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A bstract 

Lee, H.F., M.M. Srinivasan and C.A. Yano, Characteristics of optimal workload allocation for closed queueing networks, 
Performance Evaluation 12 (1991) 255-268. 

We consider the problem of allocating a given workload among the stations in a multi-server product-form closed queueing 
network to maximize the throughput. We first investigate properties of the throughput function and prove that it is 
pseudoconcave for some special cases. Some other characteristics of the optimal workload and its physical interpretation are 
also provided. We then develop two computational procedures to find the optimum workload allocation under the assumption 
that the throughput function is pseudoconcave in general. The primary advantage of assuming pseudoconcavity is that, under 
this assumption, satisfaction of first order necessary conditions is sufficient for optimality. Computational experience with 
these algorithms provides additional support for the validity of this assumption. Finally, we generalize the solution procedure 
to accommodate bounds on the workloads at each station. 

Keywords: closed queueing networks, optimal allocation, pseudoconcavity, Brouwer's fixed point, multiple servers. 

1. Introduction 

Closed  queueing  ne twork  ( C Q N )  models  are 
widely  used in the mode l ing  and  analysis  of  com-  
pu te r  systems and  flexible manufac tu r ing  systems.  
A p e r f o r m a n c e  measu re  of  in teres t  is the  
th roughpu t  of the system, which is def ined  as the 
expec ted  number  of  j o b  comple t ions  by  the sys tem 
per  uni t  t ime. F o r  analy t ic  t rac tabi l i ty ,  typica l ly  
the P roduc t - fo rm (PF)  a s sumpt ion  [5] is used. 
U n d e r  the P F  assumpt ion ,  the only  system p a r a m -  
eters required to specify the ne twork  with a given 
n u m b e r  of  s ta t ions  are: (i) the number  of  cus tomer  
classes and the popu l a t i on  of  each, (ii) the mean  
service t ime d e m a n d  (or work load)  at a s ta t ion  for 
each cus tomer  class, and  (iii) the service rate  func- 
t ion at each s ta t ion [2]. 

Even under  the P F  assumpt ion ,  however,  the 
th roughout  is a complex,  non l inea r  funct ion of  the 

sys tem parameters .  The  s tudy  of  the ma the ma t i c a l  
p roper t i e s  of  the th roughpu t  func t ion  is of  in teres t  
bo th  in the pe r fo rmance  eva lua t ion  of  a sys tem 
for system parameters ,  as well as in the  prescr ip-  
t ion of the sys tem pa ra me te r s  that  max imize  
throughput .  We  are in teres ted  in ob ta in ing  some 
character is t ics  of  this func t ion  which  enables  the 
search for an op t ima l  a l loca t ion  of  a given 
work load  a m o n g  the s ta t ions  in C Q N s  with  mul t i -  
p le  servers at  each s ta t ion (the mul t i - se rver  CQN) .  
W e  assume the C Q N  satisfies P roduc t - fo rm  and  
that  it has  a single class of  cus tomers .  

The  th roughpu t  func t ion  has been  well s tud ied  
in the case of  C Q N s  with a single server  at  each 
s ta t ion (the s ingle-server  CQN) .  Price [8] shows 
that  the rec iprocal  of  the t h roughpu t  func t ion  is a 
convex funct ion  of the work loads .  S h a n t h i k u m a r  
and  Yao  [18], using a s a m p l e - p a t h  based  ap-  
proach,  show that  this p r o p e r t y  ho lds  for  a more  
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general class of non-product-form cyclic queueing 
networks with single server stations. Under the 
constraint that a given workload is allocated 
among the stations of a single-server CQN, 
Secco-Suardo [11] and Solberg [19] conjecture that 
the throughput is, in fact, a concave function of 
the workloads. However, Stecke [21] shows that it 
is not concave but strictly quasiconcave for a two 
station CQN, and provides computational evi- 
dence that it is strictly quasiconcave for a CQN 
with more than two stations. 

Based on the result of Price, several results have 
been reported [6,25-28] on the allocation of the 
workloads that optimize the throughput under 
various constraints for a central server CQN con- 
sisting only of single-server stations. For a given 

workload, in the absence of any constants, it has 
been shown [12,30] that balancing the workload 
allocated to each station maximizes the through- 
put in the case of a CQN with only single-server 
stations. 

Yao and Kim [29] prove that balancing the 
workload maximizes the throughput for a multi- 
server CQN, when each station has the same num- 
ber of identical servers. Shanthikumar [13] extends 
this result to CQNs where the stations have identi- 
cal, but more general service rate functions. How- 
ever, Stecke and Solberg [22] report numerical 
evidence that when the number  of servers at each 
station is not the same, then the throughput is 
maximized by a unique unbalanced workload al- 
location to each station. Based on this observa- 
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tion, Stecke [20] provides a heuristic algorithm to 
find an optimal allocation but does not report 
computational  results. 

The behavior of the throughput as a function of 
the number of customers in the CQN has been 
well studied. It is shown [15,16,24], that the 
throughput is monotonic increasing with the num- 
ber of customers in CQNs when every station has 
a service rate that is concave, non-decreasing with 
the number of customers present at the station. 
Shanthikumar and Yao [18] further show that the 
throughput is a concave function of the number  of 
customers in the CQN. 

In this article, we consider the problem of 
finding the allocation of a given workload among 
the stations in a multi-server CQN which maxi- 
mizes the throughput. We refer to this as the 
workload allocation problem. The motivation for 
this problem is provided in the studies of optimal 
machine grouping and workload allocation in 
flexible manufacturing systems [20,22]. 

The remainder of this article is organized as 
follows. In Section 2, the multi-server CQN model 
is defined and the nonlinear programming formu- 
lation of the workload allocation problem is stated. 
In Section 3, we state the Kuhn-Tucker  necessary 
conditions and derive some characteristics that the 
optimal workload allocation possesses. We then 
prove pseudoconcavity of the throughput function 
for some special cases and conjecture that the 
throughput is pseudoconcave for a general multi- 
server CQN. Two algorithms to find a workload 
allocation satisfying the necessary conditions are 
presented in Section 4 and computational experi- 
ence with these algorithms is described, for CQNs 
with numerous combinations of parameter  values. 
Section 5 explains how the solution procedures 
can be adapted to problems with bounds on the 
workloads at the various stations. Section 6 con- 
cludes with a brief summary. 

