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The paper Js the second part of a 2-part paper The first 
part focused on the ~ssues of data structure and fast 
difference operation_ The second studies the non- 
convergence of the alternating sum of volumes (ASV) 
process. An ASV ~s a series of convex components fomed 
by alternating umon and d~fference operattons It ~s 
desJrable that an ASV series be finite However, such 
~s not always the case - the ASV algonthm can be 
nonconvergent The paper ~nvestigates the causes of th~s 
nonconvergence, and finds and proves the conditions 
responsible for ~t L~near t~me algonthms are then 
developed for detection 

feature extraction, representatzon conversion, convex hull, alternating 
sum, difference operation, nonconvergence, supportabfl~t), 

An alternating sum of volumes (ASV) senes is 
convergent if a deficiency ~n  is the null set; otherwise, 
it is stud to be nonconvergent (For the computation 
of efficiency, the detection of a null deficiency .Qn can 
be replaced by the determtnatton of the convexity of 
~D.~_ 1 )Ftgure 1 tllustrates a nonconvergent ASV senes. 
The series of defioencles ~D.1, ~2, ---, as derived from 
the convex hull (CH) and difference ( - )  operations, 
never converges to the null set, resulting ~n an mfimte 
alternating senes.{ CH(.Q) - C H ( ~  1) + CH(~  2) . . . .  
-- CH(~.2,_~) + CH(~"~2,) -- .} 

As imphed tn Ftgure 1, the nonconvergence of an 
ASV senes is determtned by the nonconvergence of a 
defictency tn =ts expanston It ~s known 1 that an ASV 
senes ts nonconvergent when the convex hull of a 
deficiency .~, ~s ~dentff~ed with the convex hull of the 
deficiency of ~P.,+~ For the example shown tn Ftgure 1, 
the convex hull C H ( ~ ) ~ s  equal to the convex 
hull CH(~'~ 2) AS a result of the ~dentff~cat~on 
CH(~,) = CH(~, + 1), the following relattonshlp between 
the deficiencies holds ~ ,  = ~-)-/+2 (J ~< J)- 

Formally, a defictency ~ ,  ts stud to be nonconvergent 
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if the convex hull of its deficiency CH(~,) -- ~ ,  Js equal 
to CH(~,), and convergent otherwise It is desirable to 
be able to characterize the nonconvergence of a 
deficiency ~ ,  directly, rather than invoke the comparison 
between CH(~-~,) and CH( .Q, ) -  ~ ,  This pursuit is 
justified in two respects. First, four convex-hull 
operations and two set-d~fference operations must be 
performed to obtain the datum CH(~,), CH(~,) -- ~,, 
and CH(CH(~ , ) - - .Q , )  for the comparison. Set- 
difference operation on a polyhedron with m vertices 
is known to take at least O(m 2) time prior to the 
O(mlogm) result given in Part 1 of this paper 2. Second, 
even if the fast O(mlogm) difference operation ts 
involved, detecting the presence of a null set, as the 
result of the dtfference, can be numerically unstable 
A fast nonconvergence detectton algonthm for a 
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Figure 1 Illustration of ASV nonconvergence 
[CH convex-hull operation, -- difference operation ] 
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pseudopolyhedron, where the set-d~fference and 
companson operations are not carned out, ~s a new 
result in this Part 2 of the paper 

Suppose that a fast nonconvergence detection 
algonthm for a deficiency is available One way in which 
to detect the nonconvergence of an ASV series is to 
test for the nonconvergence of every deficiency as ~t 
is being computed The time required by such a 
detection scheme is heavily dependent on the depth n 
of the first nonconvergent deficiency .Q,~ - the larger 
the number n, the more t~me it will take Alternatively, 
It may be asked whether the nonconvergence of a 
senes can be detected without invoking the ASV 
process ~tself - not only because the deficiencies thus 
produced are nonproductive if the ASV seNes does 
not converge, but also because a separate scheme may 
speed up the detection t~me From the theoretical point 
of view, such a study addresses some Interesting 
problems, such as that of finding the minimum number 
of faces ~n a nonconvergent deficiency 

These two closely related ~ssues, fast detection of 
the nonconvergence of a deficiency and that of an 
ASV series, are investigated in this paper In the next 
section, the concepts of strong-hull and weak-hull 
vertices are introduced The charactenzat~on of these 
two types of vertices leads to an O(nlogn) algorithm 
for detecting the nonconvergence of a deficiency, 
where n is the number of vertices in the deficiency In 
the third section of the paper, a sufficient condition 
for the nonconvergence of an ASV senes that requires 
only linear t~me to detect ~s g~ven 

CHARACTERIZATION OF NONCONVERGENT 
DEFICIENCIES 

The following problem is solved ~n th~s section given 
a pseudopolyhedron ~,, under what condition w~ll the 
equation C H ( ~ , ) =  CH(CH(.Q,)-  ~,) hold, and how 
fast can such a condition be detected~ The symbols 
CH and -- represent the convex hull and regularized 
d~fference operations, respectively (Note that every 
deficiency in an ASV series must be a pseudo- 
polyhedron, as shown ~n Part I of th~s paper Hereafter, 
the two terms 'pseudopolyhedron' and 'deficiency' will 
be used interchangeably) Before the condition for 
nonconvergence ~s charactenzed, ~t ~s useful to 
summarize the relationships between the boundary and 
intenor points of a pseudopolyhedron ~,, ~ts convex 
hull CH(~,), and its deficiency CH(~,) -- ~ ,  The first 
relaDonsh~p, given in Part 1 of th~s paper, is recited 
below 

