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The results of an experimental study to evaluate the properties of 
microencapsulated phase change materials have been presented. Two 
phase change materials, n-eicosane and stearic acid, have been used 
in the study. The microcapsules were manufactured with two different 
wall thicknesses, comprising of approximately 15% and 30% of the 
total microcapsule volume. Three different microcapsule sizes rang- 
ing from 50~ to 250~ have been considered. The microoapsules with 
thinner walls are unable to withstand repeated thermal cycling past 
the melting point. However, the microcapsules with thicker walls 
were found to be both structurally as well as thermally stable. 

Introduction 

Heat transfer augmentation is an extremely important problem in en- 

gineering. As a result, numerous techniques to increase heat transfer rates 

have been developed over the years. Recent studies [e.g. 1,2] have suggested 

that heat transfer can be greatly enhanced by adding microcapsules of phase 

change materials to a pure fluid. This enhancement is due to a combination 

of four factors: the often higher thermal conductivity of the added par- 

ticles, the increased microconvection due to the particles, a higher 

effective specific heat during the phase change process and finally the 

greater temperature difference that is maintained as the phase change 

material melts/solidifies. 

In order to develop phase change material suspensions for use as heat 

transfer fluids, it is necessary to investigate the feasibility of manufac- 

turing microcapsules which can be used for such applications. The 

microcapsules must be manufactured such that their thermal properties remain 

constant, and they withstand the mechanical stresses caused by repeated 

thermal cycling about the melting point. In addition to these structural and 
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thermal stability requirements, it may also be necessary that these microcap- 

sules be manufactured to certain tolerances as required for a particular 

applications. Some investigations in these directions have been done prior 

to this study [3-6]. Unfortunately, these were extremely limited in scope 

and their results are also not available widely. Results of a study to 

evaluate the stability of microcapsules which may be used for heat transfer 

fluids are presented in this paper. 

The Mic[ocap~ules 

There are a numerous techniques, both chemical and physical, for 

manufacturing different types of microcapsules. After consulting with a 

number of manufacturers throughout the U.S. and studying their capabilities, 

Ronald T..Dodge Co., Dayton, Ohio, was chosen to supply the microcapsules. 

The manufacturing technique was based on U.S. Patent No. 3,726,803 entitled 

"Capsule Wall Treating Process Utilizing Condensation Polymerization and 

Capsule Product," assigned to Robert G. Bayless and Donald D. Emrick of the 

National Cash Register Company, Dayton, Ohio. 

The phase change materials in the microcapsules must have characteris- 

tics similar to those used in thermal energy storage applications. Based on 

previous work [7-8], n-elcosane and stearic acid were selected. In practice, 

for a specific heat transfer application, the phase change material must be 

selected so that the melting point lies in the operating temperature range. 

The coating material, cross-linked polyvinyl alcohol was specified by the 

manufacturer. Six different samples of microcapsules were finally made to 

the following specifications: 

TABLE I 

Microcapsule Specifications 

No. Core material Encapsulating material Diameter(~m) Wall thickness % 

by volume 

I. n-eicosane Cross-linked PVA 50 30 

2. n-eicosane ............... i00 30 

3. n-eicosane ............... 250 30 

4. Stearic acid ..... " " - ..... 50 15 

5. Stearic acid ..... " " - ..... i00 15 

6. Stearic acid ..... " " - ..... 250 15 
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DescrlDtigB of T e s t s  

In order to evaluate the stability of the microcapsules, two tests were 

done: 

Thermal Cvclin~ Tests: The mlcrocapsules were repeatedly cycled through the 

melting point of the phase change material. These were done in a Delta 

Design Environmental Test Chamber Model 800. Each cycle consisted of a 30 

minute soaking period at room temperature (23°C ~2°C) followed by an identi- 

cal 30 minute soaking period at 90°C (~2°C). Each sample was tested through 

I0, 50 and i00 cycles, both in a dry condition as received, as well as in a 

suspension in water. 