2. The mathematical formulation 

The CQN that we consider consists of M arbi- 
trarily connected multi-server stations, with N 
customers in the system. The servers at each sta- 
tion are assumed to be identical in terms Of their 
processing capability, and we let S~, i = 1 . . . . .  M, 
denote the number  of servers at station i. There is 
a total mean workload, TW, that is to be allocated 

among these M stations. Let the workload assign- 
ment be denoted by W = ( W 1 . . . . .  W g ), where W/ 
denotes the workload assigned to station i. The 
workload W~ is the mean service time demanded 
from station i by a customer in a typical cycle, 
and is the product of the mean number  of visits, v i 
that a customer makes to station i in the cycle and 
the mean service time, ~'~, required per visit, 
namely, W, = v~r~. When there are j customers at 
station i, they are processed at a r a t e / ~ ( j ) ,  where 
i t i ( j )  = min( j ,  Si). The throughput and the cycle 
time of the CQN are denoted by TH(N,  W)  and 
C( N, W)  respe__ctively. 

Let G(N, W)  denote the normalizing constant 
for this network. This is defined as 

M n~ 

G ( N ,  W ) =  E • VI  1 - I f , ( J ) ,  (1) 
n l  + . . .  + n ~ t =  N i = 1  j = 0  

where n~ denotes the number  of customers at 
station i, and f , ( j )  is given as: 

f i ( j )  = 1; j = 0 ,  

w, -~ , ( j ) ,  j>0. 

The throughout of the CQN is given in terms of 
the normalizing constants as 

T H ( N ,  W ) =  G ( N - 1 ,  W )  
G ( N ,  W') (2) 

The performance measures of the CQN, including 
the throughput, can be obtained for a given set of 
input parameters using computat ional  algorithms 
such as the convolution algorithm [4] or the mean 
value analysis (MVA) algorithm [9], with time 
complexity O( MN 2 ). 

2.1. Problem formulation 

The goal of the workload allocation problem is 
to allocate the given total mean workload TW 
among the M stations such that the throughput is 
maximized. The problem may be mathematically 
stated as follows: 

P: Maximize T H ( N ,  W)  
M 

subject to: ~ W~ = TW, (3) 
i ~ l  

W , > 0 ,  i = 1  . . . . .  M. (4) 
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3. C h a r a c t e r i z a t i o n  of  the  op t ima l  w o r k l o a d s  

The Kuhn-Tucker  necessary conditions for 
Problem P are given by 

a 
KT: b- -~TH(N,  W ) + v + ~ r , = O ,  i = 1  . . . . .  M, 

M 

Y'.  =TW, 
i = 1  

~ > 0 ,  W > 0 ,  ~ W = 0 ,  

where 0/0W, (TH(N, W)) is the ith element of 
the gradient vector for TH(N,  W) evaluated at W, 
and v and ~ are Lagrange multipliers correspond- 
ing to the total workload and workload non-nega- 
tivity constraints ,  respectively.  The term 
0/0W,(TH(N, W)) can be expressed as (see, e.g., 

[61): 

0 T H ( N ,  W) 

T H ( N ,  W) 
- W, ( Q i ( N '  ~ )  

- Q i ( U -  1, W)) ,  (5) 

where Qi(N, W )  is the mean number of customers 
at station i, with N customers in the CQN. 

Consider a CQN where some station, say, k is 
a delay station. No queueing takes place at station 
k and hence, if all the workload is assigned to 
station k, the cycle time is just TW, and the 
throughput is obviously maximized. The optimum 
solution W* is thus Wk* = TW, and Wj*= 0 for 
j 4: k. Lemma 1 shows that this allocation satisfies 
the necessary conditions given by KT. A proof of 
Lemma 1 appears in the Appendix. 

Lemma 1. I f  station k is a delay station, then the 
optimum solution W *  is Wk* = TW, and Wj* = 0 
for j 4~ k. This solution satisfies the necessary condi- 
tions given by KT. 

However, if there is no delay station in the 
CQN, then any workload allocation which has at 
least one W~ = 0 cannot satisfy KT, as Theorem 1 
shows. Theorem 1 requires the following intuitive 
result, which is stated as Lemma 2. A proof of 
Lemma 2 appears in the Appendix. 

Lemma 2. I f  all the stations in the CQN have 
service rates which are concave and non-decreasing 

with the number of customers present at the station, 
then the cycle times arenon-decreasing in N, i.e., 
C( N + 1, W )  >_ C( N, W) .  

T h e o r e m  1. I f  none of the servers are delay stations, 
then any workload allocation W which has a t  least 
one W k =__0 cannot satisfy KT; that is, the opt!mal 
workload W *  > O. 

Proof. Suppose that W with W k = 0 for some k 
satisfies KT. Let I =  {i1 W, > 0} and i =  { k l W  k 
= 0}. Clearly,_] is not empty. From KT, ~r~ = 0 
and TH(N,  W ) ( Q , ( N ,  W ) -  Q , ( N - 1 ,  W ) ) =  
vW, i ~ I. Summing this equation over all i ~ I, 
we have g = T H ( N ,  W ) / T W .  It can be easily 
shown that (also refer to the proof of Lemma 1) 

lim 0 TH (N ,  W) 
w, -~o OWk 

= - T H ( N ,  W ) ( T H ( N ,  W) 

- T H ( N -  I, W)); k c L  (6a) 
Hence, from KT and Eq. (6a), substituting v = 
TH(N,  W ) / T W ,  we obtain 

% = T H ( N ,  W ) { T H ( N ,  W) 

- T H ( N -  1, W) - 1 / T W } ;  

k ~ ]. (6b) 

We now show that ~r k < 0  for each k G i ,  which 
will imply that W does not satisfy KT. When there 
is no delay server in the network, C(N,  W )  > T W  
since there is a positive probability that some 
customers must wait before being served. Rewrit- 
ing the term within the braces in Eqn. (6b) using 
Little's law, we have 

T H ( N ,  W) - T H ( N -  1, W) - 1 / T W  

= N / C ( N ,  W ) - ( N - 1 ) / C ( N - 1 ,  W )  

- 1 / T W  

= 1 / C ( N ,  W )  - 1 / T W  + ( N -  1) 

×(1/C(N, ~ -  a / C ( N -  1, ~ ' ) ) .  

