Phase relationships in the La_2O_3 -SrO-Nb₂O₅ system

Z.K. Huang, D.S. Yan

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

T.Y. Tien and I.W. Chen

Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109, USA

Received 13 February 1991

The phase relationships in the La_2O_3 -SrO-Nb₂O₅ system were studied. The isothermal section at 1400°C of this system was determined. Within this system, two niobates, $LaSr_2Nb_2O_{8.5}$ (1-2-2) with hexagonal structure and $LaSr_2NbO_6$ (1-2-1) with cubic structure occurred. Same family compounds, $YSr_2Nb_2O_{8.5}$ and $LaSr_2Ta_2O_{8.5}$, could be also synthesized. In the SrO-rich area of the SrO-Nb₂O₅ subsystem, a tetragonal solid solution with a composition range of $Sr_{2-4}NbO_{4.5-6.5}$ (i.e. 66.7-80 at.% SrO) was also observed.

1. Introduction

As is well known, a number of niobates can be formed from niobium oxide, alkaline-earth oxides and/or rare-earth oxides. Many of these niobates possess perovskite [1] or tungsten brande [2] structure, and thus exhibit interesting electric properties. This leads to interest in the study of compound formation of niobates and phase relationships in the La_2O_3 -SrO-Nb₂O₅ system.

In the ternary systems rare-earth oxides-alkalineearth oxides $-M_2O_5$ (M = V, Nb, Ta), only the phase diagram for the Gd₂O₃-BaO-Nb₂O₅ system has been published [3]. Unfortunately, no ternary compound was reported in this system, except for two solid solutions in the BaO-rich area. In the La₂O₃-SrO-Nb₂O₅ system, there exists four La-niobates 1-0-5, 1-0-3, 1-0-1, 3-0-1 (La:Sr:Nb) in the $La_2O_3-Nb_2O_5$ subsystem and four Sr-niobates, 0-1-5, 0-1-2, 0-1-1, 0-5-4 in the SrO-Nb₂O₅ subsystem. The phase diagrams of these two binary systems have been published [4,5], but there still exists some uncertainty in the SrO-rich area of the SrO-Nb₂O₅ system [5]. No information is available for the La₂O₃-SrO-Nb₂O₅ ternary system and the La₂O₃-SrO binary system. The present work was undertaken to study the phase relationships in this ternary system.

2. Experimental

The starting powders used were La_2O_3 , SrCO₃ and Nb₂O₅ (Alfa Chemicals) all with 99.9% purity. La₂O₃ powder was calcined at 1100°C for 2 h before use. The compositions studied are listed in table 1. The mixtures of powders were milled in an agate mortar with isopropanol as medium, dried and then isostatically pressed into pellets under 50000 psi. The pellets were heated in air at 1200–1650°C for solid state reaction. The liquid area was measured by observations of the melting behavior of compositions.

An automatic X-ray diffractometer (Rigaku) was used to analyse the phase compositions after heating and grinding off the surface layer of the pellets. The lattice parameters were determined with silicon as standard and corrected by the least-squares method.

3. Results and discussion

Table 1 lists the compositions investigated, the heating conditions and the phase compositions by X-ray analysis. For the La_2O_3 -SrO binary system, all samples were heated in air at 1400–1650°C. As a result, only one compound $2La_2O_3$ -SrO (4-1-0) was found. La_2O_3 -2SrO (1-1-0) had been reported [6]