Radia~iQn Tests: Radiation tests have been done on a single sample of 

microcapsules (n-eicosane I00~) in order to study any effects of radiation on 

the microcapsules. This test is useful for possible future applications in 

avionics cooling for military aircraft. It consisted of a 106 rad IMeV gamma 

radiation from a cobalt-60 source. 

Methods of Evaluation Before and After Tests 

Samples of microcapsules as received, and after each of the tests 

above, were carefully evaluated to study the feasibility of their use in heat 

transfer fluids. The following investigations were done: 

Visual and Photographic Studies: In addition to qualitative visual inspec- 

tion of the samples, the microcapsules were photographed using an Unitron 

Series-N optical microscope before and after the tests. A scanning electron 

microscope (Model ISI-DS-130) was also used to evaluate the thickness of the 

microcapsule coating as received. In addition, sections of microcapsules 

were also studied under transmission electron microscope (Model Philips 300). 

DiffereBtial Scanning Calorlme~ry: Differential calorimetry tests are re- 

quired in order to investigate the variation of effective specific heat with 

temperature. These tests have been done on dry samples with n-eicosane as 

the core material using a Netzsch STA at Netzsch, Inc., Pennsylvania. These 

dry samples consisted both uncycled and cycled microcapsules obtained from 

the thermal cycling tests. The following were the specifications of the 

differential calorimetry tests: 

One cycle for given sample: Low temp ~ High temp * Low temp 

Lower temperature: Room temperature (Below 30°C) 

Upper temperature: 75°C 

Temperature variation: 5.0°C/minute during the heating phase 

Cooled in ambient air during the cooling phase 
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Sizing of Microcapsules: Sizing of the microcapsules, as received, was done 

using a Coulter Multisizer in order to find the typical tolerances of the 

manufacturing process. Sizing of the samples which had completed the thermal 

cycling tests in water were also done at a later stage. Statistical results 

including the mean and median diameters of the particles, the variance, 

standard deviation and skewness of the samples were obtained for all cases. 

Results and Discussion 

Results of Visual and Photographic Inspection: The microcapsules come as a 

free-flowing light brown powder. After the thermal cycling tests, the dry 

samples were found to coagulate in all cases. However, the suspension of 

microcapsules in water behaved in a different fashion. For the case of n- 

eicosane microcapsules where the wall thickness was 30%, a small portion of 

the capsules (- 10%) were found to fail, and the broken shells would settle 

to the bottom. The remainder of the microcapsules remained in suspension as 

before, and being lighter than water, would rise to the surface after a 

period of time. In contrast, a large fraction of the stearic acid microcap- 

sules was found to have failed the thermal cycling tests and relatively large 

pieces of stearic could be seen floating in the water. Furthermore, unlike 

the n-eicosane microcapsules, the water would no longer be clear, but would 

have a cloudy appearance. 

Photographs of the microcapsules before and after the thermal cycling 

tests taken using an optical microscope are shown in Fig. i. These also tend 

to confirm that n-eicosane microcapsules survived the thermal cycling tests, 

but the stearic acid microcapsules were structurally not sufficiently strong. 

The probable reason for this is the reduced wall thickness for the stearic 

acid microcapsules, since in both cases, the change is specific volume during 

melting is of the same order (-10%). 

The single radiation test of the i00~ n-eicosane sample showed no 

obvious visible change in the microcapsules, either under the microscope or 

to the naked eye. Thus, the microcapsules seem to be structurally stable 

under radiation. 

