Algorithmic aspects of
alternating sum of volumes.
Part 2: Nonconvergence and

its remedy

K Tang and T Woo

The paper is the second part of a 2-part paper The first
part focused on the issues of data structure and fast
difference operation. The second studies the non-
convergence of the alternating sum of volumes (ASV)
process. An ASV is a series of convex components joined
by alternating union and difference operations It 1s
desirable that an ASV series be finite However, such
1s not always the case — the ASV algonithm can be
nonconvergent The paper investigates the causes of this
nonconvergence, and finds and proves the conditions
responsible for it Linear time algorithms are then
developed for detection

leature extraction, representation conversion, convex hull, alternating
sum, difference operation, nonconvergence, supportability

An alternating sum of volumes (ASV) series is
convergent if a deficiency €2, 1s the null set; otherwise,

if the convex hull of its deficiency CH(L,) — £, 1s equal
to CH(L2,), and convergent otherwise It 1s desirable to
be able to characterize the nonconvergence of a
deficiency €, directly, rather than invoke the comparison
between CH(L,) and CH(Q,) — €, This pursuit Is
justified 1In two respects. First, four convex-hull
operations and two set-difference operations must be
performed to obtain the datum CH(L2), CH(L)) —
and CH(CH(Q,) — ) for the comparnson. Set-
difference operation on a polyhedron with m vertices
1s known to take at least O(m?) ume prior to the
O(mlogm) result given in Part 1 of this paper?. Second,
even If the fast O(mlogm) dfference operation 1s
involved, detecting the presence of a null set, as the
result of the difference, can be numerically unstable
A fast nonconvergence detection algonthm for a

it 1s said to be nonconvergent (For the computation Q CH
of efficiency, the detection of a null deficiency £2,, can — CHIS)
be replaced by the determination of the convexity of
Q,_ . ) Figure Tillustrates a nonconvergent ASV series. \/
The series of deficiencies £, €,, ..., as derived from
the convex hull (CH) and difference (—) operations, /
never converges to the null set, resulting in an infinite
eiternatlng series. {CH(Q)_— CH(Q,) + CH(Q,) — --- a, CH o CH (%)
CH(Q, _ 1) + CH(Q,) — -}
As implied in Figure 1, the nonconvergence of an \/
ASV series Is determined by the nonconvergence of a
deficiency in its expansion It 1s known' that an ASV ’/
series Is nonconvergent when the convex hull of a
deficiency €2, 1s identified with the convex hull of the
deficiency of £, , ; For the example shown in Figure 1, — CH{S,)
the convex hull CH(£,) 1s equal to the convex 22 \
hull CH(Q,) As a result of the identification _/
CH(Q) = CH(L, , ,), the following relationship between /
the deficiencies holds € =€, (1 <)).
Formally, a deficiency Sll, i1s said to be nonconvergent Qs g CH Repeats
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pseudopolyhedron, where the set-difference and
comparison operations are not carried out, 1s a new
result in this Part 2 of the paper

Suppose that a fast nonconvergence detection
algonthm for a deficiency is available One way in which
to detect the nonconvergence of an ASV sernes is to
test for the nonconvergence of every deficiency as it
1s being computed The time required by such a
detection scheme is heavily dependent on the depth n
of the first nonconvergent deficiency Q,, - the larger
the number n, the more time 1t will take Alternatively,
it may be asked whether the nonconvergence of a
senes can be detected without invoking the ASV
process itself — not only because the deficiencies thus
produced are nonproductive it the ASV seres does
not converge, but also because a separate scheme may
speed up the detection ime From the theoretical point
of view, such a study addresses some interesting
problems, such as that of finding the minimum number
of faces in a nonconvergent deficiency

These two closely related issues, fast detection of
the nonconvergence of a deficiency and that of an
ASV series, are investigated in this paper In the next
section, the concepts of strong-hull and weak-hull
vertices are introduced The characterization of these
two types of vertices leads to an O(nlogn) algorithm
for detecting the nonconvergence of a deficiency,
where n is the number of vertices in the deficiency In
the third section of the paper, a sufficient condition
for the nonconvergence of an ASV sernes that requires
only linear time to detect Is given

