
INFORMATION SCIENCES 55, 49-67 (1991) 49

Usage Refinement for ER-to-Relation Design Transformations

TOBY J. TEOREY

Center for Information Technology Integration (CITI) and Department of Electrical
Engineering and Computer Science, The UniL~ersity of Michigan, Ann Arbor,
Michigan 48109-2122

DONGQING YANG

Computer Science and Technology, Peking lJnil,ersity, Beijing, The People’s Republic of China

ABSTRACT

Database schema refinement based on usage is proposed as a useful next step in a

practical database design methodology founded upon entity-relationship (ER) conceptual

modeling and transformation to normalized relations. A simple cost model is defined and

applied to several examples and a case study, illustrating the important trade-offs among

query and update costs, storage requirements, and degree of normalization with its data

integrity implications.

1. INTRODUCTION

Database design techniques for network and hierarchical systems often

make use of processing requirements to refine the conceptual (entity-relation-

ship) or logical (DBMS-processible) schema before the physical design phase

if there are obvious large efficiency gains to be made [l, 4, lo]. The justifica-
tion for this approach is that once physical design begins, the logical schema is

considered to be fixed and is thus a constraint on efficiency. The database

designer would often like to remove this inflexibility if possible.
A similar technique could be applied to relational databases if it would

produce more efficient database schemas without loss of data integrity and
would be relatively easy to implement. Our goal is to define a relational
schema refinement algorithm based on a process-oriented or usage view that
could increase the database efficiency for current processing requirements,
and yet retain all the information content of the functional dependency or

OElsevier Science Publishing Co., Inc. 1991

655 Avenue of the Americas, New York, NY 10010 0020-0255/91/$03.50

50 TOBY J. TEOREY AND DONGQING YANG

natural view of data. Thus the database would still be an accurate representa-
tion of real-world relationships and potentially more adaptable to future
processing requirements.

The application of a usage refinement algorithm is the logical next step in
practical database design methodologies suggested by [3, 5, 111, starting with
conceptual modeling [2], transforming from the ER to the relational model,
and normalization. Usage refinement could be used to specify a!ternative
logical structures to be considered during physical design, and thus provide
the physical designers with more feasible solutions to choose from. More
efficient databases are therefore likely to be defined.

2. RELATION USAGE REFINEMENT

We assume that all attributes are initially assigned to relations based on
functional dependencies, and that the relations are at least 3NF (normal
forms) [7, 81. This establishes the requirement for an accurate representation
of reality and for flexibility of the design for future processing requirements.
Efficiency for the current query requirements should increase by redundantly
adding attributes, used together in a query, to an existing relation so that all
attributes needed for that query reside in a new relation, called a join relation.
This is known as materializing the join [9]. Access time will now be greatly
reduced because fewer joins will be needed. However, the side effects of this
redundancy include an increase in storage space required, an increase in the
update cost, potential denormalization and loss of integrity, and program
transformations for all applications containing joins that are materialized.
These effects require careful consideration.

As an example of such an effect, let us assume that the relation PROJECT
is associated with additional relations PART and SUPPLIER, as shown in
Figure 1. We use query by example (QBE) to illustrate processes because of its
extensive processing semantics [12]. The extension of the PART relation is
shown as a means of reducing the number of joins required in the query. This
extension results in a denormalization, with the side effects of add and update
anomalies. However, the delete anomaly cannot occur because the original
data are redundant in the extended schema. For example, SUPP-NO +
SUPP-CITY in the extended PART relation (EXT-PART) is reproducible from
PART-NO,PROJ-NAME -+ SUPP-NO in relation PART and SUPP-NO -+
SUPP-CITY in relation SUPPLIER.