In the above equation, I___/C(N, W )  - 1/T__W < 0. 
Furthermore, 1 / C ( N ,  W )  - 1 / C ( N -  1, W )  < 0 
from Lemma 2. Thus, ~r k < 0 for each k ~ I and 
the result follows. [] 

Suppose that W > 0 satisfies KT. Then ~ = 0, 
and (W, v) is the solution to the following system 
of equations: 

0 T H ( N , W ) + v = 0 ,  i = 1 - - - M ,  (7a) 
0 ~  ' ' 
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M 

W i -  TW = 0. (7b) 
i = 1  

Multiplying both eqns. (5) and (7a) by W,, and 
summing over all i, we get 

T H ( N ,  W) = ~,TW, (8) 

and so from eqns. (7a) and (8), 

T H ( N ,  W ) =  - T H ( N ,  W ) / T W .  (9) aw, 

From eqns. (5) and (9) we obtain the following 
expression, which characterizes the number of jobs 
at each workstation for an allocation which satis- 
fies the necessary conditions for optimality: 

TW(Q~(N, W)  - Q i ( N -  1, W))  = W~. (10) 

To offer some intuition for eqn. (10), we first 
rewrite this equation as 

Q,(N,  ~ ' ) - Q , ( N - 1  ~ ' ) -  W~ 
' T W '  

i = l , . - . , M .  
The above equation states that the optimal 
workload has the property that when the Nth 
customer is added to the CQN, the meanqueue  
length at each station strictly increases (W > 0) 
and the amount of the increase is the same as the 
ratio of the workload at the station to the total 
workload. Note that Q~(N, W)  > Q , ( N -  1, W)  
[15,16,23]. __ 

Let g~(W) = TW(Q~(N, W) - Q~(N - 1, W)). 
Then, eqn. (10) can be rewritten as 

g ( W )  = w (11) 
where g ( W ) = ( g 1 ( W ) , ' ' ' , g M ( W ) ) .  In the fol- 
lowing, we derive the form of g(2). 

D e f i n i t i o n  1. Let g be a continuous function such 
that g : ~ ,  where q ~ c R "  is a convex and 
compact set. Then there exists an ~ ~ • such that 
g (£)  = Y by Brouwer's Theorem [24]. This ~ is 
called a Brouwer's fixed point. 

Lemma 3. The workload W satisfying eqn. (11) is a 
Brouwer "s fixed point. 

Proof. Let F be the feasible region for problem P. 
Observe that F is an ( M - 1 )  dimensional sim- 
plex. Let the function g be defined as the map- 
ping in eqn. (11). Clearly F is a convex and 
c o m p a c t  set, and g is continuous over F, since 
Q~(N, W)  is continuous over F for any nonnega- 

tive integer N. Hence, F and g satisfy Definition 
1. In order to show that g : F --, F, we will show 
that for any W ~  F, g ( W ) ~ F .  From results on 
the monotonicity of queue lengths (with respect to 
N ) for CQNs with concave, non-decreasingservice 
rates at all stations [15,16,23], we have g~(W) > 0, 
for all i. Summing g, over all i, we have 

M 

Z g,(W) 
i = 1  

M 

= Z T W ( Q i ( N ,  W)  - Q , ( N -  1, ~ ' ) )  
i = 1  

= T W ( N  - (N  - 1)) = TW. 

Thus g ( W ) ~ F ,  and we have shown that W 
satisfying eqn. (11) is a Brouwer's fixed point. [] 

It may be observed that any allocation with W~ = 
TW, and Wj = 0 for j ~ i, is a Brouwer's fixed 
point satisfying eqn. (11). Lemma 4 formalizes this 
statement. 

Lemma 4. Every extreme point of F is a Brouwer's 
fixed point satisfying eqn. (11). Hence there are at 
least M Brouwer's fixed points satisfying eqn. (11) 
over the feasible region F. 

As noted earlier, however, note that an extreme 
point of F may not be a solution for KT. 

R e m a r k .  The results of Lemmas 1 to 4 apply to a 
class of product-form CQNs which is more gen- 
eral than the multi-server CQN. Lemma 1 holds 
for any product-form CQN while Lemmas 2 
through 4 hold for CQNs where all stations have 
service rates which are concave, non-decreasing 
with the number of customers present at the sta- 
tion. Note that only the queue length monotonic- 
ity property, together with eqn. (10), is required to 
define a Brouwer's fixed point. 

3.1. Pseudoconcaoity of throughput 

Yao and Kim [29] prove that when a multi- 
server CQN has the same number of servers at 
each station, the throughput is a Schur-concave 
function of workload; i.e., it reverses majorization 
ordering [7]. Using this property, it is shown that 
balancing workloads among stations maximizes 
the throughput for these CQNs. Shanthikumar 
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[13] generalizes this result to networks where the 
stations have identical concave, non-decreasing 
service rate functions. 

Stecke [21] shows that the throughput is not 
concave over the feasible region for a single-server 
CQN and conjectures that it is strictly quasicon- 
cave. The basis for the conjecture is a proof of 
quasiconcavity for a single-server CQN with two 
stations and empirical evidence for a single-server 
CQN with three stations. Stecke also provides 
some computational evidence that the function is 
strictly quasiconcave for a multi-server CQN. 

We make a stronger conjecture that the func- 
tion is pseudoconcave over the feasible region for 
any multi-server CQN. (Pseudoconcavity implies 
that the function is strictly quasiconcave but the 
converse is not true.) The following definition for 
a pseudoconcave function is due to Bazaraa and 
Shetty [3, see p. 106]. 