CHARACTERIZATION OF NONCONVERGENT
DEFICIENCIES

The following problem 15 solved in this section given
a pseudopolyhedron £,, under what condition will the
equation CH(,) = CH(CH(£L,) — £,) hold, and how
fast can such a condition be detected? The symbols
CH and — represent the convex hull and regulanzed
difference operations, respectively (Note that every
deficiency in an ASV series must be a pseudo-
polyhedron, as shown in Part 1 of this paper Hereafter,
the two terms ‘pseudopolyhedron’ and ‘deficiency’ will
be used interchangeably ) Before the condition for
nonconvergence Is characterized, 1t 1s useful to
summarize the relationships between the boundary and
interior points of a pseudopolyhedron €, its convex
hull CH(€)), and its deficiency CH(€2,) — €, The first
relatonship, given in Part 1 of this paper, 1s recited
below

Llemma 1 The deficiency of a pseudopolyhedron €2, is
also a pseudopolyhedron, whose interior HCH(£2,) — Q)
is the set difference {I(CH(Q)) — (L)}, and
the boundary B(CH(€,) — €) 1s a subset of

B(CH(L2,)) — B(Q)} that forms the closure of
%l(CH(Q,)) — ()}

A pseudopolyhedron 1s completely described by its
faces, and a face 1s determined by its edges, which are
themselves defined by their end points, called vertices
As the set of the vertices of the convex hull of a set
of points must be a subset of that point set, by Lemma 1,
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the set of the vertices ot the deficiency of £, 1s a subset
of the vertices of €, In other words, the difference
operation In the ASV expansion can be viewed as
a vertex-elimination process after each difference
operation, the deficiency £, possesses fewer vertices
than does the deficiency €, |, this process continues
until a convex pseudopolyhedron £, 1s reached whose
deficiency €, , , 1s the null set

If the vertices in the deficiencies cannot be eliminated
through the difference operation, the ASV series does
not converge A vertex of a pseudopolyhedron €, s
eliminatable f 1t does not exist in its deficiency
CH(Q,) — &,, otherwise, it 1s noneliminatable A formal
definition of the nonconvergence of the pseudo-
polyhedron 1s then in order

Definition 1A pseudopolyhedron £, 1s nonconvergent
if all of its vertices are noneliminatable, otherwise, it 1s
convergent

To characterize the elminatability of vertices in £, the
vertices are categorized into two groups, hull vertices
and internal vertices The hull vertices are those that
are on the boundary of CH(L,), whereas those
vertices of €2, that are not on the boundary of
CH(L,) are internal. Each of the internal vertices
has a 3D neighborhood that s strictly nside
CH(L,) Further, this neighborhood contains a subset
of [I(CH(L,)) — ()}, as an internal vertex 1s also a
boundary point of £, Therefore, by Lemma 1, all the
internal vertices are noneliminatable To study the
elminatability of the hull vertices, they are further
separated into weak and strong hull vertices

Defintion 2 In E2, the 3D Euchidean space, a hull vertex
of £, 1s weak if it has a 3D neighborhood that contains
points in {€, U {E’ — CH(Q)}} only, otherwise, 1t 1s
called a strong hull vertex

As shown in Figure 2, after a difference operation, strong
hull and internal vertices remain, whereas all the weak
hull vertices are eiminated Let those faces (edges) of
a pseudopolyhedron £, be called hull faces (hull edges)
if they are completely on the boundary surface of
CH(Q,), and internal faces (internal edges) otherwise
Referring to Figure 2,1t can be inferred that a hull vertex
1s weak if and only if all of its incident faces are hull
faces of £, (Note, however, that this condition does
not hold for incident edges That 1s, a hull vertex with
incident hull edges only 1s not necessanly weak, as
shown In Figure 3, where the strong hull vertex v has
no incident internal edges ) The contribution of strong
hull vertices to the nonconvergence 1s demonstrated
by the following lemma

1)
] . - o o 0
4 Difference operation . E!!

Figure 2. Weak hull vertices, strong hull vertices and
internal vertices
[O weak hull vertices, @ strong hull vertices, x internal vertices |
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Figure 3 Strong hull vertex with no incident internal
edges

Lemma 2. A pseudopolyhedron €, 1s nonconvergent if
and only if all of its hull vertices are strong.