The storage and processing cost of a logical relational database is to be
computed for both the existing and new join relations:

COST=C,*(T,+T,)+C,*V, (1)

ER-TO-RELATION DESIGN TRANSFORMATIONS 51

Original relations and process (query)

PART(PART-NO,PROJ-NAME,SUPP-NO,PRICE)
SUPPLIER(SUPP-NO,SUPP-CITY,SUPP-MGR)
PROJECT(PROJ-NAME.HQ-CITY)

Query: For a given project, display the supplier numbers, supplier cities, and project
headquarters city.

PART-NO,PROJ-NAME --> SUPP-NO 1 PRICE
SUPP-NO --> SUPP-CITY 1 SUPP-MGR
PROJ-NAME --> HQ-CITY

QBE representation of the query

PART IPART-NO IPROJNAMF ISUPP-NO IPELGE I
I I l - I p.x I I

SUPPLIER]m

I x-
SUPP MGR I

I - I

PROJECT IPROJ IHQ-CITYI
I l - 1P.Z I

Extended relation PART in 1 NF

EXT-PART (PART NO.PROJ NAMF.SUPP-NO,SUPP-CITY,HC?-CITY,PRICE)
SUPPLIER &SUPP-CITY,SUPP-MGR)
PROJECT (PROJ-NAMF,HQ-CITY)

Fig. 1. Relation extension causing denonnalization.

where

C, = unit cost per second for query or update processes

C, = unit cost per byte for stored data

Tq = I/O service time for query processes (seconds)

T, = I/O service time for update processes (seconds)

V, = total volume in bytes for stored data

Unit costs are selected on the basis of the computing environment defined
in the requirements specification. I/O service time for query and update can

52 TOBY J. TEOREY AND DONGQING YANG

be determined from the processing operations, their frequencies, and the
hardware device characteristics given, while stored data volume can be ob-
tained from the size of the relations defined 14, lo]. Each query process must
be expressed in terms of basic relational algebra operations such as selection,
projection, and join. Some initial assumptions are made about sequential and
random accesses needed to efficiently accomplish the query or update at this
point, but detailed use of indexes, sorting, and so forth are deferred to
physical design when the final configuration decisions are made.

2.1. RELATION USAGE ALGORITHM

The relation usage strategy is to select only the most dominant processes to
determine modifications to relations that will most likely improve perfor-
mance. The basic modification is to add attributes to existing relations in
order to reduce join operations.

1. Select the dominant processes on the basis of criteria such as high
frequency of execution, high volume of data accessed, response time con-
straints, or explicit high priority. As a rule of thumb any process with at least a
factor of 10 higher frequency of execution or data volume accessed than
another process is considered to be dominant.

2. Define join relations, when appropriate, to materialize joins for domi-
nant processes.

3. Evaluate total cost for storage, query, and update for the database
schema, with and without the extended relation, and determine which configu-
ration minimizes total cost.

4. Consider also the possibility of denormalization due to a join relation
and its side effects. If a join relation schema appears to have lower storage
and processing cost and insignificant side effects, then consider that schema
for physical design in addition to the original candidate relation schema.
Otherwise, consider only the original schema.

In general, joins based on nonkeys should be avoided. They are likely to
produce very Iarge relations, thus greatly increasing storage and update cost.
For example, if two relations have 100 and 200 tuples, respectively, then a join
based on the key of either one will result in a maximum of 200 tuples, but a
join based on a nonkey of either one could result in a maximum of 100X200
or 20,000 tuples. Null values are also to be restricted to nonkey attributes so
that they will not be inadvertently used in join operations.

ER-TO-RELATION DESIGN TRANSFORMATIONS 53

PART-OF

BELONGS-TO

Fig. 2. Company personnel and project database (extended ER diagram).

2.2. ALGORITHM APPLICABILITY

The following examples, extending the company personnel and project
database design problem defined in [ll] and illustrated in Figure 2, show the

extremes of applicability and nonapplicability of the relation usage algorithm.
In each case we apply the algorithm to a given relational schema and given
processing requirements. Cost trade-offs are then evaluated to determine if

schema refinement is justifiable.