Lemma "/ The deficiency of a pseudopolyhedron ~,  ~s 
also a pseudopolyhedron, whose ~nterlor I(CH(.Q,) -- B,) 
]s the set d~fference { I ( C H ( ~ , ) ) - - I ( ~ , ) } ,  and 
the boundary B(CH(.Q.,) -- ~,) is a subset of 

/ B(CH(~D,,))--B(~,)} that forms the closure of 
I(CH(.O.,))- I(D,)} 

A pseudopolyhedron ~s completely descnbed by its 
faces, and a face ~s determined by ~ts edges, which are 
themselves defined by their end points, called vertices 
As the set of the vertices of the convex hull of a set 
of points must be a subset of that point set, by Lemma 1, 

the set of the vertices ot the deficiency of .Q, is a subset 
of the vertices of ~ ,  In other words, the difference 
operation in the ASV expansion can be wewed as 
a vertex-ehmmatlon process after each d~fference 
operation, the deficiency .Q, possesses fewer vertices 
than does the deficiency ~,  1, this process continues 
until a convex pseudopolyhedron ~ is reached whose 
deficiency -Qn+l is the null set 

If the vertices in the deficiencies cannot be eliminated 
through the d#erence operation, the ASV series does 
not converge A vertex of a pseudopolyhedron ~,  is 
ehmlnatable if ~t does not exist in its deficiency 
CH(~,) -- .Q,, otherwise, Jt ~s nonehmlnatable A formal 
definition of the nonconvergence of the pseudo- 
polyhedron is then Jn order 

Dehnltlon ? A pseudopolyhedron ~,  is nonconvergent 
if all of tts vertices are nonehmJnatable, otherwise, ]t ~s 
convergent 

To charactenze the ehmJnatabd~ty of vertices in ~,, the 
vertices are categonzed into two groups, hull vertices 
and internal vertices The hull vertices are those that 
are on the boundary of CH(.Q.,), whereas those 
vertices of ~ ,  that are not on the boundary of 
CH(.Q,) are internal_ Each of the internal vertices 
has a 3D neighborhood that ms strictly inside 
CH(.Q,) Further, this netghborhood contains a subset 
of [ I(CH(~,)) -- I(.Q,)I, as an anternal vertex is also a 
boundary point of .Q, Therefore, by Lemma 1, all the 
~nternal vertices are nonehmlnatable To study the 
ehmlnatabJhty of the hull vertices, they are further 
separated into weak and strong hull vertices 

Definition 2 In E 3, the 3D Euchdean space, a hull vertex 
of .Q, ]s weak ff it has a 3D neighborhood that contains 
points in ~ , u  ~E 3 -- CH(.Q,)~ only, otherw,se, it ,s 
called a strong hull vertex 

As shown in Figure 2, after a difference operation, strong 
hull and internal verttces remain, whereas all the weak 
hull vertices are ehmlnated Let those faces (edges) of 
a pseudopolyhedron ..O., be called hull faces (hull edges) 
if they are completely on the boundary surface of 
CH(~,), and internal faces (~nternal edges) otherwise 
Referring to F~gure 2, ~t can be inferred that a hull vertex 
~s weak ff and only ff all of ~ts incident faces are hull 
faces of .Q, (Note, however, that th~s condition does 
not hold for incident edges That ~s, a hull vertex with 
incident hull edges only ~s not necessanly weak, as 
shown in F~gure 3, where the strong hull vertex v has 
no ~nc~dent internal edges ) The contnbut~on of strong 
hull vertices to the nonconvergence is demonstrated 
by the following lemma 

Difference operation 

Figure 2_ Weak hull vertices, strong hull vertices and 
~nternal vertices 
[C) weak hull vertices, • strong hull vertices, x internal vertices ] 
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hgure 3 Strong hull vertex w~th no ~nodent internal 
edges 

Lemma 2_ A pseudopolyhedron ~l, ts nonconvergent ff 
and only ~f all of ~ts hull vemces are strong. 