Proof. First, it 1s noted that the hull and internal vertices
partition the entire vertex set of £, owing to therr
mutual exclusivity By Definition 2, a weak hull vertex
has an open 3D neighborhood within which £, 1s
equal to CH(LQ), and thus there 1s no subset of
{ICH()) — 1(L,)} In that neighborhood Hence, by
Lemma 1, all the weak hull vertices are eliminatable
Conversely, as every 3D neighborhood of a strong hull
vertex contains a subset of {I(CH(Q,)) — I(£2))}, these
are preserved on the deficiency of €, 1.e they are
noneliminatable By Definition 1 and the fact that all
the internal vertices are noneliminatable, the proof 1s
complete QED

Lemma 2 implies that the detection of the non-
convergence of a pseudopolyhedron €2, 1s equivalent
to distinguishing its strong hull vertices from the weak
ones Such a process requires two steps classify the
hull and internal faces of £,, and then check if £, has
a vertex that has incident hull faces only. Whether a
face 1s internal can be identified by checking one of
its interior points. (Such a point must not be on an
edge of the face, as an internal face may have hull
edges only, eg. face f in Figure 3.) € s then
nonconvergent If and only if no weak hull vertex exists.

The algonthm given below follows the two steps just
described It is assumed that a procedure HULL(N, V, Vi,
1s In hand that takes a list V of N points as input, and
outputs a property array Vi, such that, if V,,(1) 1s
‘true’, point 1 in V1s a hull vertex of CH(V), and if it
1s ‘false’, an internal vertex.

DETECT algorithm

Algonthm DETECT (€2,
/* Detect the nonconvergence of a pseudopolyhedron £2,
The vertex Iist V and face st F of £, have n, vertices and n, faces, respectively */

begin
(1) for k =1 to n; do
Vin, + k) « an nterior point of face k in F
end do

(2)  call HULL{n, + ny,V, Vi)
(3) set array VP(1 n,) to ‘true’

(4) for k =1to nydo
for every vertex v of face k in F do
VP(v) « VPIvin Vin  + k)

end do
end do
(5) for k =1to n, do
if VP{k) = ‘true’ then

return ('convergence )
end If
end do

(6) return (‘nonconvergence’)
end DETECT
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In the DETECT algonthm, the n; interior points of the
faces of €, are first appended to the vertex array V of
Q.. As each interior point of a face can be obtained
in constant time by considering any two adjacent edges
of that face, Step 1 takes O(n;) time. The convex-hull
procedure HULL 1s called at Step 2, which requires only
O((n, + np)log(n, + ny)) time® At Step 3, a property
array VP(1:n,)1s preset to ‘true’. At Step 4, the following
1s carried out If a face k 1s internal, 1.e. its interior point
tag Viae(n, + k)15 ‘false’, the corresponding entries in
VP for all the vertices of face k are reset to ‘false’ Such
a process obviously takes O(D) ume, where D = Xd,
(1=1,2,...,n,), and d, 1s the degree of vertex 1 It is
shown in the Appendix of Part 1 of this paper that D
1s O(ny). Finally, at Step 5, the array VP is scanned, and
Q, 1s 1dentified as convergent if some entry in VP is
‘true’, and as nonconvergent otherwise. The time
complexity of the DETECT algorithm 1s summarized by
the following theorem.

Theorem 1 The detection of the nonconvergence of
a pseudopolyhedron €, with n vertices can be done
in O(nlogn) time.

Compared with the simple comparson method’,
CH(Q,) = CH(CH(Q,) — ), the new detection
algonthm DETECT avoids both the time-consuming
difference operation and the identification of a null set
that could be numencally unstable Two convex-hull
operations are also saved

It may be noted that the detection algornthm DETECT
disregards the disconnectedness of a set The pseudo-
polyhedron €2, in Figure 4(a) 1s nonconvergent, by
Lemma 2 The deficiency €, ;, however, consists of
two separate pseudopolyhedra P; and P,. Although
Q,, , 1s nonconvergent as a single set, it 1s convergent
if represented as ASV(Q,,,) = ASV(P, +P,) =
ASV(P,) + ASV(P,), because P, and P, are
both convergent It results 1n a convergent
ASV tree ASV(IQ)=H -, ,=H—ASV(Q ;) =

— (ASV(P;) + ASV(P,)), which branches at the
deficiency ,,, In some other cases, a pseudo-
polyhedron, though connected, might be separated
uniquely at some edges such that the separated subsets

o =
i
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Figure 4 Convergence by set separation
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Figure 5 Well connected set versus ill connected set,
(a) well connected set, (b) ill connected set

are all convergent For example, the pseudopolyhedron
€, in Figure 4(b) 1s nonconvergent, by Lemma 2 It s,
however, convergent if expressedas 2, = H — Q,  , =
H—-®, +P,+P,+P,), as P, P,, P, and P, are all
convergent.