In order to further investigate structure of the microcapsules, samples 

of microcapsules were carefully investigated under scanning and transmission 

electron microscopes. Photographs are shown in Fig. 2. Typical thicknesses 

of the microcapsule walls are seen to be about 5~m, or about 5% of the 

microcapsule diameter. 
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n-eicosane: 250~, 100x 

a) Before thermal cycling 

(50 cycles in water) ~ 

n-eicosane: 250~, !25x 

b) After 50 cycles 
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c) After i00 cycles 

(I0 cycles dry) 

Stearic acid: 50B, 125x 

d) Broken/agglomerated stearic acid microcapsules 
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(I0 cycles d r y ) ~  

Stearic acid: 250~, 125x 

e) Broken stearic acid microcapsules 

FIG I 

Photographs of microcapsules before and afEer t~ermal cycling 

FIG. 2a 

TEM micrograph of microcapsule section 
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FIG. 2b 

SEM micrograph: Broken microcapsule (n-Eicosane 50~sample (192x)) 

Results of Differential Calorimetry Tests: A typical case is shown in Fig. 

3. Table II summarizes final data on the heat of transition of the different 

samples. The variation in the heat of transition before and after cycling is 

less than 10% in all cases, with the temperature for the maximum effective 

specific heat lying within !l.5K. Some discrepancy in the heat of transition 

is, of course, inevitable since a sharp transition point is not seen in any 

case, and it is therefore necessary to estimate the transition region. 

TABLE IIA 

Temperature for Maximum (Effective) Specific Heat for 

n-Eicosane Samples Before and After Thermal Cycling 

n-Eicosane 

Sample As Received 

Temperature for max. sp. heat (°C) 

i0 cycles 50 Cycles i00 Cycles 

50~ 43.4 42 40.8 41.9 

i00~ 42.5 42.9 42.7 42.8 

250~ 43.7 44.8 44.3 44.0 
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TABLE liB 

Heat of Transition for Different Samples of n-Eicosane 

Before and After Thermal Cycling 

n-Eicosane 

Sample As Received 

Heat of Transition (xlO s kJ/kg) I 

I0 cycles 50 Cycles I00 Cycles 

50~ 218.7 N/A 209.6 192.4 

I00~ 240.4 255.9 260.6 265.5 

250# 275.6 269.6 267.0 285.1 

, Initial and final points of the transition region are approximated since 

sharp transition points are not seen for any of the samples. 

Based on the above results, it can be concluded that the microcapsules 

are thermally stable even after repeated thermal cycling. However, one 

additional point must be noted from Fig. 4. This shows two continuous DSC 

cycles of a n-eicosane sample (50~, after i0 cycles). Supercooling can be 

clearly seen to occur during the freezing process, a factor that may have 

detrimental effects on the heat transfer under certain circumstances. 
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FIG. 3 

DSC Plot: n-Eicosane, 250~ (As received) 
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FIG. 4 

DSC Plot: n-Eicosane, 50# (After i0 cycles) 

TABLE III 

Comparison of Results Before and After Radiation Tests 

(10 s rad IMeV gamma radiation from a cobalt-60 source) 

(i00# n-Eicosane Sample) 

IBB 

n-Eicosane 

(lO0#m) 

Heat of Transition 

(xl03 kJ/kg) I 

Temp. for max, sp. heat 

(°C) 

As received 240.4 42.5 

After i0 cycles 255.9 42,9 

After 50 cycles 260.6 42.7 

After i00 cycles 265.5 42,8 

AFTER RADIATION TEST 166.5 

(Without thermal cycling) 

39.7 

i These values are approximate since a sharp transition point is not seen 

for any of the samples. The initial and final points of the transition 

region are therefore approximated. 
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Results of the radiation test, summarized in Table III, are not as 

positive. It can be seen that the sample deteriorated during the thermal 

cycling with a reduction in the heat of transition of more than 25%. Further 

work may therefore be needed in this area to ensure insensitivity to radia- 

tion. 

MicrocaDsule Sizing Tests: Sizing of all the microcapsules as received and 

after thermal cyllng in water were done using a Coulter Multlsizer. A com- 

parison of these parameters before and after cycling are summarized in Table 

IV. This data can he used to quantify the percentage of failure of the 

mlcrocapsules as a result of thermal cycling. It can also be seen that the 

manufacturing technique used by Ronald T. Dodge Co. results in relatively 

poor tolerances. Fortunately, a theoretical analysis of the phase change 

suspensions suggest that the mlcrocapsule size is not a critical parameter in 

forced convection heat transfer [2]. 