Proof_ F~rst, it ~s noted that the hull and internal vertices 
pamtion the entire vertex set of ,(1,, owing to their 
mutual exclusw~ty By Definmon 2, a weak hull vertex 
has an open 3D neighborhood w~th~n which ~,  ~s 
equal to CH(.O,,), and thus there ~s no subset of 
{ I(CH(~,)) -- I (~,)}  .n that neighborhood Hence, by 
Lemma 1, all the weak hull vemces are elim~natable 
Conversely, as every 3D netghborhood of a strong hull 
vertex contains a subset of {I(CH(fl ,)) -- I (~,)} ,  these 
are preserved on the defioency of .~,, Le they are 
nonehmlnatable By Defimt~on 1 and the fact that all 
the ~nternal vertices are nonelimmatable, the proof ~s 
complete QED 

Lemma 2 ~mplies that the detection of the non- 
convergence of a pseudopolyhedron D,, ~s equwalent 
to distinguishing ~ts strong hull vemces from the weak 
ones Such a process requires two steps classify the 
hull and ~nternal faces of ~.,, and then check ff ~,  has 
a vertex that has ~nodent hull faces only. Whether a 
face ~s internal can be tdenhfied by checking one of 
its interior potnts. (Such a point must not be on an 
edge of the face, as an tnternal face may have hull 
edges only, e.g. face f ~n Ftgure 3.) ~ ,  is then 
nonconvergent ff and only ff no weak hull vertex exists. 

The algonthm gwen below follows the two steps just 
descnbed It ts assumed that a procedure HULL(N, V, Vtag) 
~s ~n hand that takes a hst V of N points as ~nput, and 
outputs a property array Vtag such that, ff Vtag0) ~S 
'true', point ~ in V ~s a hull vertex of CH(V), and ff ~t 
=s 'false', an ~nternal vertex. 

DETECT algorithm 

Algorithm DETECT (~['l,) 
,'" Detect the nonconvergence of a pseudopolyhedron ~'~, 
The vertex hst V and tace hst F of f l ,  have nv vertices and n, faces, respectwely "/  

beg~n 
(1) to rk  = 1 to n I do 

V(n~ + k)*-  an mtenor point of face k ~n F 
end do 

(2) call HULL(n~ + %,V, Vta ~) 

(3) set array VP(1 n v) to 'true' 

(4) for k = 1 to n I do 
for every vertex v of face k m F do 

VP(v)*-  VP(v)r~ V(n, + k) 
end do 

end do 

(5) for k = 1 to n~ do 
if VP(k) = ' t rue '  then  

return ( ' c o n v e r g e n c e )  
end ff 

end do 

(6) return ('nonconvergence') 
end DETECT 

In the DETECT algorithm, the nf ~ntenor points of the 
faces of ~ ,  are first appended to the vertex array V of 
~, .  As each interior point of a face can be obtained 
in constant time by considenng any two adjacent edges 
of that face, Step 1 takes O(n~) t~me. The convex-hull 
procedure HULL is called at Step 2, which requires only 
O((n v + n~)log(n v + nf)) time ~ At Step 3, a property 
array VP(1 :nv) is preset to 'true'_ At Step 4, the following 
~s carned out ff a face k ~s ~nternal, ..e. ~ts intenor point 
tag Vtag(nv --I- k)IS 'false', the corresponding entries in 
VP for all the vertices of face k are reset to 'false' Such 
a process obviously takes O(D) time, where D = ,~,d, 
(i = 1, 2,_.., nv), and d, is the degree of vertex f It is 
shown in the Appendix of Part 1 of this paper that D 
is O(nf). Finally, at Step 5, the array VP is scanned, and 
~,  is identified as convergent ff some entry in VP is 
'true', and as nonconvergent otherwtse. The time 
complexity of the DETECT algonthm is summarized by 
the following theorem. 

Theorem "I The detectton of the nonconvergence of 
a pseudopolyhedron ~,  with n vemces can be done 
In O(nlogn) ume. 

Compared with the simple companson method 1, 
CH(,Q,) = CH(CH(~,) -- ~.,), the new detectton 
algonthm DETECT avoids both the time-consuming 
d~fference operation and the identification of a null set 
that could be numencally unstable Two convex-hull 
operations are also saved 

It may be noted that the detechon algonthm DETECT 
disregards the disconnectedness of a set The pseudo- 
polyhedron D., in Figure 4(a) is  nonconvergent, by 
Lemma 2 The defioency ~,+1, however, consists of 
two separate pseudopolyhedra P1 and P2. Although 
~,+1 is nonconvergent as a single set, it is convergent 
ff represented as ASV(-Q,+I) = ASV(P1 + P2) = 
ASV(P 1) + ASV(P2), because P1 and P2 are 
both convergent It results In a convergent 
ASV tree ASV(fl,) = H - -  " ~ , + 1  = H - -  A S V ( ~ ~ , +  1) = 

H -- (ASV(P 1) + ASV(P2)), which branches at the 
d e f i o e n c y  ~'~1+1 In some other cases, a pseudo- 
polyhedron, though connected, might be separated 
uniquely at some edges such that the separated subsets 
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hgure 4 Convergence by set separation 
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a b 

F~gure 5 Well connected set versus fll connected set, 
(a) well connected set, (b) fll connected set 

are all convergent For example, the pseudopolyhedron 
.q, ~n F~gure 4(b) ~s nonconvergent, by Lemma 2 It is, 
however, convergent ff expressed as ~ ,  = tt - ~.,+1 = 
H - -  (P1 + P2 + P~ + P4), as P1, P2, P~ and P4 are all 
convergent_ 