Both examples of set separation on £, ; shown in
Figure 4 have a crucial property the boundary of
the separated pseudopolyhedron remains unchanged
Unlike 1n polyhedral decomposition®, such a property
guarantees that the boundary after the separation has
the same sets of vertices, edges and faces as before,
with only the adjacency and incidence relationships
between them being altered. Further, it 1s next shown
that such a separation 1s unique, thus justifying the
existence of a deterministic algorithm To define set
separation rigorously, the concept of well connected-
ness Is needed

Definttion 3 Two points p and g of a pseudopolyhedron
Q, are said to be well connected in L, If there exists a
curve ¢ between p and g such that all the points in ¢,
except for possibly p and g, are in 1(€2,) €, 1s a well
connected set If all of its points are well connected in
tt, otherwise 1t 1s an ilf connected set (see Figure 5)

The €, in Figure 4(a), and both Q, and £, In
Figure 4(b), are ill connected pseudopolyhedra A well
connected pseudopolyhedron is also called a robust
set, meaning that its interior 1s all connected A subset {
of a pseudopolyhedron €, 1s a maximally well connected
set (MWCS) of £, 1f { 1s a well connected set, and any
addition of non-{ points of €, to { will constitute an
Il connected set As an example, only P;, P,, Py and
P, are the MWCSs of the pseudopolyhedron £, ; in
Figure 4(b)

It 1s desirable that an ASV series be expanded as
much as possible so that more features can be
extracted Once a nonconvergent and ill connected
deficiency 1s encountered, it should be separated into
the MWCSs, and the ASV process can then be
performed on each of these This leads to the notion
of strong and weak nonconvergence.

Definition 4 A nonconvergent pseudopolyhedron €2,
is strongly nonconvergent if both itself and its deficiency
are robust Otherwise, £, 1s weakly nonconvergent

As examples, the deficiency €, in Figure 1 1s strongly
nonconvergent, as both it and its deficiency £, are
robust, whereas- each €, in Figure 4 15 weakly
nonconvergent, because either it, or its deficiency
Q, ;15 1l connected.

The detection of the strength of nonconvergence of
a pseudopolyhedron £, of n faces requires three
steps the identification of its nonconvergence, the
computation for the deficiency of £, and the
classification of the well connectedness of €2, and/or
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its deficiency The first step can be done, by Theorem 1,
in O(nlogn) ime The difference operation also requires
O(nlogn) time, as shown n Part 1 of this paper Thus,
it the classification of the robustness of £, can be done
in O(nlogn) time, then so can the detection of the
strong nonconvergence. As £, 1s robust If and only if
its MWCS separation contains only one MWCS, 1e
itself, the goal becomes the finding of an O(nlogn) time
MW(CS separation algonthm

In implementing such an algonthm, it 1s noted that,
by the definition of a pseudopolyhedron, the well
connectedness of its boundary-point set will ensure that
it 1s a well connected set This fact ensures that the
MW(CSs of a pseudopolyhedron can be detected by
checking only the well connectedness of its faces

Let two faces of a pseudopolyhedron be well adjacent
to each other if they share a common edge and are
well connected to each other It can easily be shown
that two faces A and B of a pseudopolyhedron are well
connected If and only if either they are well adjacent,
or there exists a number of faces f;,1,, _ , I, such that
A 1s well adjacent to f,, t, 1s well adjacent to 1,,
and 1 1s well adjacent to B For example, in Figure 6,
faces A and B are not well connected, because the
curve ¢ connecting pomts p and g passes through
edge e, which does not belong to the interior of that
pseudopolyhedron

To characterize face well adjacency, let f,, f,, 1,
be the faces incident to a common edge, ordered by
their spatial angles (In Figure 7, f,, f,, , f, are
the intersections between the faces sharing a common

Edge e
l‘ .
", Sl o Face B
Face A ' \ R
| pemmmmmmmen s \
Point p Curvec Point g

Figure 6 1l connectedness of faces of a pseudopolyhedron

Figure 7 Well adjacency of taces
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edge and a plane orthogonal to that edge ) Apparently,
the well adjacent face of face f, 1 =1, 2, .., m)1s
either f,_, or f,, ; (mod m), depending on the direction
of the outward normal of f,. Such a pairing process can
be done in O(m) time The following recursive
procedure MWCS _FACES finds the faces of a maximally
well connected set of a pseudopolyhedron €, The
input is the pseudopolyhedron representation {V, E, F,
NORM, E¢} of €, and the index of a face of €&, The
output 1s the indices of those faces of £, that form the
boundary of an MWCS of £,

