(G,) .  
Lm(G , - ( q ) )  = Lm(G 2 - ( q ) )  n Lm(G,)  

[] 

Let 

Qco := { q ~ Q :  q s ~ S * ,  6(s ,  q ) ~ Q m } ,  

i.e., Qco is the set of co-accessible states. Define 
Q,co := Q - Qco, i.e., Quco is the set of  un-coacces- 
sible states. We have: 

L e m m a  4.2. Let G = (Q, Z, 8, q0, Qm) be accessi- 
ble and L ( G )  = L, Lm(G ) = N. Let G = 
(Q, Z, 8, q0, Q~co)- Then L ( G )  = L and Lm(G) = 
L - N .  

Proof. The first equat ion is obviously true since 
marked  states only affect the marked  lan_guages. 
To  prove the second equation,  let s ~ L - N. Then  
8(s,  q0) ~ Qoco and thus s ~ Lm(G ). This shows 
that  Lm(G ) D L - ffL The  reverse inclusion L ~ ( G )  
_ c L - N  is true due to the facts that Lm(G )C_ 
L(67) = L and Lm(G ) n / V  = ~ .  This completes  
the proof.  [] 

We now present:  

Theorem 4.3. When L, P and M are regular lan- 
guages, Algorithm (4.4) converges in finite steps. 

Proof. If L is regular, so is L 0 = L r .  Let G, H 
and k be generators  such that  

L ( ( ~ ) =  L m ( d ) =  M,  

L(/4) =L- o, Lm(/1) =Lo, 

L ( / ~ )  = P ,  tm(J~  ) = e .  

Let 

R0 := Ac[Ac(k x ,q) x 

" o  :~- Ac[Ac( /~  [[r /tt ) X (~], 

G : =  g c [ a c ( / ~  [[r /~)[] r  G] ,  

where Ac denotes  taking the accessible c o m p o n e n t  
[7], × denotes the produc t  opera t ion  (also termed 
intersection, see, e.g., [4]), and lit denotes  the 
biased synchronous  composi t ion  (BSC) defined in 
[4] (see also the Appendix) .  By L e m m a  5.1 in [4] 
(also recalled in the Appendix) ,  we have 

R o E  HoE_ G, 

L ( G ) = L ( G ) = M ,  

Lm(G ) = t m ( G  ) = m ,  

nr( )=Gn M = G ,  

Lm(Ho)  = L m ( t t  ) N Lm((~ ) = L o N M = Lo, 

L ( R o )  = L ( R )  n L ( / 1 )  n L ( G )  

= L o n P N M = L 0 n P,  

L m ( R 0 )  = Lm(/~ ) N t m ( / q  ) f~ l~m(d)  

= L o N P N M =  L o N P .  

The following steps demons t ra te  that  Algor i thm 
(4.4) can be implemented  on generators  by  remov-  
ing certain transit ions f rom R 0 and H 0. This 
implementa t ion  of (4.4) proceeds  as follows. 

Step O. Let i = 0. 
Step 1. Given  accessible generators  H i and R i 

satisfying 

t m (  n i )  = L i ,  L (  H , )  = L , ,  (4.5a) 

t m ( R i )  = L i N  P,  L ( R i )  = L , N  P,  (4.5b) 

R i ~ H i E G ,  H i ~ H o ,  R, E Ro, (4.5c) 

build Hi+ 1 and Ri+ 1 by following Steps l a - l d .  
(Observe that  the above R o and H o satisfy (4.5) 

as shown before.) 
Step la. R,+ 2' is obta ined  f rom R i by removing 

its un-coaccessible states. Then  R,+ '2 is trim, and 

Lm(R i+ '2 )  = L m ( R i ) = L i N P ,  

L ( R i + , 2 ) = L m ( R i + , )  = L i N P .  

1 The first two conditions in (4.5) show that generator H, 
indeed implements (4.3)-(4.4), while the other conditions 
are for the purpose of this proof. 
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By Lemma 4.2, L i n P - L  i n P is the set of 
traces of L ( R i )  lost due to the above removal of 
states. Denote by ( 3 )  the set of all the transitions 
(q~, o, q2) of R i where ql or q2 is being removed. 

Step lb. Hi+, is obtained from H i by removing 
the transitions (3 )  of Step l a  and then taking the 
accessible component.  Then 

L~(  Hi+,) = L i -  (L iN  P -  L iN  IS)X * = L i + ,  ,- 

Clearly, Ri+ , G Hi+ 1. Moreover, 

Lm(Ri+'~)CLm(Hi+~2)  

by Corollary 3.1. 
Step lc. Hi+ 1 is obtained from Hi+, by first 

taking the trim operation, and then applying the 
algorithm in [4], Section V, for the computation of 
the 1' operation (this corresponds to comparing 
Hi* '2 with G and removing states for controllabil- 
ity - of. Step 2 of the above mentioned algorithm 
- and then taking the trim operation again). De- 
note by ( q )  the set of all the states removed in 
this process. Then 

Lm( Hi+,) = Lm( Hi+, 2 - ( q ) )  = Li~+, = Li+,, 

L ( H , + , )  = Lm(H,+ , )  = L,+,.  

Step ]d. Ri+ 1 is obtained from Ri+ ~ by re- 
moving ( q )  and then taking the accessible compo- 
nent. By Lemma 4.1, we have 

L m ( R i + l )  = L m ( R i + ~ 2 -  ( q ) )  

= Lm(g i+~ 2 - ( q ) )  n Lm(Ri+~2) 

= L m ( H i + l ) O L m ( R i + , )  

= Li+ 1 n ( L  i 0 P )  

= Li+ 1 n P (since Li+ a c Li) ,  

L ( R i + , ) = L ( R i + ' 2 - ( q ) )  

= L(H,+,2 - (q ) )  n Z.(R,+, ) 

= L ( H i + , ) A L ( R i + , )  

= L i + l  o L i (h P 

G Li+ 1 (q P. 