R~commendations for Future Work: A number of additional tests would be 

useful before phase change mlcrocapsules can be used in practice. Unlike 

natural convection systems, fluid shear and possible impact by the impeller 

in a pump may cause significant stresses in forced convection systems. Tests 

to evaluate the resistance to such shear and impact forces will be required. 

Limited testing under actual pumping conditions have been done before [3-6], 

but it may be more useful to investigate the effects of the shear and impact 

forces separately. The effects of thermal cycling on another extremely 

important parameter, the thermal conductivity, may also be needed. However, 

since the specific heat has been found to remain more or less unchanged, it 

appears that the microcapsule wall does not react with the phase change 

material during the cycling process. Thus, it is probable that the thermal 

conductivity will also remain approximately constant after repeated thermal 

cycling. 

It must also be noted that similar tests will be needed to investigate the 

compatibility of the microcapsules with different suspending fluids. The 

manufacturer, Ronald T. Dodge Co. has also pointed out a limitation of these 

mlcrocapsules: the suspending fluids must be selected such that the phase 

change material does not dissolve in it. In addition, tests must also be 

done for mlcrocapsules manufactured using other techniques. Finally, tests 

may need to be done over a much larger number of cycles. 
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Table IV 

Comparison of Microcapsule Sizing Results 

Before and After Thermal Cycling 

Sample Median (~m) Mean (#m) Std Dev (~m) 

No. of cycles 0 i0 50 i00 0 i0 50 I00 0 i0 50 i00 

n-eicosane (50#) a 37 41 37 37 37 43 37 38 1.0 

b 25 26 24 24 24 26 21 22 1.0 

n-eicosane (I00~) a 124 107 95 99 114 109 88 94 1.0 

b 12 78 ii ii 16 62 17 14 I.I 

n-eicosane (250#) a 215 217 215 210 195 213 210 205 1.0 

b 68 57 45 29 57 63 55 43 1.2 

Stearic acid (50#) a 58 88 64 64 55 103 63 63 I.i 

b 9.2 33 35 33 12 34 35 33 i.I 

Stearic acid (i00~) a 117 116 114 114 Ii0 iii II0 109 1.0 

b 14 49 37 47 23 48 42 46 1.2 

Stearic acid (250~) a 147 173 155 165 135 161 135 153 1.0 

b 73 27 30 28 69 33 34 35 i.i 

.21 

.17 

.13 

.27 

.ii 

.43 

33 

21 

13 

32 

18 

32 

.16 .17 

.24 .23 

.17 .17 

.30 .34 

.12 .12 

.43 .42 

19 19 

20 20 

14 13 

32 32 

22 18 

28 32 

Notes: 

i. Results "a" and "b" are calculated using a volume weighted and an un- 

weighted (number) distribution of diameters respectively. 

2. Large pieces (- l-lOmm) of agglomerated broken/unbroken microcapsules 

found in the cycled stearic acid samples (Samples 4-6) are not included 

in the analysis since the range of sizes would then be excessive. 

Conclusions 

Results from an experimental study to investigate the properties of 

phase change microcapsules have been presented in this paper. Microcapsules 

with thicker walls (30% of total volume) were found to be structurally and 

thermally stable for at least i00 cycles through the melting point of the 

phase change material. However, microcapsules with walls of 15% of the total 

volume were found to fail these cycling tests. Results of a radiation test 

(106 rad IMeV gamma radiation from a cobalt-60 source) showed that radiation 

causes some deterioration of the thermal properties of the microcapsules. 
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Based on these results, it can be concluded that phase change microcapsules 

can be used in practical heat transfer applications. 
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