MWCS_FACES procedure

Procedure MWCS_FACES (/, )
/* Find those faces of a maximum well connected set of pseudopolyhedron €2,
{15 the index of a face that 1s required to be on the MWCS5

begin

1 output f

(2) e, e, ¢+ edges of face

(3) fory =1,k do

an I « the index of the face well adjacent to { at edge ¢,
a2 if (' has not been output) then call MWCS_FACES(I", §2)

end do {Step 3}

end MWCS_FACES

Suppose that a total of m edges e;, e,, , e, of £,
are found n an MWCS, denoted by P, through
MWCS_FACES Let k, and k, be the face-adjacency
indices of , and P at edge e, respectively
(1=1,2,.. ,m) Step 1 takes constant time, and thus
the overall time spent at Step 1 when MWCS_FACES
terminates 1s O(n), where n 1s the number of faces on
P. As each face of P is processed only once, the overall
time required by Step 21s O(Z(k;)) 1 = 1,2, ,m)) As
for the loop at Step 3, note that the indices of the
faces of £, adjacent to edge e, are stored in the order
of therr spatial angles in an entry of the £ list of €,
Therefore, only O(logk,) time is needed to locate the
position of f in that entry, and, hence, the index f of
the face well adjacent to face f at an edge e, As a
result, the overall ime taken by Step 3 11s O(Z(L,’Iogk,)
(r=1,2, ,m)) The total time cost of MWCS_FACES
i1s therefore O(n + (Z(k/logk,) (1=1,2,. , m))).
Before the complete algorithm for carrying out the
MWCS separation Is presented, it Is necessary to clarify
that, given the indices of n faces that form the boundary
of an MWCS of Q, only O(n) time 1s needed
to construct the pseudopolyhedron representation
{V,E F,NORM, E) of that MWCS, say P,. To see this,
note that all the V,E,F, NORM and E lists of P, are
readily available in the {V,E, F,NORM, E;) of €, The
only work needed besides the retrieval s the
reindexation of the vertices, edges and faces of P, once
they are retrieved from €, For example, if only vertices
{vs, v4,v5, v, vq5} are on P, and there 1s an edge on
P, whose entry in the E list of £, 15 (9,45, then this
edge will become {4,2) n the E list of P, because
vertices vy and v, now sit at the fourth and second
positions of the V list of P, Analogously, if edges
{e,, €,, €10, €13} are on P, and P, has a face stored n
the F list of £, as (10, 7, 13 ), then this face will become
{3,2,4), owing to the reindexation of {e,, e,, 1o, €13}.
Clearly, this reindexation process can be done
in O(n) time through simple index mapping Let
MWCS_OUTPUT be such a process, that takes as input
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a pseudopolyhedron €, and a list L of indices of the
faces of Q, and outputs the pseudopolyhedron
representation of an MWCS of €, whose faces are
those of Q, with indices in L. Using both procedures
MWCS_FACES and MWCS_OUTPUT, the algorithm
given next performs the MWCS separation

MWCS_SEPARATION algorithm

Algorithm MWCS_SEPARATION (£2,)
Compute the MWCSs of a pseudopolyhedron £, and output them

begin
1) unmark all the taces in the f Iist of Q,
2) while (there 1s a tace { in F which s not marked) do
2m L — MWCS__FACESUS, Q)
22) call MWCS_OUTPUTI(L )
(23) mark all the faces with indices in £
end do {Step 2}

end MWCS_SEPARATION

Lemma 3- The MWCS separation of a pseudopolyhedron
Q, with n¢ faces can be done 1n O(n{dogn) time and
O(ny) space

Proof. In the MWCS_SEPARATION algorithm, Step 1
takes O(ng) ime. For the while loop at Step 2, as each
face can only be in one MWCS, the overall time cost
of Step 2 2 and Step 2.3 is clearly O(n;) The time taken
by each execution of the procedure MWCS_FACES 1s
in the form of O(n + (Z(kjlogk,) (1=1,2, ..,m)),
where n and m are the numbers of the faces and edges
on that particular MWCS, and k, and k; are the numbers
of the faces of £, and that MWCS adjacent to an edge
of the MWCS, respectively. For the same reason that
a face of €, can only be in one of its MWCSs, the sum
of Zk, (1 =1,2,.. ,m)over all the edges of £,1s O(Zk,
1=1,2, ,n.), where n, is the total number of
edges of Q, Therefore, after the termination of the
MWCS_SEPARATION algonthm, the overall time taken
by Step 21 1s O(n; 4 (Zk)logny), 1.e. Olndogny), as
Zk,(1=1,2,. ,n.)1s Olng). QED

With Theorem 1 and Lemma 3, the following is in order.