Definition 2. Let f :  S---, R 1, where S is a non- 
empty open set in R", and f is differentiable. The 
function f is said to be pseudoconvex if for each 
y, z ~ S with xTf(y)r(z - y) >_ 0, we have f ( z )  > 
f ( y ) ,  or equivalently, if f ( z ) < f ( y )  then 
v f ( y ) r ( z - y )  < 0. The function f is said to be 
pseudoconcave if - f  is pseudoconvex. 

Property 1. Let g : • --* R 1 and h : • ---, R 1, where 
is a nonempty convex open set in R n and g is 

concave, differentiable and nonnegative, and h is 
convex, differentiable and positive. Then the func- 
tion f defined by f ( ~ )  = g(Y)/h(Y,)  is pseudocon- 
cave. (See 3.41 on page 116 of [3].) 

Property 2. If function f is pseudoconcave, then 
such that ~Tf (x)=  0 is a global maximum of f .  
(See page 106 of [3].) 

CQN. We show that the conjecture is true for two 
other special cases: the single-server CQN, and the 
multi-server CQN with N = 2. Note that the latter 
case represents a CQN with only single servers 
and delay servers. 

Let F =  { W : ~ i W i = T W ;  W , > 0  for all i} de- 
note the feasible region for problem P. Since the 
reciprocal of the throughput function for a CQN 
with single server stations is convex [8], noting 
that TH(N,  W ) =  N / C ( N ,  W)  and using Prop- 
erty 1, we obtain Lemma 5: 

m 

Lemma 5. TH(N, W)  is pseudoconcave over F for 
a single-server CQN. [] 

Lemma 6. TH( N, W)  is pseudoconcave over F for 
a multi-server CQN when N = 2. 

The proof of Lemma 6 is straightforward and is 
omitted. These lemmas lead to the following con- 
jecture: 

w 

Conjecture 1. TH(N,  W) is pseudoconcave over F 
for a multi-server CQN. [] 

Note, from Property 1, that a sufficient condi- 
tion for Conjecture 1 to hold is that C(N, W)  is 
convex for a multi-server CQN. Empirical support 
for this conjecture is provided in the following 
sections. Conject_ ure 1 and Theorem 1 state that 
the workload W > 0  satisfying eqn. (11) is the 
optimum solution for P. In the following section, 
we develop two heuristic algorithms to obtain the 
optimal workload allocation under the pseudocon- 
cavity assumption: the Eaves-Saigal fixed point 
algorithm and the reduced gradient algorithm. We 
also report on the performance of these al- 
gorithms. 

Property 2 is not shared by differentiable 
strongly or strictly quasiconcave functions. Thus, 
Stecke's conjecture does not provide a theoretical 
ground for global optimality of a solution satisfy- 
ing the necessary conditions. The benefit of as- 
suming pseudoconcavity of the throughput func- 
tion is that satisfaction of the first order condi- 
tions is both necessary and sufficient for optimal- 
ity in the workload allocation problem. 

Note that a CQN with only delay stations, that 
is, __a CQN with S i >__N for all i is pseudo_concave 
in W since TH(N,  W) = N / T W  for any W in this 

4. The solution procedure 

We coded two algorithms, the reduced gradient 
algorithm and the Eaves-Saigal fixed point al- 
gorithm, to solve Problem P. Both algorithms use 
as an initial feasible point a balanced allocation 
(i.e., the total mean workload is allocated such 
that the W J S  i ratios are equal). Both procedures 
search the feasible region systematically in order 
to improve the throughput while maintaining 
feasibility. Both terminate at a point which satis- 
fies the necessary conditions. 
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Stecke [20] gives a sketch of an algorithm for 
this workload allocation problem but does not 
report computational results• We expect that our 
algorithms are more efficient for two reasons. 
First, the algorithm proposed by Stecke requires a 
line search to be performed at each iteration, 
varying only two W,s with the remaining Wjs 
fixed• Second, her algorithm requires the computa- 
tion of M throughputs (to provide approximate 
partial derivative information) to determine which 
two W,s are to be varied. Her algorithm terminates 
when the sensitivity information indicates that 
further workload changes cannot increase the 
throughput. We explain below how our procedures 
differ. 

The reduced gradient algorithm [1] uses re- 
duced gradient vectors by eliminating the depen- 
dent variables from the equality constraint, that is, 
eqn. (3)• At each iteration, a steepest ascent direc- 
tion is derived in the space of independent varia- 
bles and a line search is performed along the 
direction• Thus all W,s can change at each itera- 
tion. Calculating a reduced gradient vector does 
not require any extra computat ion since an entire 
gradient vector is obtained with only one 
throughput calculation using the MVA algorithm. 

In order to apply the Eaves-Saigal  fixed point 
algorithm, Problem P is equivalently rewritten as 

P ' :  Minimize O ( W ) = - T H ( N , W ) ,  

subject to s( W ) <0, 

• " - - 2 i = 1  W,), and where W = ( W  1, ",WM 1, TW M-1 
s ( W )  = m a x { E g S l ~  - TW, [ m a x i ( -  W~), i = 
1 , . . . ,  M -  11}. 

Now, define the following point-to-set mapping 
p ( W )  as 

p(W) 

I 
' v 0 ( W ) ;  if s ( W )  < 0 

= the convex hull of __ 

v 0 ( W )  a n d V s ( W ) ;  i f s ( W ) = 0  

, v s ( W ) ;  if s ( W )  > 0, 

(12) 
m m 

where ~70(W)_ and ~Ts(W) are the gradient vec- 
tors of O(W) and s(W), respectively. It  can be 
shown__that the poin__t W satisfying the conditions 
O ~ p ( W ) ,  and s ( W ) <  O, satisfies the necessary 
conditions KT. 

m 

Theorem 2. If  N >  max,(S,)  and there exists W 
such that 0 ~ p ( W ) ,  then the Eaves-Saigal  al- 
gorithm converges to it quadratically. 

m 

Proof. If N > maxi(S/),  then W >  0 from Theo- 
rem 1. This implies s ( W ) <  O, that is, it is not a 
point on the boundary. Thus, 0 ~ p ( W )  can be 

,stated equivalently as 0 = xTO(W). This workload 
W satisfies eqn. (11), and is a Brouwer's fixed 
point from Lemma 3. Therefore, the algorithm 
converges to it quadratically [20]. [] 

The Eaves-Saigal algorithm appears to be the 
only algorithm with the property of quadratic 
converge for this problem. Since the (reduced) 
Hessian matrix will not be negative definite due to 
the nonconcavity of the function, any Newton-type 
method requires a line search to be performed, 
which only allows linear convergence. Also, each 
calculation of the Hessian requires the computa-  
tion of O(M) throughputs. This is because the 
mean queue lengths must be evaluated for the 
CQN, q', with M stations, and mean queue lengths 
must also be evaluated for M other CQNs, ff'~'), 
i =  1 , . - - ,  M, each one of which is identical to 
CQN q', but with station i removed. 