Both examples of set separation on ~,+1 shown in 
F~gure 4 have a crucial property the boundary of 
the separated pseudopolyhedron remmns unchanged 
Unhke Tn polyhedral decomposition a, such a property 
guarantees that the boundary after the separation has 
the same sets of vertices, edges and faces as before, 
w~th only the adjacency and incidence relationships 
between them being altered. Further, ~t ~s next shown 
that such a separation ~s unique, thus justifying the 
existence of a determ~mst~c algonthm To define set 
separation ngorously, the concept of well connected- 
ness is needed 

Dehnltlon 3 Two polntsp and q of a pseudopolyhedron 
.q, are said to be well connected in ~ ,  if there exists a 
curve c between p and q such that all the points in c, 
except for possibly p and q, are in I(.q,) ~ ,  is a well 
connected set ff all of its points are well connected ~n 
it, otherwise ~t ~s an fll connected set (see F~gure 5) 

The -q,+l  in Figure 4(a), and both .q, and ~,+~ in 
F~gure 4(b), are ~11 connected pseudopolyhedra A well 
connected pseudopolyhedron is also called a robust 
set, meaning that ~ts ~ntenor ~s all connected A subset ~" 
of a pseudopolyhedron ~ ,  ~s a maxtmally well connected 
set (MWCS) of ~ ,  ff ~" is a well connected set, and any 
add=uon of non-~ points of ~ ,  to ~ w~ll const=tute an 
~11 connected set As an example, only P1, P2, P~ and 
Pa are the MWCSs of the pseudopolyhedron ~,+1 in 
F~gure 4(b) 

It is desirable that an ASV senes be expanded as 
much as possible so that more features can be 
extracted Once a nonconvergent and ~ll connected 
defloency ~s encountered, ~t should be separated ~nto 
the MWCSs, and the ASV process can then be 
performed on each of these This leads to the notion 
of strong and weak nonconvergence_ 

Deftntt~on 4 A nonconvergent pseudopolyhedron ~ ,  
is strongly nonconvergent if both itself and ~ts deficiency 
are robust Otherwise, ~., ~s weakly nonconvergent 

As examples, the deficiency ~1 in F~gure 1 is strongly 
nonconvergent, as both ~t and ~ts deficiency -q2 are 
robust, whereas-each .q, ~n F~gure 4 Is weakly 
nonconvergent, because e~ther =t, or ~ts deficiency 
.q,+~, LS III connected_ 

The detection of the strength of nonconvergence of 
a pseudopolyhedron ~ ,  of n faces requires three 
steps the ~dentff~cat~on of Lts nonconvergence, the 
computation for the deficiency of .Q.,, and the 
classfflcauon of the well connectedness of .q, and/or  

its defic=ency rhe first step can be done, by [heorem 1, 
in O(nlogn) time The difference operation also requires 
O(nlogn) time, as shown in Part 1 of this paper Thus, 
if the classification of the robustness of .Q, can be done 
in O(nlogn) time, then so can the detection of the 
strong nonconvergence_ As .Q, ts robust if and only If 
its MWCS separation contains only one MWCS, l e 
itself, the goal becomes the finding of an O(nlogn) time 
MWCS separation algonthm 

In implementing such an algonthm, it is noted that, 
by the defimtlon of a pseudopolyhedron, the well 
connectedness o[ tts boundary-point set will ensure that 
it Ls a well connected set This fact ensures that the 
MWCSs of a pseudopolyhedron can be detected by 
checking only the well connectedness of Its faces 

Let two faces of a pseudopolyhedron be well adlacent 
to each other ff they share a common edge and are 
well connected to each other It can easily be shown 
that two faces A and B of a pseudopolyhedron are well 
connected if and only if either they are well adJacent, 
or there exists a number of faces [1, 12, , [~ such that 
A is well adjacent to f], 1~ ~s well adjacent  to /2, , 
and 1~ JS well adjacent to B For example, ~n Figure 6, 
faces A and B are not well connected,  because the 
curve c connecung points p and q passes through 
edge e, which does not belong to the tntenor of that 
pseudopolyhedron 

To charactenze face well adjacency, let [1, [2, ,[m 
be the faces ~ncldent to a common edge, ordered by 
their spatial angles (In Figure 7, [1, f2, , f m  are 
the ~ntersecUons between the faces shanng a common 

~ F a c e  B 

F a c e  A 

Point p Curve c Point q 

Figure 6 III connectedness o/ [aces o/ a pseudopolyhedron 
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edge and a plane orthogonal to that edge ) Apparently, 
the well adjacent face of face f, (~ = 1, 2, .., m) is 
either f,-1 or f,+l (mod m), depending on the direction 
of the outward normal of f,. Such a pairing process can 
be done in O(m) time The following recursive 
procedure MWCS_FACES finds the faces of a maximally 
well connected set of a pseudopolyhedron ,~, The 
input is the pseudopolyhedron representation { V, E, F, 
NORM, El} of ~ ,  and the index of a face of ~, .  The 
output is the indices of those faces of ~ ,  that form the 
boundary of an MWCS of ~ ,  