Theorem 2-Whether a pseudopolyhedron €2, is strongly
nonconvergent or not can be detected in O(nlogn)
time, where n 1s the number of faces of €2,

It 1s worth noting that, in the ASV process, the
MW(CS_SEPARATION algorithm not only detects the
strong nonconvergence of a deficiency £,, but also
constructs the MWCSs of the deficiency €, The
pseudopolyhedron representation of the MWCSs
can then be used for the subsequent convex-hull
and difference operations, along the corresponding
branches after £, ;.

FAST DETECTION FOR ASV
NONCONVERGENCE

An ASV series 1s nonconvergent If it has a non-
convergent deficiency £,. A way to detect the
nonconvergence of an ASV seres 1s to check the
nonconvergence of every deficiency in the series. The
time required by such a detection sets an upper bound

Theorem 3 It needs at most O(n?logn) time to decide
whether the ASV series of a pseudopolyhedron € 1s
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Figure 8. Regularized set intersection

convergent or not, where n 1s the number of vertices
of

Proof Recall that the difference operation 1s a
vertex-elimination process. That 15, a nonconvergent
deficiency €, in ASV(L) always has fewer vertices
than £, _,. In the worst case, suppose that only one
vertex 1s eliminated after each difference operation To
obtain the deficiency €, through the ASV process, k
convex-hull and difference operations are needed,
resulting in an overall ime requirement of O(ilog:)

(t=n,n—1, ,n— k). Therefore, at most ZO(rlogs)
(r=nn—1, ,1) < O(n%logn) time 1s needed to
detect whether ASV(£2) converges or not. QED

In an attempt to improve this upper bound, the local
cause of the ASV nonconvergence of a pseudo-
polyhedron £ is sought Such a study results in a
sufficient condition for the ASV nonconvergence,
which eventually leads to a linear detection algorithm
In the search for this local cause, it 1s useful to invoke
the mechanics of regulanzed intersection®

Defintion 5 The regulanized intersection of two
pseudomanifolds A and B, denoted by A«B, is a
pseudomanifold whose interior 1s 1(A) N 1(B)

Figure 8 gives two examples of regularized intersection.
As shown n Figure 8(a), the regularized intersection
A«B s the null set (J, even though the ordinary set
intersection A N B yields two faces The result of the
regularized intersection n Figure 8(b) 1s a non-
convergent pseudopolyhedron A tantahzing finding 1s
revealed by the example in Figure 8(b) if there exists
a (nonempty) subset (prior to the regularized inter-
section) that 1s nonconvergent, then the ASV series to
be expanded Is nonconvergent Such an observation
1s not a coincidence, the basis of this 1s shown by the
following Lemma 4

lemma 4. Let { be a subset of the vertices of a
pseudopolyhedron Q. If the regularized intersection
between £ and CH({) 1s a nonconvergent pseudo-
polyhedron, the ASV series of £ 1s nonconvergent.

Proof Assume that €+CH({) 1s a nonconvergent
pseudopolyhedron It 1s claimed that all the vertices in {
are noneliminatable Suppose that there is a deficiency
Q, in ASV(£2) whose vertex set is a superset of {, such
that some vertex v in { 1s lost on the deficiency €2, 4
By Lemma 2, this means that all the incident faces of
v are the hull faces of ©, As CH({) 1s a subset of
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CH(L,), 1t follows that v 15 also a weak hull vertex of
Q- CH({), which contradicts the assumption that
Q- CH({) 1s nonconvergent QED

Lemma 4 provides a sufficient condition for the
nonconvergence of an ASV series, without the ASV
process itself being invoked A direct implementation
of such an algonthm s, however, infeasible, as there
are O(n') subsets To reduce this high complexity, the
characterization of local subsets of vertices, i e those
that are adjacent to a common vertex, 1s investigated

Let two vertices of a pseudopolyhedron be said to
be adjacent to each other if they are the two end points
of an edge

Definition 6 A vertex v of a pseudopolyhedron Q s
supportable f there exists a plane containing v such
that the point set £, lies on one side of that plane
(where £, consists of those vertices that are adjacent
to v), otherwise, v Is a nonsupportable vertex