4.1. Experimental results 

We conducted a number  of experiments using 
the two algorithms described above, for CQNs 
with a range of parameter  values. In these experi- 
ments, the number of stations, M, ranged from 2 
to 10. Arbitrary unbalanced configurations for the 
server vector S were chosen, and the number  of 
customers, N ranged from ( m a x i ( S i ) +  1) to 50. 
We chose N to be greater than max,(Si)  since 
otherwise a trivial optimal solution is available 
from Lemma 1. The workloads were scaled such 
that TW = ~ 1 S ,  without loss of generality [22]. 
We used the following as a termination condition: 

D ( W )  = max,i W , - T W ( Q , ( N ,  W)  

- Q i ( N - 1 ,  W) ) l_<e ,  (13) 

for some specified tolerance e. The following sta- 
tistics were collected at termination: throughput, 
the number of throughput computations,  and the 
two-norm of the steepest ascent direction. The last 
statistic was collected in order to indicate the 
slope of the throughput function at the point of 
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Table 1 
Reduced gradient algorithm vs Eaves-Saigal algorithm at N = 5 

System Algorithm Throughput # Throughput Two-norm of 
configuration computations steepest ascent 

feasible direction 

M = 2 reduced gradient 0.84218 9 

S =  (1, 3) Eaves-Saigal 0.84219 8 

M = 3 reduced gradient 0.65392 58 

= (1, 2, 4) Eaves-Saigal 0.65392 10 

M = 4 reduced gradient 0.48059 21 

= (2, 2, 2, 4) Eaves-Saigal 0.48059 14 

M = 5 reduced gradient 0.35417 233 

S =  (1, 3, 3, 3, 4) Eaves-Saigal 0.35416 16 

M = 6 reduced gradient 0.31093 243 

= (1, 2, 2, 3, 4, 4) Eaves-Saigal 0.31094 60 

M = 7 reduced gradient 0.27610 352 

= (1, 2, 2, 3, 4, 4) Eaves-Saigal 0.27610 41 

M = 8 reduced gradient 0.41555 226 

,~ = (1, 1, 1, 1, 1, 1, 1, 4) Eaves-Saigal 0.41555 42 

1X10 -4 

2X10 -12 

4)<10 -7 

1 x l 0  -6 

3X10 -7 
8 x l 0  - lo  

2X10 -7 

1×10  -6 

4X10 -7 

8 x I O  -7 

3 x l O  -7 

7 x l O  - s  

2 x l O  -7 

9 x l O  -8 

termination. These statistics are summarized in 
Tables 1 and 2 below, for e = 0.01. 

Over a 100 configurations were tested. For ev- 
ery problem, both the algorithms always con- 
verged to the same interior point. We also tried 

four different initial points which were randomly 
generated from the feasible region. For every ini- 
tial point, both algorithms still converged to the 
same interior point. This observation leads to the 
following conjecture. 

Table 2 
Reduced gradient algorithm vs Eaves-Saigal algorithm at N = 20 

System Algorithm Throughput ~ Throughput Two-norm of 
configuration computations steepest ascent 

feasible direction 

M = 2 reduced gradient 0.95997 9 5 × 10-6 

S =  (1, 3) Eaves-Saigal 0.95997 10 3 x 10-lo 

M = 3 reduced gradient 0.91374 30 3 x 10- 6 

S =  (1, 2, 4) Eaves-Saigal 0.91374 19 8 × 10 - s  

M = 4 reduced gradient 0.85599 56 9 x 10- 7 

S =  (2, 2, 2, 4) Eaves-Saigal 0.85599 13 3 X 10 -9 

M = 5 reduced gradient 0.79851 151 9 × 10- s 

S =  (1, 2, 3, 4, 7) Eaves-Signal 0.79851 25 3 × 10 - s  

M = 6 reduced gradient 0.73428 232 1 × 10-s  

S(1, 2, 2, 3, 6, 8) Eaves-Saigal 0.73428 32 9 x 10 -7 

M = 7 reduced gradient 0.72300 179 8 x 10-s  

S =  (1, 2, 2, 3, 3, 4) Eaves-Saigal 0.72300 25 5 x 10 - s  

M = 8 reduced gradient 0.65927 274 5 × 10-9 

S =  (1, 1, 2, 2, 3, 3, 5, 9) Eaves-Saigal 0.65927 60 6 x 10 - s  
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Conjecture 2. If N >  max~(S~), then there is a 
unique solution, W, for KT. 

m 

The solution W is globally optimal under e i t h e r  

Conjecture 1 or  Conjecture 2, and from Theorem 
2 it can be found by the Eaves-Saigal algorithm 
with quadratic convergence. For small values of c 
(i.e., e < 1 × 10-2), the Eaves-Saigal algorithm 
requires a far smaller number of throughput com- 
putations than the reduced gradient algorithm. 
The reduced gradient algorithm was not executed 
for c < 1 × 10-2 due to its slow convergence. Note 
that our conjecture that the solution is unique is 
consistent with the observation made by Stecke 
and Solberg [22] and Stecke [20] that there is a 
unique unbalanced optimal allocation for Problem 
P. 

Conjecture 2 and Lemma 4 lead to Proposition 
1, a proof of which appears in the Appendix. 

Proposition 1. If N >  maxi(S~), then there are 
exactly 2 M -  1 Brouwer's fixed points satisfying 
eqn. (11) over the feasible region, F, when Conjec- 
ture 2 holds. 