MWCS_FACES procedure 

Procedure MWCS FACES (I, l~,) 
/* Find those [aces of a maximum well connected set of pseudopolyhedron 1-~, 

is the inde~ of a face that is required to be on the MWCS 

*/ 

besin 
(1) output 
(2) e 1 e 2 , e~ *- edges of face 
(3) for / = 1, k do 
(3 1) t' ~- the index ot the face well adlacent to ~ at edge e~ 
(32) if (/' has not been output) then call MWCS FACES(/', ~'~,) 

end do [ Step 3 ] 
end MWCS FACES 

Suppose that a total of m edges e 1, e 2, e m of ~,  
are found in an MWCS, denoted by P, through 
MWCS_FACES Let k, and kl be the face-adjacency 
indices of ~ ,  and P at edge e,, respectively 
(i = 1, 2,.. , m) Step 1 takes constant time, and thus 
the overall time spent at Step 1 when MWCS_FACES 
terminates is O(n), where n is the number of faces on 
P. As each face of P is processed only once, the overall 
time required by Step 2 is O(~(k~) (i = 1, 2, , m)) As 
for the loop at Step 3, note that the indices of the 
faces of ~ ,  adjacent to edge e / are stored in the order 
of their spatial angles ~n an entry of the Ef list of ~,  
Therefore, only O(Iogkj) time is needed to locate the 
position of f in that entry, and, hence, the index f' of 
the face well adjacent to face f at an edge e., As a 
result, the overall time taken by Step 3 1 is O(T_,(/<,logk,) 
(~ = 1, 2, , m)) The total time cost of MWCS_FACES 
is therefore O(n + (T.(k~logk,) (I = 1, 2,. , m))). 

Before the complete algorithm for carrying out the 
MWCS separation is presented, it is necessary to clarify 
that, given the indices of n faces that form the boundary 
of an MWCS of ~.,, only O(n) time is needed 
to construct the pseudopolyhedron representation 
~V,E,F, NORM, Eft) of that MWCS, say P,. To see this, 
note that all the V,E, F, NORM and Ef lists of P, are 
readily available in the ~V,E,F, NORM, Ef~ of .Q, The 
only work needed besides the retrieval is the 
relndexatJon of the vertices, edges and faces of P, once 
they are retrieved from -(1, For example, if only vertices 
{V3, V4, VT, V9, V151 are on P,, and there ts an edge on 
P, whose entry in the E list of ~,  is <~9,4~), then this 
edge wmll become (4, 2~) in the E list of P,, because 
vertices v 9 and v 4 now sit at the fourth and second 
positions of the V list of P, Analogously, if edges 
{e2, e7, elo, ela} are on P,, and P, has a face stored in 
the F list of ~ ,  as (10, 7, 13 ~), then this face will become 
~3, 2, 4~), owing to the relndexatlon of {e 2, e7, el0, el~}- 
Clearly, this relndexatlon process can be done 
in O(n) time through simple index mapping Let 
MWCS_OUTPUT be such a process, that takes as ~nput 

a pseudopolyhedron -(1, and a list L of indices of the 
faces of ~,,  and outputs the pseudopolyhedron 
representation of an MWCS of ~!, whose faces are 
those of ~,  with indices in L. Using both procedures 
MWCS_FACES and MWCS_OUTPUT, the algorithm 
g.ven next performs the MWCS separation 

MWCS_SEPARATION algorithm 

Algorithm MWCS SEPARATION (~.,I 
Compute the MWCSs of a pseudopolyhedron ~'~, and output them 

begin 
I1) unmark all the laces in the F hst ot ~'~, 
12/ while Ithere is a lace I in F which is not marked) do 
(21) L ~ MWCS FACES If, ('~,) 
122) call MWCS OUTPUT(L,~,) 
123) mark all the faces with indices [n L 

end do [Step 2] 
end MWCS SEPARATION 

Lemma 3- The MWCS separation of a pseudopolyhedron 
~,  with nf faces can be done in O(nflognf) time and 
O(nf) space 

Proof. In the MWCS_SEPARATION algorithm, Step 1 
takes O(nf) time. For the while loop at Step 2, as each 
face can only be in one MWCS, the overall time cost 
of Step 2 2 and Step 2.3 is clearly O(nf) The time taken 
by each execution of the procedure MWCS_FACES is 
in the form of O(n + (,~,(k~logk,) (i = 1,2, ..,m))), 
where n and m are the numbers of the faces and edges 
on that particular MWCS, and k, and k~ are the numbers 
of the faces of ~ ,  and that MWCS adJacent to an edge 
of the MWCS, respectively. For the same reason that 
a face of ~,  can only be in one of its MWCSs, the sum 
of ,~,kl (i = 1, 2,.. , m) over all the edges of ..Q, is O(T~k, 
(i = 1, 2, ,ne)), where n e is the total number of 
edges of ~ ,  Therefore, after the termination of the 
MWCS_SEPARATION algorithm, the overall time taken 
by Step 2 1 is O(nf + (T.k,)lognf), i.e. O(nflognf), as 
~~k I ( I  = 1 ,  2 , .  , D e)  IS O ( n f ) .  QED 

With Theorem I and Lemma 3, the following is in order. 