 Com	positions	(in at. ra	tio)	Heating condit	ions (in air)	Phase analysis of
La	Sr	Nb	0	<i>T</i> (°C)	<i>t</i> (h)	compositions by X-ray "
 La	-SrO-N	h_2O_1				
5	2	1	12	1400	4	La ₂ O ₃ , 1-2-1
3	3	1	10	1400	4	1-2-1, 4-1-0, SrO
2	ę	•		1650	3	1-2-1 4-1-0 SrO
2	5	1	10.5	1400	4	SrO 1-2-1 4-1-0
2	,	1	10.5	1400	2	SrO 1 2 1 4 1 0
		7	20	1650	3	1.21.0.2105 SrO
1	11	3	20	1300	4	0.2.1 1.2.1
1	5	2	11.5	1400	4	0-2-15.5., 1-2-1
i	2	1	6	1400	5	1-2-1, 3-0-1 (trace)
				1500	5	1-2-1, 3-0-1 (trace)
3	1	1	8	1500	4	$1-2-1, 3-0-1, La_2O_3$
3	2.5	2	12	1400	4	1-2-1, 3-0-1
				1500	3	1-2-1, 3-0-1
1	3	2	9.5	1500	4	1-2-2, 1-2-1, 0-2-1s.s.
1	5	4	16.5	1400	5	1-2-2, 0-5-4, 0-2-1s.s.
				1500	5	1-2-2, 0-5-4, 0-2-1s.s.
1	4.5	4	16	1400	5	1-2-2, 0-5-4, 0-2-1-s.s. (trace)
				1500	5	1-2-2, 0-5-4, 0-2-1s.s. (trace)
1	2	2	8.5	1400	3	1-2-2, 1-2-1 (trace), 3-0-1 (trace)
				1550	5	1-2-2
1	3	3	12	1500	6	1-2-2, 0-1-1
2	1	2	9	1400	3	1-2-2, 3-0-1, 1-0-1
3	3	4	17.5	1400	3	1-2-2, 3-0-1, 1-0-1
2	ĩ	3	11.5	1200	3	1-2-2, 1-0-1, 0-1-1
-		5	11.0	1300	3	1-0-1 1-2-2 0-1-1
				1400	3	1 = 0 = 1 = 1 = 2 = 2 = 0 = 1 = 1
1	2	2	11	1200	3	1 - 2 - 2, $1 - 2 - 2$, $0 - 1 - 1$
1	~	5	11	1200	2	
				1400	3	maltad
1	h	2.6	12.25	1250	2	
1	2	3.5	12.23	1230	3	0-1-2, 0-1-1, 1-0-1
2		r	165	1400	3	
2	1	2	16.5	1200	3	1-0-1, 0-1-2, 1-0-3
				1300	3	partly melted
	~	~	• /	1400	3	melled
I	2	5	16	1200	3	0-1-2, 1-0-1
				1300	3	0-1-2, 1-0-1
				1400	3	melted
1	2	9	26	1250	3	0-1-2, 0-1-5, 1-0-3
				1400	3	melted
1	1	8	22.5	1250	3	1-0-5, 0-1-5, 1-0-3
				1400	3	melted
1	1	18	47.5	1250	5	Nb_2O_5 , 1-0-5, 0-1-5 (trace)
				1400	3	melted
La ₂ C	3-SrO					
6	I	0	10	1400	4	4-1-0, La ₂ O ₃
2	l	0	4	1400	4	4-1-0, SrO
4	3	0	9	1400	4	4-1-0, SrO
1	1	0	2.5	1500	4	SrO, 4-1-0
				1650	3	SrO, 4-1-0
1	2	0	3.5	1400	4	SrO, 4-1-0
SrO-	-Nb ₂ O ₅					
0	5	4	15	1400	5	0-5-4
0	3	2	8	1400	5	0-5-4, 0-2-1
0	2	1	4.5	1500	4	0-2-1
0	3	1	5.5	1 500	4	0-2-1s.s.
0	4	1	6.5	1500	3	0-2-1s.s.
0	5	1	7.5	1500	4	0-2-1-s.s., SfO
0	7	ī	9.5	1500	3	SrO, 0-2-1s.s.

Table 1 Phase analysis of compositions after heating

^{a)} The numbers represent the compounds with the composition ratio of La:Sr:Nb.

Table 2 X-ray data for 4SrO-Nb₂O₅

dobs. (Å)	d _{cal.} (Å)	I/I_0	hkl			
4.777	4.766	2	111			
4.135	4.130	3	200			
2.9211	2.9202	100	220			
2.3848	2.3831	2	222			
2.0650	2.0649	27	400			
2.0634	2.0615	15	004			
1.6858	1.6855	31	422			
1.6846	1.6842	16	224			
1.5886	1.5887	1	333			
1.4601	1.4601	13	440			
1.4585	1.4589	7	404			
1.3964	1.3961	1	531			
1.3059	1.3058	9	602			
1.3043	1.3041	5	206			
tetragonal: $a_0 = 8.260 \pm 0.004$ Å $c_0 = 8.246 \pm 0.004$ Å						

to form by heating in argon, however, it was not obtained in air in our experiments. The limited solid solution of $2La_2O_3$ -SrO (4-1-0) reported [6] was not checked in the present work. In the SrO-rich area of the SrO-Nb₂O₅ system, a new phase 4SrO-Nb₂O₅ (0-2-1) was observed. The structure was identified to be tetragonal with a=8.260 Å and c=8.246 Å as