5. Generalization to include workload bounds 

In this section, we generalize the solution pro- 
cedures to accommodate lower and upper bounds 
on the workload at each station. These bounds 
might arise for a variety of different reasons. For 
example, upper bounds might be specified to al- 
low adequate time for planned maintenance and 
lower bounds can ensure a minimum level of 
machine utilization. The problem is the same as P, 
but the non-negativity constraints for W i are re- 
placed by constraints of the form L i < W, < U~ 
where L~ and U, are the lower and upper bounds, 
respectively, on W,. Note that when there are 
bounds on the workload allocations, even the case 
where there are delay servers present in the net- 
work need not be trivial. However, for this case, 
we can allocate the maximum possible load among 
the delay servers, and solve the workload alloc- 
ation problem to allocate the remaining workload 
(if any) among the remaining stations. 

One important difference between the con- 
strained problem and the more general one is that 
a balanced workload allocation may not be feasi- 
ble for the constrained problem. We assume that 

there is a feasible workload allocation (i.e., 5~iL i < 
TW < EiU~). 

The following algorithm is used to find a good 
initial feasible solution. Let 12 denote the set of 
stations; initially, $2 = (1,. • -, M }. Throughout the 
algorithm, A denotes the set of stations for which 
the workload exceeds the upper bound, B denotes 
the set of stations for which the workload is less 
than the lower bound and C denotes the set of 
stations whose workloads are within bounds. In 
other words, A = ( i I W , >  U/, i~$2},  B = ( i I W ,  
< L,, i ~ $2 }, and C = $2 - A - B, where W, is the 
workload currently allocated to station i. Let S a 

= Ei ~ ,4 ( W / -  U/) and S B = Ei ~ B (Li - W). 

Algorithm WB 
1. Find a balanced workload allocation W = { W~ }. 

If it is feasible then stop. Otherwise, construct 
the sets A, B, and C. Compute S A, S B, and let 
A = S A - S B. If A > 0, go to step 2; otherwise if 
A < 0 ,  go to step 3. If A = 0 ,  reduce the 
workload allocated to the stations in A by an 
amount S A, allocate S,  among the stations in 
B, and stop. 

2. a) Reset the workloads for all stations in the 
set A at their upper bounds, and update 
$2 = $2 - A. Allocate A equally among all the 
stations in the set B U C, and let S~ Id = S B. 

b) Update A, B, C, and reevaluate S A and S B. 
Compute A = (SA + S~ Id) - SB. 

c) If S~ ld = SB, allocate Sn among the stations 
in B and stop; otherwise go to step 2a). 

3. a) Reset the workloads for all stations in the 
set B at their lower bounds, and update 
$2 = $2 - B. Allocate A equally among all the 
stations in the set A U C, and let Sff ld = SA. 

b) Update A, B, C, and reevaluate S A and S B. 
Compute A = S A - (Sff Id + SB). 

c) If s~nd= SA, reduce S a from the stations in 
A and stop; otherwise go to step 3a). 

At the end of Algorithm WB we can identify three 
sets of stations: a) the set X in which each station 
has its workload at the upper bound, b) the set Y 
in which each station has its workload at the lower 
bound, and c) the set Z, which consists of the rest 
of the stations each of which has a workload 
strictly within its bounds. Let W denote the alloc- 
ation obtained from the algorithm. When every 
station has the same number of servers, these 
workloads have the following property: 

a) W~> I, Vj, i E Z ,  j E X  
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b) Wi= Wj, i, j ~ Z ;  
c) Wi < l'Vj, i ~ Z ,  j ~  Y. 
It  can easily be shown that  any  rea l locat ion  of  

these work loads  between s ta t ions  will e i ther  be 
infeasible,  or  will result  in a work load  vector  that  
"ma jo r i ze s "  IV. (Fo r  a def in i t ion  of  major iza t ion  
order ing,  see [7]). Thus,  the a lgor i thm re turns  the 
op t ima l  a l locat ion when every s ta t ion has the same 
n u m b e r  of  servers [13,29]. L e m m a  7 formalizes  
this s ta tement .  

L e m m a  7. / f  S 1 . . . . .  SM, then Algorithm WB 
gives the optimal workload allocation. [] 

To unders t and  the a lgor i thm intuit ively,  sup- 
pose,  for example ,  that  S A - S B > 0 in step 1. F o r  
each i ~ A, the a lgor i thm sets W, = ~ ,  and  re- 
moves  s ta t ion i f rom the list of s ta t ions being 
considered.  Fo l lowing  this, the a lgor i thm redis-  
t r ibutes  the work load  S A - S  8 equal ly  among  the 
s ta t ions  in the sets B and C, and  updates  the sets 
A, B, and  C, as well as the var iables  S A and  S B. 
The  new work loads  will result  in a changed (re- 
duced)  value for S B which implies  that  the 

work load  (S~ i v -  SB) will have to be rea l located ,  
where S~ td denotes  the previous  value  of  S B. The  
work loads  for all s ta t ions  in the set A need to be 
readjus ted  so that  they are at  their  uppe r  bounds ,  
and  this " f rees  up"  an add i t iona l  work load  SA 
which also needs to be real located.  The  " s u r p l u s "  
work load  (SA + S~ I d -  SB) is rea l loca ted  among  
the s ta t ions  in sets B and C. The  sets A, B, and  
C, and  the var iables  SA and S B are  u p d a t e d  once 
more,  and  the i te ra t ion  cont inues.  

If  at some po in t  in the i tera t ion,  the o ld  and  
new values of  S B coincide,  it  impl ies  that  no 
work load  was real located.  A t  this point ,  we dis- 
t r ibute  S 8 among  the s ta t ions  in set B and  stop. 