As an example, all the vertices except for v of the
pseudopolyhedron in Figure 9(a) are supportable. Also,
as shown in Figure 9(b), a vertex v 1s nonsupportable
if and only if it 1s strictly inside the convex hull of the
vertices adjacent to it

lemma 5 If a pseudopolyhedron © has a non-
supportable vertex, then the ASV series of £ s
nonconvergent

Proof Let v be a nonsupportable vertex of £, and &,
be the point set consisting of those vertices that are
adjacent to v The lemma i1s proven by showing that
Q. CH({,) 15 a nonconvergent pseudopolyhedron As
visinternal to CH(E,), all its incident faces have portions
that are internal to CH(,) Then, in each of these
faces, there 1s a pomnt that has an open 3D
neighborhood that contains a subset of 1(€2) that 1s
strictly inside CH(¢, ). By the definition of the regularized
intersection, this neighborhood 1s preserved on
Q+CH(&,) In other words, Q+CH(£,) must be a
pseudopolyhedron, as its interior 1s not empty Now,
consider a hull vertex p of £+ CH(¢,), as illustrated in
Figure 10(a) If p belongs to £, as none of the incident
faces of v can be a hull face of CH(&,), p can only be
a strong hull vertex of &~ CH(&,) If p does not belong
to £, it must be an intersection point between some
face f of £ and a hull face of CH(¢,) (see Figures 10(b)
and (c)) As face f has a portion internal to CH(&,),
which becomes an internal face of £+« CH(¢,), p must
be a strong hull vertex of £+ CH(£,). Therefore, all the
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Figure 9 Supportable and nonsupportable vertices
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Figure 10 Proof of Lemma 6

Q

Figure 11 Nonsupportable vertex introduced by a
nonsupportable edge

vertices of £« CH(&,) are either internal or strong. By
Lemma 2, £+ CH(&,) 1s nonconvergent. QED

As an illustration of Lemma 5, vertex v of the
pseudopolyhedron n Figure 9(a) i1s nonsupportable.
The regularized intersection between the pseudo-
polyhedron and CH({,), where &, are those six vertices
adjacent to v, 1s another pseudopolyhedron, as shown
in Figure 9(b), that 1s nonconvergent By Lemma 5, the
ASV series of the pseudopolyhedron in Figure 9(a) does
not converge, this can easily be verified

An extension to the supportability of vertices is the
supportability of edges. Consider the pseudopolyhedron
€ n Figure 11(a). Its ASV series can easily be shown
to be nonconvergent, although all its vertices are
supportable

Definttion 7. An edge e of a pseudopolyhedron is
supportable if there exists a plane containing e such
that all the faces incident to e are on one side of that
plane, otherwise, edge e 1s nonsupportable

Lemma 6. If pseudopolyhedron €2 has a nonsupportable
edge e, then ASV(£2) 1s nonconvergent.

Proof Assume that the nonsupportable edge e has k
incident faces f,,f,, ..,f, and that v; and v, are its
two vertices Let p be an arbitrary point on e, but not
vy or v,. Also, let p,, which 15 not v; or v,, be a vertex
onfacef (1=1,2 k) Asthe line segment [p,p,]s
on a face f, of &, the addition of p to the vertex set
of £, and the addition of edges [p, v4], [p, v,], , and
[p,pl1=1,2 k) to the edge set of L, introduces
a new pseudopolyhedron representation of €, as
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shown in Figure 11(b) As e 1s nonsupportable, all the
points In 1t, except, possibly, for v; or v,, are strictly
inside CH({v;, v,, p1, P2, --, Pic}). This implies that the
vertex p I1s nonsupportable By Lemma 5, ASV(L2) 15
nonconvergent. QED

it should be mentioned that Lemma 5 and Lemma 6
supply a sufficient but not necessary condition for
nonconvergence As an example, all the vertices and
edges of the polyhedron in Figure 12 are supportable
However, its ASV sernies I1s nonconvergent

Nevertheless, a linear time algorithm for detecting
the sufficiency of nonconvergence offers an attractive
alternative to the O(n’logn) time for both necessity
and sufficiency

Let o be the ongin and (xq,yq, z¢), (X3, ¥2,22),
(X, Y& Zi) be k points in the 3D space If the point o
1s supportable against (xq,yq,2,), (xy,¥2,25), - -,
(X4, Vi Zi), the angle between the normal vector N,, of
a supporting plane P, and the vector (x,y, z,) must
not be greater than 90° for all the i = 1,2, , k (see
Figure 13) Conversely, If there exists a vector N, such
that the angle between it and a vector (x,vy,z)
(1=1,2, ,k)is less than or equal to 90°, then the
plane passing through o and orthogonal to N, is clearly
a supporting plane Therefore, the detection of the
supportability becomes the following given k vectors
(X1, ¥, 29), (X2, ¥2,23), -~ , (X Vi, 2i), find another
nonzero vector (A, B, C) such that Ax, + By, + Cz, = 0
(1=1,2,...,k) It s known? that the solution to this
3-variable problem, if it exists, can be obtained in O(k)
time