Table 3 X-ray data for LaSr₂Nb₂O_{8.5}; comparison with La_{0.67} $\Box_{0.33}$ Sr₂(VO₄)₂[7]

listed in table 2. It might be derived from a cubic structure, because the separation of some X-ray peaks from those of the cubic pattern occurred, e.g. hkl=400 and 004, 422 and 224, 440 and 404, 602 and 206. This new phase can form a tetragonal solid solution region with a composition range, Sr₂₋₄-NbO_{4.5-6.5} (i.e. 66.7-80 at.% SrO). Other Sr-niobates and all La-niobates [4,5] have been confirmed in the present work.

From the results of the phase composition analysis listed in table 1, the subsolidus phase relationships in the La₂O₃-SrO-Nb₂O₅ system could be established. There exists two compounds $LaSr_2Nb_2O_{8.5}$ (1-2-2) and LaSr₂NbO₆ (1-2-1). Pure single-phase 1-2-2 could be obtained only at 1500°C after 5 h, otherwise it always was contaminated with traces of the other phases 1-2-1 and 3-0-1 at 1400°C. The compound 1-2-2 has a hexagonal structure with a =5.6584 Å and c=19.385 Å, which is the same as $La_{0.67} \square_{0.33} Sr_2 (VO_4)_2 (a = 5.628 \text{ Å}, c = 20.00 \text{ Å}) [7].$ According to the latter composition, it would be 1-3-3. The composition 1-3-3, however, always contained a little Sr₂Nb₂O₇ (0-1-1) second phase. X-ray data of 1-2-2 and the corresponding vanadate are listed in table 3 for comparison. Other family compounds, $LaSr_2Ta_2O_{8.5}$ with a = 5.6506 Å, c = 19.448Å and $YSr_2Nb_2O_{8.5}$ with a = 5.6605 Å, c = 19.052 Å

	LaSr ₂ Nb ₂ O _{8.5}		$La_{067} \square_{0.33} Sr_2 (VO_4)_2$				
	d _{obs.} (Å)	$d_{\text{cal.}}$ (Å)	<i>I</i> / <i>I</i> ₀	hk l	d (Å)	I/I ₀	
	3.0376	3.0405	100	10 5	3.07	100	
	2.8256	2.8292	56	110	2.81	65	
				00 9	2.222	<2	
	2.1873	2.1866	6	204	2.189	<2	
				116	2.145	<2	
	2.0706	2.0712	42	205	2.074	50	
	1.8025	1.8026	30	1010	1.841	45	
	1.6713	1.6712	26	12 5	1.673	40	
	1.6336	1.6334	7	30 0	1.625	30	
	1.5204	1.5203	14	0210	1.541	30	
	1.4145	1.4146	8	22.0	1.407	25	
	1.3393	1.3392	8	1 2 10	1.355	20	
	1.2828	1.2826	3	135	1.281	30	
	hexagonal: $a_0 = 5.6584 \pm 0.0008$ Å $c_0 = 19.385 \pm 0.005$ Å				$a_0 = 5.628$	Å	
					$c_0 = 20.00$	Å	