5.1. Experimental results 

We conduc ted  a number  of  exper iments  using 
the two nonl inear  p r o g r a m m i n g  a lgor i thms and  
Algor i thm WB, for C Q N s  with  a wide range  of  
pa r ame te r  values. The  value of  M ranged  f rom 2 
to 8 and N was fixed at  ei ther  5 or  20. We chose 
a r b i t r a r y  u n b a l a n c e d  c o n f i g u r a t i o n s  for  S. 
W o r k l o a d s  were scaled such that  the to ta l  

Table 3 
Seven sets of Problem P with loose (a) and tight (b) bound constraints 

(1) M =  2, S =  (3, 1) 
a) L, = (0.1, 0.1) 
b) L, = (2, 1) 

(2) M = 3 ,  S =  (4, 2, 1) 
a) L, = (0.5, 0.5, 0.5) 
b) L = (1, 3, 1) 

(3) m = 4 ,  ,~= (4, 2, 2, 2) 
a) L, = (1, 1, 0.1, 0.1) 
b) L, = (2, 2, 1, 1) 

(4) M=5,  S=  (7,4, 3, 2, 1) 
a) L. = (0.9, 0.8, 0.7, 0.6, 0.5) 
b) L = (2, 2, 2, 2,2) 

(5) M=6,  S=(8,6,3,2,2,1)  
a) i .  = (1, 0.9, 0.8, 0.7, 0.6, 0.5) 
b) L, = (3, 2, 3, 3, 2, 1) 

(6) M=7,  S(4, 3, 3, 3, 2, 2, 1) 
a) L, = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.3) 
b) L = (3, 3, 3, 1, 1, 1, 2) 

(7) M=8,  S= (9,5, 3, 3,2,2, 1, 1) 
a) Z = (0.5, 0.5, 0.5, 0.5, 0.5, 0.1, 0.1, 0.1) 
b) L, = (2, 2, 2, 2, 3, 1, 0.5, 0.5) 

= (4, 3) 
7 = (4, 3) 

= (6, 6, 6) 
7=(5 ,5 ,5)  

7 = ( 6 , 5 , 5 , 5 )  
7 = ( 4 , 4 , 4 , 4 )  

7 = (14, 13, 13, 12, 12) 
= (10, 10, 10, 10, 10) 

7 = (18, 18, 18, 15, 15, 15) 
7 = (15, 15, 15, 10, 10, 10) 

7 = ( 6 , 6 , 6 , 6 , 6 , 6 , 6 )  
7 = ( 4 , 4 , 4 , 4 , 4 , 4 , 4 )  

7 = (21, 21, 21, 21, 21, 21, 21, 21, 21) 
= (20, 20, 20, 20, 20, 20, 20, 20) 
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workload, TW = Y.~ 1Si without loss of generality. 
We used two sets of the bounds (loose and tight) 
for each problem. The bounds were specified so 
the feasible region for the loose bounds contains 
the feasible region for the tight ones. Problem data 
used in the experiment are presented in Table 3. 

Since Condition (13) is no longer a valid 
termination condition, we used the two-norm of 
the steepest ascent direction, denoted as x7 2 as the 
criterion for termination. Clearly, W >  0 satisfies 
the Kuhn-Tucker  necessary conditions when x7 2 
= 0. The algorithms terminate when x7 2 <  e for 
some specified tolerance e. We set e = 1 × 10 -5. 
Both algorithms were initialized with the solution 
from Algorithm WB. The following statistics were 
collected at each termination: throughput, the 

number  of throughput  computa t ions  (since 
throughput calculations take most of the computa-  
tion time), and the number  of active bound con- 
straints. These statistics are summarized in Table 
4. 

Algorithm WB provides a good initial feasible 
solution when the bounds are tight. In fact, the 
initial solution is optimal for all the problems with 
tight bounds except for problem (7b) with N = 20. 
For problems with no active bound constraint at 
the optimum, for example, problems with the loose 
bounds and N = 20, the Eaves-Saigal  algorithm 
allows quadratic convergence and requires a 
smaller number  of throughput computat ions that 
the reduced gradient algorithm. However, the 
Eaves-Saigal algorithm converges only linearly for 

Table 4 
Results for workload allocation problems with workload bounds,  with 

Problem Terms Reduced gradient algorithm Eaves-Saigal algorithm 

N = 5  N = 2 0  N = 5  N = 2 0  

(1 a) TH§ 0.8422 0.9600 0.8422 0.9600 
no*,  a c t #  31, 0 6, 0 6, 0 8, 0 

( lb)  TH 0.7955 0.9497 0.7955 0.9497 
no, act 1, 1 1, 1 1, 1 1, 1 

(2a) TH 0.6509 0.9137 0.6509 0.9137 
no, act 28, 0 44, 0 10, 0 10, 0 

(2b) TH 0.5457 0.6664 0.5457 0.6664 
no, act 1, 2 1, 2 1, 2 1, 2 

(3a) TH 0.4800 0.8560 0.4803 0.8560 
no, act 61, 0 18, 0 11, 0 6, 0 

(3b) TH 0.4662 0.8492 0.4662 0.8492 
no, act 1, 3 1, 3 1, 3 1, 3 

(4a) TH 0.2913 0.7985 0.2925 0.7985 
no, act 8, 1 64, 0 36, 0 19, 0 

(4b) TH 0.2722 0.4994 0.2723 0.4994 
no, act 1, 3 1, 3 1, 3 1, 3 

(5a) TH 0.2255 0.7341 0.2266 0.7342 
no, act 2, 1 67, 0 53, 0 33, 0 

(5b) TH 0.2229 0.6202 0.2229 0.6202 
no, act 1, 4 1, 4 1, 4 1, 4 

(6a) TH 0.2739 0.7229 0.2758 0.7230 
no, act 2, 1 48, 0 57, 0 16, 0 

(6b) TH 0.2588 0.4982 0.2588 0.4982 
no, act 1, 5 1, 5 1, 5 1, 5 

(7a) TH 0.1914 0.6588 0.1909 0.6593 
no, act 3, 1 53, 0 4, 0 51, 0 

(7b) TH 0.1905 0.5985 0.1905 0.5993 
no, act 1, 3 42, 1 1, 3 80, 1 

Note: § TH = throughput;  no* = the number  of throughput  computat ions;  and a c t #  = the number  of active bound constraints at the 
termination point 
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problems with one or more bound constraints 
active at the opt imum solution because of the 
manner  in which it handles constraints. 
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7. Conclusion 

In this article, we considered the problem of 
allocating a given workload among the stations in 
a multi-server product-form CQN to maximize the 
throughput. This problem has been addressed by 
several researchers. However, there has been rela- 
tively little work done in characterizing the opti- 
mal workload allocation for a general multi-server 
CQN and developing an efficient algorithm which 
exploits these characteristics. 