The ER conceptual model of the company personnel and project database

includes extensions of the ER model such as generalization, i.e. the con-

cept of category (EMPLOYEE) and subcategory (MANAGER, ENGINEER,
TECHNICIAN, SECRETARY), where subcategory names are based on values
of the EMPLOYEE attribute JOB-TITLE. Optional membership (or existence)
of an entity in a relationship is designated by a 0 on the arc between that
entity and the relationship. Otherwise the membership is assumed to be
mandatory.

54 TOBY J. TEOREY AND DONGQING YANG

Note that the extended ER constructs also contain ternary relationships,

which are defined by the shading of the corners of the triangles that connect
the entities involved in the relationship. The shading indicates the functional

dependencies (FDs) associated with the relationship. All FDs are defined by
the primary keys of the three entities in the relationship, and an unshaded

corner of the triangle implies that the primary key of that entity is on the

right-hand side of an FD, and the primary keys of the other two entities are

the composite determinant of the FD. Thus, the number of unshaded corners

equals the number of FDs associated with the relationship. When all three

corners are shaded, there are no FDs, and the key of the relationship is the

composite of all three primary keys of the involved entities.

Applying the methodology suggested in [ill and summarized in Appendix I,

the final normalized relations are the following:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

DlVlSlON(DIV-NO,HEAD-EMP-NO, . . .)

DEPARTMENT(DEPT-NO,DEPT-NAME,ROOM-NO, . . .

DIV-NO,MANAG-EMP-NO)

EMPLOYEE(EMP-NO,EMP-NAME,JOB-TITLE, . . . ,

DEPT-NO,SPOUSE-EMP-NO,PC-NO)

SKILLtSKILL-NO, . . .)

PROJECTtPROJ-NAME, . . .)

LOCATION(LOC-NAME, . . .)

EMP.MANAGER(EMP-NO, . . .)

EMP.ENGINEER(EMP-NO,. . .)

EMP.TECHNICIAN(EMP-NO, . . .)

EMP.SECRETARY (EMP-NO, . . .)

PC(PC-NO, . . .)

PRF-ASSOCfPA-NO, . . .)

BELONGS-TO(PA-NO ,EMP-NO)

SKILL-USED(EMP-NO,SKILL-NO,PROJ-NAME)

ASSIGNED-TO(EMP-NO,LOC-NAME,PROJ-NAME)

ROOM(ROOM-NO,PHONE-NO)

2.2.1. Example I

Example 1 illustrates the most favorable conditions for efficiency improve-
ment with the relation usage algorithm (see Figure 3). The query “display each
pair of employee and project in which the project is located in the same city
where the employee lives” is executed by a join of EMPLOYEE and

ER-TO-RELATION DESIGN TRANSFORMATIONS 55

Relations Bytee/tuple Tuples Total Bytes

EMPLOYEE(EMP-NO,EMP-CITY,..) 120 10000 1200 KB
PROJECT(PROJ-NAME,HO-CITY,..) 200 500 100 KB
ABBIGNEO-TO(EMP-NO.PRQ,j&Q&..) 20 20000 400 KB

Query: Oispiay each pair of employee and project in which the project headqua~ers(HQ) is
located in the same city where the employee lives.

Update: Delete a given employee from all associated projects.

QBE representation of the query

-=EIEMNQ I- I fitly IHO-GITYI
1p.x I z I I P.Y / z /

ASSIGNED-TO I EMP_NO [eB(;bl NAMP I
1x1; I

QBE representation of the update

ASSIGNED-TO 1 EFAP_NO I ~ 1 PROJECT 1 PR~-~ I HO-CITY 1
0.1 * I X I I X I I

Unit costs: C@p = 9.00 per disk-hour, CQs = .0031 per page-day
Frequency of all processes: 1 OO/day

Fig. 3. Example 1 relations and processes.