Since 

Li+ 1 (q P c_ Li+ ~ ~ A P 

= L i A P  

(because Li+ 1 = LJ+, G Li+ ,) 

(by Theorem 3.1(iii)) 

and 

Li+ 1 n P G L i +  1 , 

it follows that 

Li+ 1N P G Li+ 1 0 L i n P 

and hence 

L (  R i+I )  = Li+ 1 f-) p .  

Observe that Ri+ 1 _ Hi+ ~ G G remains valid. Also, 
Hi+ 1 and Ri+ 1 are accessible and satisfy (4.5) 
(with i + 1 in place of i). 

Step 2. Let i ~  i +  1. If states or transitions 
were removed in Steps la  or lc, return to Step 1. 
Else stop. 

Since the number  of states and transitions in 
H 0 is finite, the algorithm will converge in a finite 
number of steps. [] 

C o r o l l a r y  4 . 2 .  When L ,  P a n d  M are regular lan- 
guages, L~ = LCN C and thus LCN C is also regular. 

Proof. From Theorem 4.3, we know that 3N, 
0 < N < ~ ,  such that L i = Li+ ~ = LN, Vi _> N, and 
thus L~ = L N. But (Li}  is a controllable se- 
quence, and ( L  i+ '2 } is a nonconflicting sequence, 
so Lo¢ must be both controllable and nonconflict- 
ing and thus L~ _ LCN C. Together with Theorem 
4.2(ii), we have Loo = LCN C. The regularity follows 
by observing that each step in Algorithm (4.4) 
preserves regularity (Theorem 3.1 [9] and Corollary 
3.2). [] 

At present, it remains an open problem whether 
or not L~ G LCN C in the irregular case. 

4.2. Special case 

Consider the following class of languages: 

'= ( K: ( K _  L)  ^ ( K =  

^(KnP=rnP) 
A (KXo C~ M G/~')  } (4.6) 

where L, P, M G X* are fixed languages, -Y'u - X 
is a fixed set and L, P G M = M. In words, L'O~N c 
is the class of sublanguages of L that are closed, 
nonconflicting with P, and controllable w.r.t. M 
and Xu. 

It is straightforward to show that LbN c := 
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s u p ~ N c  is well defined. L~N c is the supremal 
closed, nonconflicting, and controllable sublan- 
guage of L. For the computation of L~cyc, con- 
sider the following algorithm: 

L 0 = ( L )  T, (4.7a) 

L,+, = $2(L,), i = 0 , 1 , 2  . . . . .  (4.7b) 

where I2 is as defined in (4.2). Observe that each 
step in the above algorithm preserves closure of 
languages. Proceeding similarly to the previous 
section, we obtain the following results. 

Appendix 

Definition of  subgenerator relation [4] 

Consider two generators with the same al- 
phabet Z: 

G1 = (Q1, 2;, 81, qm) and G2 = (02,  Z,  82 , %2).  

We say that G 1 is a subgenerator of G2, denoted 
G I E G  2, if 81(s, qm)=82(  s, %2) for all s ~  
L(G~). (Note that this condition implies that qm 
= q02 and L(G1)  c L(G2) .  ) 

Theorem 4.4. (i) In (4.7), L~ -'= lim, ~ ~ L ,  exists. 
(ii) L~N C C Lo~. 

(iii) When L, P and M are regular languages, 
L~,Nc = L~ and L~N c is also regular. [] 

Algorithm (4.7) can be applied for the compu- 
tation of the minimally restrictive non-inner- 
blocking solution of the supervisory control prob- 
lem with blocking studied in [2] (see Section 3.3 in 
that reference for further details on this problem). 

5. Conclusion 

We have discussed four classes of nonconflict- 
ing languages that arise in supervisory control of 
discrete event systems and proved several results 
pertaining to these classes. Our two main results 
are: 

• Theorem 3.1, which provides a closed-from 
expression for the supremal nonconflicting sub- 
language of a given language. 

• Theorem 4.3, which demonstrates that 
whenever L, P and M are regular languages, the 
supremal nonconflicting (with P)  controllable 
(w.r.t. M)  sublanguage of L can be computed by 
a finite-step algorithm using generators of L, P 
and M and is thus also a regular language. 

Biased synchronous composition of  generators [4] 

Input: 

G1 = (Q1, Z~l, 81, q01, Oral) 

and 

G2 = (02,  ~'2, t]2, qo2, 0m2)" 

Output: 

G111rG2 := (Q1 × Q2, Z2, 6, (%1, q02), 

Q1 × 0-,2 ) 

where 

(61(0, ql), 82(0, q2)) 
if o ~ Zl(qt  ) n Z2(q2 ), 

8(0,  (ql ,  q2)) :=  { (ql,  82(0, q2)) 
/ 

I if a E r ' 2 ( q 2 ) - - ~ q ( q l )  
undefined otherwise. 

Lemma A.I [4]. Let G 1 and G 2 be two generators 
with ~'1 = ~2-  Let G 1 × G 2 denote the product of  G 1 
and G 2. Then: 

(i) ( G 1 × G2) E ( G t ]lrG2). 
(ii) L(G1 lit a2) = L(G2).  

(iii) L m ( G  1 IIrG2)= Lm(G2). [] 
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