We first stated the nonlinear programming for- 
mulation of the workload allocation problem for 
the multi-server CQN and derived some character- 
istics that the optimal workload allocation pos- 
sesses. The optimal workload has the property 
that when a customer is added to the CQN, the 
mean queue length a t  each station strictly in- 
creases and the amount of the increase is the same 
as the ratio of the workload at the corresponding 
station to the total workload. We showed that if 
the number of customers in the CQN is greater 
than the maximum number of servers at any sta- 
tion, the optimal workload is an interior Brouwer's 
fixed point when there are no bounds on the 
workloads. 

We then investigated the behavior of the 
throughput function and proved that it is pseudo- 
concave for some special cases of the multi-server 
CQN. The advantage of having a pseudoconcave 
function is that the Kuhn-Tucker  necessary con- 
ditions are sufficient for global optimality. Under 
the pseudoconcavity assumption, we showed that 
the optimal workload allocation can be found by 
the Eaves-Saigal fixed point algorithm which has 
quadratic convergence. We observed numerically 
that the optimal workload is always unique. Com- 
putational experience with algorithms developed 
to find the optimal workload allocation supports 
the pseudoconcavity conjecture for the general 
multi-server CQN. Lastly, we generalized the solu- 
tion procedure to accommodate bounds on the 
workloads at each station. 

Appendix 

Lemma 1. I f  station k is a delay station, then the 
optimum solution W* is Wk* = TW, and Wj* = 0 
for j ~ k. This solution satisfies the necessary condi- 
tions given by KT. 

Proof. When all the workload is assigned to sta- 
tion k, then TH(N,  W ) =  N / T W .  Hence, from 
eqn. (5) and the fact that l imw,~vwQk(N, W ) =  
N, we have 

0 T H ( W )  T H ( W )  
lim W,--,TW OWk TW ( N -  ( W -  1)) 

T H ( W )  N 
TW TW 2" 

As Wj ~ 0 for j S__k, the mean sojourn time at 
station j, Rj(N, W ) ~  ~, where ,~ is the mean 
service time at station j .  This follows, since a 
customer is very likely to find a server available, 
and therefore stays at station j only for the dura- 
tion of a service time. From Little's law, 
Q__j(N, W ) =  vjTH(N, W)Rj(N,  W ) =  vjTH(N, 
W)'~. Noting that Wj = vj j ,  we have 

lim OTH(W)  
~ 0  a ~  

= lim T H ( N ,  W)  
~ o  

× (v jTH(N,  W ) ¢ j - v j T H ( N - 1 ,  W)~))  

N 
T W  2 " 

Given the derivative values at IV, we now solve 
the necessary conditions. Note  that W k > 0 implies 
~r k = 0 .  Thus p =  - ~ T H ( N ,  ~ ' ) / ~ W k = N / T W  2, 
and ~rj = - ~TH(N,  W)/~Wc Z 1, = 0 for each j 
k. Therefore, the values for W, ~, and v obtained 
above provide the solution to KT. 
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Lemma 2. If all the stations in the CQN have 
service rates which are concave and non-decreasing 
with the number of customers present at the station, 
then the cycle times are_non-decreasing in N,, i.e., 
C ( N +  1, W) > C( N, W). 

_ _  w 

= Y.i=IRi(N, W), where P r o o f .  S i n c e  C(N, W) M 
R,(N, W) is the mean sojourn time at station i ,  

we on ly  need to show that R , ( N + I ,  W ) >  
R,(N, W) for all i. From eqn. (2.19) of [9], letting 
p,(nlN) denote the probability that n customers 
are present at station i, we have 

N-1 
- -  1 

R,(N, W ) = r ,  l + f f i  ~ p , ( n l N - 1 )  
n = S  t 

1 ( n -  S , ) p , ( n l N -  1) , 
+ -~' n=S, 

Since p~(NIN-1)=O,  AR,(N, W ) = R ~ ( N +  
1, W) - R,( N, W) is written as 

AR,( N, W) 

= ~  E ( p , ( n [ N ) - p , ( n l N - 1 ) )  
n =  S I 

+,=s, ~ ( n -  S i ) ( P i ( n l N ) - p i ( n l N - 1 ) ) ]  

r~ [ ( n > S I N )  p,(n>S, i N _ l )  ) =g(p, _ 

+ y" ( p , ( n > k l N ) - p , ( n > k l N - 1 ) )  
k=S,+l 

N 

= r, ~ ( p , ( n > k l N ) _ p j ( n > k l N _ l ) ) .  
s, ~=s, 

Since p,(n > k I N) - pi(n >_ k I N -  1) > 0 
[15,16,23], each term in the last equation is > O. 
Therefore, AR~(N, W) > 0 for all i and the result 
follows. D 

Proposition 1. If N >  max,(S,), then there are 
exactly 2 M -  1 Brouwer's fixed points satisfying 
eqn. (11) over the feasible region of Problem P 
when Conjecture 2 holds. 

P r o o f .  Consider loading only the first p >__ 1 sta- 
tions in the CQN, fixing W i = 0 for i = p  + 1 to 

M, and solve Problem P for the p-station CQN. 
Since N > max(S , , . . . ,  Sv), by Conjecture 2 there 
is only one solution for the necessary conditions 
of the reduced problem, and this solution 
(W1,.--,  Wp) is an interior point. Clearly, W =  
(W1,. . - ,  W e, 0 , . . - , 0 )  is a Brouwer's fixed point 
satisfying eqn. (11) for the original problem, and 
there are ( ~ )  such Brouwer's fixed points. There- 
fore, the total number of Brouwer's fixed points 
satisfying eqn. (11) is given as ~Mp=l(pM)= 2 g _ 
(OM)=2M-- 1. 
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