Let SUPPORT(k, L) be a supportability detection
procedure that takes a list L of k points as input, and
outputs either ‘true’, if the onigin 1s supportable against
L, or ‘false’” otherwise With the SUPPORT procedure,
the following algonithm 1s in order.

NSV_DETECT algorithm

Algornthm NSV _DETECT(Q)
" Detect the existence of nonsupportable vertices in a pseudopolyhedron £2 with
n, vertices

begin

(1 tor i =1, n, do
amn v « the ith vertex in the vertex hst V of Q
(12) {pr P2 . pu) + those vertices in V that are adjacent to vertex v
(13) translate {p,,p, .px} by a displacement of —v
(14) it SUPPORT(k, {ps, p, . pi)) = 'false’ then

return with ‘nonsupportable vertex found

end if
end do

(2} return with ‘no nonsupportable vertex found’

end NSV_DETECT

To devise an algorithm for detecting the supportability
of an edge e of a pseudopolyhedron €2, let v and v’

Figure 12. Nonconvergent polyhedron with no non-
supportable vertices or edges
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N
o

Figure 13. Angular relationship between the normal of
a supporting plane and the adjacent vertices

Figure 14 Finding the point p, on face |,

be the two end points of e, p be its center point, and
f;,f,, 1, be the faces of £ incident to e Also, let p,
be a point on face f, such that the line segment [p, p,]
completely belongsto f, (1 = 1,2, , k) (see Figure 14).
Such a point p, can be obtained in the constant time
from the (clockwise or counterclockwise) order of the
edges Let FS(p, f,) denote the function that returns the
point p,. Refernng to the proof of Lemma 6, e iIs
supportable if and only if p is supportable against
the point set {v,v’,p;, p2, ,p«}- This equivalence
relationship gives rise to the following algonthm

NSE_DETECT algorithm

Algonthm NSE_DETECT(Q)
*  Detect the existence of nonsupportable edges in a pseudopolyhedron €& with

n, vertices
begin
i forr=1 n.do
an v 1"« the two vertices of the ith edge in the edge list £ of
(R p « the center point of [v v']
1 ot Iy + those faces in £ that are adjacent to the edge [v v'|
AR PPy peESIp ), FSp My FStp, f)
Y translate |v,v' py, p.,, pi| by a displacement of —p
161 It SUPPORT(k + 2, [\, V', py, pa. , pu ) = lalse’ then

return with ‘nonsupportable edge found
end it
end do

(2) return with 'no nonsupportable edge tound
end NSE_DETECT

Lemma 7 The existence of nonsupportable vertices and
nonsupportable edges of a pseudopolyhedron € with
n, vertices, n, edges and n; faces can be detected in
at most O(ng) time

Proof The theorem s proven by showing that both
the NSV_DETECT and NSE_DETECT algonthms run in
O(ng) time For the NSV_DETECT algonthm, because
the SUPPORT procedure runs in linear time, the time
complexity required by the loop at Step 1 is linear in
Xd, (1=1,2, ,n,), where d, is the degree of the ith
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vertex In £, which has been proven to be O(n,) In the
Appendix of Part 1 of this paper Therefore, NSV_DETECT
runs in O(ng) time For the NSE_DETECT algorithm, by
similar reasoning, the time required by the loop at Step
Tis linear in 2k, 1 =1,2, ,n.), where k, 1s the face
adjacency index of the ith edge in € In the Appendix
of Part 1 of this paper, it has been shown that

2k, (1=1,2, . ,n.)1s Olng) Therefore, NSE_DETECT
runs in O(n;) time QED
SUMMARY

It has been established that it takes O(n?logn) time to
determine If the ASV seres of a given £ converges In
particular, 1t takes O(nlogn) time to detect if a
deficilency £, 1s nonconvergent To remedy the
nonconvergence, an O(nlogn) time algorithm s offered
to separate the culpnt deficiency €, into maximally
well connected sets

As an expedient alternative to the O(n’logn) time
detection for nonconvergence, the sufficiency condition
for nonconvergence can be detected in O(n) time.
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