YSr ₂ Nb ₂ O _{8.5}				$LaSr_2Ta_2O_{8.5}$			
d _{obs.} (Å)	$d_{\rm cal.}$ (Å)	I/I ₀	hk l	d _{obs.} (Å)	$d_{\rm cal.}$ (Å)	<i>I/I</i> ₀	hk l
3.0105	3.0085	100	10 5	3.0447	3.0449	100	10 5
2.8291	2.8302	58	110	2.8256	2.8253	73	11 0
2.0616	2.0614	43	205	2.0711	2.0711	44	205
1.7776	1.7758	20	1010	1.8075	1.8073	20	1010
1.6668	1.6663	30	125	1.6702	1.6704	30	125
1.6333	1.6340	10	30 0	1.6314	1.6312	13	30 0
1.5057	1.5042	12	0210	1.5225	1.5224	12	0210
1.4153	1.4151	10	220	1.4126	1,4127	10	220
1.3293	1.3283	8	1 2 10	1.3401	1.3402	12	1 2 10
1.2810	1.2805	7	135	1.2815	1.2815	8	135
hexagonal: a ₀ =	= 5.6605 ± 0.0006 Å			$a_0 = 5.6506 \pm 0.0002$ Å			
$c_0 = 19.052 \pm 0.004 \text{ Å}$				$c_0 = 19.448 \pm 0.002$ Å			

Table 4 X-ray data for YSr₂Nb₂O_{8.5} and LaSr₂Ta₂O_{8.5}

Table 5 X-ray data for LaSr₂NbO₆

d (Å)	I/I_0	h k l	
 2.9436	100	220	
2.0810	21	400	
1.6996	24	422	
1.6015	4	333	
1.4707	8	440	
1.4066	2	531	
1.3157	6	620	
1.2020	2	444	
cubic: $a_0 = 8$.324±0.004 Å		

could also be synthesized. The latter was only stable up to 1300°C. The X-ray data of both compounds are also listed in table 4.

LaSr₂NbO₆ has a cubic structure with a=8.324 Å, which is the same as the $(NH_4)_3FeF_6$ structure. It is similar to the member of the cryolite family close to the perovskite structure [8]. Other family compounds such as LaSr₂TaO₆ (a=8.27 Å), Dy-Ba₂NbO₆ (a=8.453 Å), YBa₂NbO₆ (a=8.436 Å) and so on have been reported [9,10]. The X-ray data of LaSr₂NbO₆ are listed in table 5, its lattice parameter is two times as large as that of the simple perovskite (ABO₃).

In the Nb₂O₅-rich area of the ternary system, many compositions melted at lower temperatures, showing

Fig. 1. Isothermal section at 1400 °C for the La₂O₃-SrO-Nb₂O₅ system.

that there exists a liquid region. The 1400° C isothermal section of this region (fig. 1) was determined by the observation of the melting behavior of those compositions.

4. Conclusions

The phase relationships at 1400° C in the La₂O₃-SrO-Nb₂O₅ system were determined. Two compounds, LaSr₂Nb₂O_{8.5} with a hexagonal structure and

LaSr₂NbO₆ with a cubic $(NH_4)_3$ FeF₆ structure occurred in this system. Two similar compounds were also synthesized. In the SrO-rich area of the SrO-Nb₂O₅ subsystem, a tetragonal solid solution with the composition Sr₂₋₄NbO_{4.5-6.5} (i.e. 66.7-80 at.% SrO) was also observed.

References

- [1] E.C. Subbarao, J. Am. Ceram. Soc. 45 (1962) 166.
- [2] D. Ridgley and R. Ward, J. Am. Ceram. Soc. 77 (1955) 6132.
- [3] R.S. Roth, in: Rare earth research, ed. E.V. Kleber (Macmillan, New York, 1961) p. 92.

- [4] E.P. Savchenko, N.A. Godina and E.K. Keler, in: Chemistry of high temperature materials, ed. N.A. Toropov; translated by C.P. Finch (Consultants Bureau, New York, 1969) p. 111.
- [5] J.R. Carruthers and M. Grasso, J. Electrochem. Soc. 117 (1970) 1427.
- [6] L.M. Lopato, V.N. Pavlikov and L.I. Lugin, Russian J. Inorg. Chem. 14 (1969) 449.
- [7] G. le Flem and R. Olazcuaga, Bull. Soc. Chim. France 7 (1968) 2769.
- [8] A.F. Wells, Structural inorganic chemistry, 3rd Ed. (Clarendon Press, Oxford, 1962) pp. 358-370.
- [9] L.H. Brixner, J. Am. Chem. Soc. 80 (1958) 3214.
- [10] JCPDS Powder Diffraction File, Nos. 24-1030 and 24-1042 (1983).