Theorem 2- Whether a pseudopolyhedron .Q, is strongly 
nonconvergent or not can be detected in O(nlogn) 
time, where n is the number of faces of .Q, 

It is worth noting that, in the ASV process, the 
MWCS_SEPARATION algorithm not only detects the 
strong nonconvergence of a deficiency ~,,  but also 
constructs the MWCSs of the deficiency D.,+ 1 The 
pseudopolyhedron representation of the MWCSs 
can then be used for the subsequent convex-hull 
and difference operations, along the corresponding 
branches after ,Q, + 1- 

FAST DETECTION FOR ASV 
NONCONVERGENCE 

An ASV series ~s nonconvergent ff it has a non- 
convergent deficiency ~i~ n. A way to detect the 
nonconvergence of an ASV series is to check the 
nonconvergence of every deficiency in the series. The 
hme requ.red by such a detection sets an upper bound 

Theorem 3 It needs at most O(n21ogn) time to decide 
whether the ASV series of a pseudopolyhedron .Q is 
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convergent or not, where n is the number of vemces 
of 

Proof Recall that the dtfference operation ~s a 
vertex-eSm~nat~on process. That ~s, a nonconvergent 
defictency -~k in ASV(.~) always has fewer vertices 
than -Qk-1- In the worst case, suppose that only one 
vertex ~s eliminated after each d~fference operation To 
obtatn the deficiency ~ through the ASV process, k 
convex-hull and d~fference operations are needed, 
resulting tn an overall ttme requtrement of ~O01og~) 
(~ = n, n - 1, , n - k). Therefore, at most ]EO01og~) 
( ~ = n , n - - 1 ,  ,1)~<O(nZlogn) t~me ~s needed to 
detect whether ASV(~) converges or not. QED 

In an attempt to ~mprove th~s upper bound, the local 
cause of the ASV nonconvergence of a pseudo- 
polyhedron .~ is sought Such a study results tn a 
suff~ctent condition for the ASV nonconvergence, 
which eventually leads to a hnear detection algorithm 
In the search for this local cause, ~t ~s useful to ~nvoke 
the mechanics of regulanzed intersection ~ 

Def~nttton 5 The regulanzed ~ntersect~on of two 
pseudomanffolds A and B, denoted by A.B, ~s a 
pseudomanffold whose intenor ~s I(A)r~ I(B) 

F~gure 8 gives two examples of regulanzed tntersect~on_ 
As shown ~n F~gure 8(a), the regulanzed ~ntersect~on 
A,B ~s the null set ~ ,  even though the ordinary set 
~ntersectton A r~ D ytelds two faces The result of the 
regularized tntersectlon in Figure 8 ( b ) i s  a non- 
convergent pseudopolyhedron A tantahzlng finding is 
revealed by the example ~n F~gure 8(b) ff there exists 
a (nonempty) subset (prior to the regulanzed inter- 
section) that ~s nonconvergent, then the ASV senes to 
be expanded is nonconvergent Such an observation 
is not a coincidence, the bas~s of th~s ~s shown by the 
followtng Lemma 4 

Lemma 4_ Let ~ be a subset of the verttces of a 
pseudopolyhedron ~ .  If the regulanzed ~ntersectton 
between ~/. and CH(~) ~s a nonconvergent pseudo- 
polyhedron, the ASV senes of .~. ~s nonconvergent_ 

Proof Assume that ~ . C H ( s  ~) ~s a nonconvergent 
pseudopoJyhedron It ~s claimed that all the vemces ~n 
are nonehmtnatable Suppose that there is a deficiency 
~., tn ASV(~[~/.) whose vertex set is a superset of ~', such 
that some vertex v ~n ~ ~s lost on the defictency ..~,+1 
By Lemma 2, th~s means that all the ~nc~dent faces of 
v are the hull faces of I-~, As CH(~) ~s a subset of 

CH(~,), it follows that v Js also a weak hull vertex of 
~ C H ( ~ ) ,  which contradicts the assumption that 
.Q* CH(~)is nonconvergent QED 

Lemma 4 provides a sufficient condition for the 
nonconvergence of an ASV series, w~thout the ASV 
process itself being invoked A direct implementation 
of such an algorithm is, however, infeasible, as there 
are O(nl) subsets To reduce this high complexity, the 
charactenzat~on of local subsets of vertices, i e those 
that are adjacent to a common vertex, ~s tnvest~gated 

Let two vertices of a pseudopolyhedron be said to 
be adlacent to each other if they are the two end points 
of an edge 

Dehnltlon 6 A vertex v of a pseudopolyhedron ~ is 
supportable if there exists a plane containing v such 
that the point set ~v hes on one s~de of that plane 
(where ~v consists of those vemces that are adjacent 
to v), otherwise, v ts a nonsupportable vertex 

As an example, all the vertices except for v of the 
pseudopolyhedron in Figure 9(a) are supportable. Also, 
as shown Jn Figure 9(b), a vertex v is nonsupportable 
ff and only ff it Is stnctly Inside the convex hull of the 
vemces adJacent to ~t 

Lemma 5 If a pseudopolyhedron .Q has a non- 
supportable vertex, then the ASV senes of .Q Is 
nonconvergent 

Proof Let v be a nonsupportable vertex of ~ ,  and ~v 
be the point set consisting of those vertices that are 
adjacent to v The lemma Js proven by showing that 
~ .  CH(~) i s  a nonconvergent pseudopolyhedron As 
v is internal to CH (~v), all its incident faces have portions 
that are internal to CH(~ v) Then, in each of these 
faces, there ~s a point that has an open 3D 
neighborhood that contains a subset of I (~ )  that is 
strictly inside CH(~v). By the deflnJtton of the regularized 
intersection, this neighborhood is preserved on 
~*CH(~v)  In other words, ~*CH(~v)  must be a 
pseudopolyhedron, as its Intenor Is not empty Now, 
consider a hull vertex p of ~ ,  CH(~v), as illustrated Jn 
Figure 10(a) If p belongs to S~v, as none of the inodent 
faces of v can be a hull face of CH(~), p can only be 
a strong hull vertex of ~D.. CH(s~v) If p does not belong 
to ~ ,  it must be an ~ntersect~on point between some 
face f of ~ and a hull face of CH(~v) (see Figures 10(b) 
and (c)) As face f has a port~on internal to CH(~:~), 
which becomes an internal face of .Q, CH(~),  p must 
be a strong hull vertex of ~ * CH(~v)_ Therefore, all the 

a b 
Figure 9 Supportable and nonsupportable vertices 
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vertices of ~ ,*  CH(~ v) are either internal or strong. By 
Lemma 2, ~ ,  CH(~ v) is nonconvergent .  QED 

As an dlustration of Lemma 5, vertex v of the 
pseudopolyhedron in Figure 9 ( a ) i s  nonsupportable_ 
The regulanzed intersection between the pseudo- 
polyhedron and CH(~v), where ~v are those six vertices 
adJacent to v, fs another pseudopolyhedron,  as shown 
in Figure 9(b), that  is nonconvergent  By Lemma 5, the 
ASV series of the pseudopolyhedron in Figure 9(a) does 
not converge, this can easily be verified 

An extension to the supportabi l i ty  of vertices is the 
supportabi l i ty of edges. Consider the pseudopolyhedron 

in Figure 11(a). Its ASV series can easily be shown 
to be nonconvergent,  a l though all its vemces are 
supportable 

Dehnltlon 7_ An edge e of a pseudopolyhedron is 
supportable ff there exists a plane contmnmg e such 
that  all the faces incident to e are on one side of that  
plane, otherwise, edge e is nonsupportable 

Lemma 6. If pseudopolyhedron (-1 has a nonsupportable 
edge e, then ASV(.Q) is nonconvergent.  

Proof Assume that  the nonsupportable edge e has k 
incident faces fl, f2, --, fk, and that  v I and v 2 are its 
two vemces Let p be an arbftrary point  on e, but  not 
v I or v 2. Also, let p,, which is not v I or v2, be a vertex 
on face f, (i = 1, 2, , k) As the hne segment [p, p,] Is 
on a face f, of ~., the addi t ion of p to the vertex set 
of ~ ,  and the addit ion of edges [p, vi i ,  [p, v2], , and 
[p, p,] (i = 1, 2, , k) to the edge set of ~ ,  fntroduces 
a new pseudopolyhedron representation of .Q, as 

shown in Figure 11(b) As e is nonsupportable, all the 
points in it, except, possibly, for v 1 or v2, are strictly 
inside CH( {v l ,  v2, Pl, P2, --, Pk}). This implies that the 
vertex p is nonsupportable By Lemma 5, A S V ( ~ ) i s  
nonconvergent_ QED 

It should be ment ioned that  Lemma 5 and Lemma 6 
supply a suff.clent but  not necessary condi t ion for 
nonconvergence As an example, all the vemces and 
edges of the polyhedron in Figure 12 are supportable 
However, ~ts ASV series is nonconvergent  

Nevertheless, a hnear t ime a lgonthm for detect ing 
the suff loency of nonconvergence offers an attractwe 
alternatwe to the O(n21ogn) ttme for both necessity 
and suff ioency 

Let o be the ongm and (Xl, Yl, zl), (x2, Y2, z2), , 
(xk, Yk, Zk) be k points in the 3D space If the point  o 
is supportable against (Xl, Yl, zl), (x2, Y2, Z2), -, 
(Xk, Yk, Zk), the angle between the normal vector  No of 
a suppomng plane Po and the vector  (x,, y,, z,) must 
not be greater than 90 ° for all the i = 1, 2, , k (see 
Figure 13) Conversely, ff there exists a vector  N O such 
that the angle between it and a vector  (x,,y,,z,) 
(~ = 1, 2, , k) is less than or equal to 90 ° , then the 
plane passing through o and orthogonal  to N O is clearly 
a support ing plane Therefore, the detect ion of the 
supportabdity becomes the fol lowing gwen k vectors 
(xl, Yl, Zl), (x2, Y2, Z2), . _ ,  (xk, yk, Zk), find another 
nonzero vector  (A, B, C) such that  Ax, + By, + Cz,/> 0 
(f = 1, 2,_._, k) It is known 3 that the solut ion to this 
3-vanable problem, ff it exists, can be obtained in O(k) 
t ime 

Let SUPPORT(k,L) be a supportabihty detecbon 
procedure that  takes a hst L of k points as input, and 
outputs either ' true',  ff the ongm is supportable against 
L, or 'false' otherwise Wi th  the SUPPORT procedure, 
the fol lowing a lgonthm is in order. 

NSV_DETECT algorithm 

Algor i thm NSV_DETECT(~)  
'" Detect  the existence of nonsupportable vert ices in a pseudopolyhedron D, w~th 

n~ vert ices 

begin 
(11 for I = 1, n, do 
(1 1) v ~ the tth vertex in the ver tex hst V of ~]~ 
(1 2) {P~ P2, ,p~} * -  those vert ices m V that  are adjacent to ver tex v 
(1 3) translate [Pl,Pz, ,Pk}  by a displacement of  - - v  
(1 4) it SUPPORT(k, {P l ,Pz  ,p~ ] )  = 'false' then 

return w i th  'nonsuppor tab le vertex found 
end ff 

end do 
(2) return w i th  'no nonsupportable ver tex found'  
end NSV DETECT 

To devise an algori thm for detect ing the supportabi l i ty 
of an edge e of a pseudopolyhedron ~ ,  let v and v' 

Figure 12. Nonconvergent polyhedron with no non- 
supportable vertices or edges 

vo lume 23 number 6 ju ly /august  1991 441 



No 

F~gure "13_ Angular relationship between the normal of 
a supporting plane and the adlacent vertices 

vertex in ~ ,  which has been proven to be O(n~)~n the 
Appendix o1: Part 1 of thB paper Therefore, NSV_DETECT 
runs m O(n r) t~me For the NSE_DETECT algonthm, by 
s~mtlar reasoning, the t~me required by the loop at Step 
1 is hnear ~n Y:k, (~ = 1, 2, , n~), where k, ~s the face 
adjacency index of the ~th edge m ~ In the Appendix 
of Part 1 of th~s paper, ~t has been shown that 
Y~k, (~ = 1, 2, _ , n~) Is O(nf) Therefore, NSE_DETECT 
runs m O(nr) time QED 

Figure "14 Finding the point p, on face f, 

be the two end pomts of e, p be tts center point, and 
f~, f> , f~ be the faces of .q incident to e Also, let p, 
be a point on face f, such that the line segment [p, p,] 
completely belongs to f, (~ = 1, 2, , k) (see F~gure 14)_ 
Such a point p, can be obtained m the constant time 
from the (clockwise or counterclockwBe) order of the 
edges Let FS(p, f,) denote the function that returns the 
point p,. Refemng to the proof of Lemma 6, e ~s 
supportable ff and only ff p is supportable against 
the point set {v,v',p~,p2, ,p~}_ This equivalence 
relauonsh~p gives nse to the following algonthm 

NSE_DETECT algorithm 

Algonthm NgL DETECTI~]~b 
* Detect  the existence nl nonsupportable edge~ in a p~eudopolyhedron ~'~ w~th 

n, vert l te~ 

begin 
11 ft)r I - 1 n~ do 

(1 1 ~ ~ ~' ~ the two verttces o[ the lth edge in the edge hst E ot ..q 
112~ p ~ the center pomt of b C] 
~1 ~ /~ I~ I~ ~ t h o s e  tace~ m ~ that are adjacent to the edge h CJ 
114P Pl P~, p~ ~ ES(p,/'i~, FS(p,t~I FSIp, f~,l 

1 ~b translate : ~, C p~, p,,  , P~ I by a displacement ol - - p  
r16b d SUPPORTfk + 2, [Lv',pl,p~, ,p~}l ' lalse' then 

return wi th 'nonhupportable edge found 
end I~ 

end do 
I2J return wi th 'n(~ nomuppor tab le  edge lound 
end NSE DETECT 

Lemma 7 The existence of nonsupportable vertices and 
nonsupportable edges of a pseudopolyhedron ~ wtth 
nv verttces, n e edges and nf faces can be detected m 
at most O(nf) ttme 

Proof The theorem is proven by showing that both 
the NSV_DFTECT and NSE_DETECT algonthms run in 
O(nf) time For the NSV_DETECT algonthm, because 
the SUPPORT procedure runs m hnear time, the time 
complextty required by the loop at Step 1 is linear in 
~d, (i = 1, 2, , nv), where d, Js the degree of the ith 

SUMMARY 

It has been estabhshed that it takes O(n21ogn) time to 
determine ff the ASV senes of a given ~ converges In 
particular, Jt takes O(nlogn) t~me to detect ff a 
defioency ~ ,  is nonconvergent To remedy the 
nonconvergence, an O(nlogn) time algonthm is offered 
to separate the culpnt defloency ~ ,  into maximally 
well connected sets 

As an expedient alternattve to the O(n21ogn) ttme 
detection for nonconvergence, the sufftctency condition 
for nonconvergence can be detected m O(n) ume. 
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