ASSIGNED-TO over EMP-NO, followed by 20,000 random accesses to PRO-

JECT (based on PROJ-NAME) to match HQ-CITY with each EMP-CITY in the
temporary relation resulting from the join. To simplify the computation of

query time the relations are assumed to be accessed as: EMPLOYEE(sequen-

tial, ordered on EMP-NO), PROJECT (indexed on PROJ-NAME}, and

ASSIGNED-TO (sequential, ordered on EMP-NO).

Using the hardware configuration for the Amdahl5860 system (currently an

IBM 3090-6001 at the University of Michigan, the following timing characteris-
tics occur:

Page transfer time (at 4,096 bytes per page): 3.4 ms

Average disk rotation time (half rotation): 8.3 ms
Average disk seek time: 16.0 ms

Average sequential page access = 11.7 ms
Average random page access = 27.7 ms
CP = 9.00 dollars per I/O hour
C, = .0031 dollars per page-day

Given the number of bytes in each of the relations and the searching required
for the query, we can calculate the I/O service time CT,) for the query, and

56 TOBY J. TEOREY AND DONGQING YANG

thus the total cost (Equation 1). The remainder of the example is to determine
the number of pages for query and update operations and storage space and

to calculate total cost.

rq = scan EMPLOYEE + scan ASSIGNED-TO
+ 20,000 random accesses to PROJECT

= ceiling(l,200,000/4,096)* 11.7

+ ceiling(400,000/4,096)*ll.7 + 20,000*27.7 ms

= 558.575 set

= .155 hour

I/O cost (query) = C,*T,
= 9.00*.155

= 1.396

I/O cost (at 100 queries per day) = 139.6

The update operation “delete a given employee from all associated pro-

jects” requires a random access to ASSIGNED-TO based on EMP-NO and a
scan of an additional page to delete all tuples with a given EMP-NO.

T, = 27.7 ms + 11.7 ms

= .039 seconds

I/O cost (update) = C,* T,
= 9.00*.039/3,600

= .OOOl

I/O cost (at 100 updates per day) = .Ol

Storage cost = C,* V,

= .0031 per page day*
[ceiling(l,200,000/4,096)
+ ceiling(100,000/4,096)
+ ceiling(400,000/4,096)]

= .0031*416 pages
= 1.29

Total cost = 139.6 + .Ol + 1.29

= 140.9

The extended join relation solution is to append to ASSIGNED-TO the
attributes EMP-CITY and HQ-CITY so that only a single scan of the new
relation, which we will call EXT-ASSIGNED-TO, is needed to satisfy the query.

ER-TO-RELATION DESIGN TRANSFORMATIONS 57

TABLE 1

Summary of Total Cost Per Day (Examples 1 and 2)

Original relation Join relation

139.6
.Ol

1.29
140.9

1.4
2.9
1.5
5.8

57 Query cost
.01 Update cost

1.59 Storage cost
2.17 Total cost

1.8 Query cost
3.6 Update cost
1.9 Storage cost
7.3 Total cost

EXT-ASSIGNED-TO now has 40 bytes per tuple; therefore at 20,000 tuples it

has a total of 800,000 bytes and is double the size of ASSIGNED-TO. Redoing

the calculations for query, update, and storage with EXT-ASSIGNED-TO, we
obtain the cost figures shown in Table 1. We see that there is a dramatic

reduction in cost by using the extended join relation and avoiding the join and

random indexing of the original solution.

2.2.2. Example 2

Example 2 illustrates the least favorable conditions for efficiency improve-

ment with the reIation usage aIgorithm. The query given in Figure 4 is

executed by a join on the relations EMPLOYEE and DEPARTMENT over the

common attribute DEPT-NO. This is accomplished by a scan of EMPLOYEE
and DEPARTMENT. DEPARTMENT and EMPLOYEE are assumed to be

accessed sequentially based on DEPT-NO.

Tq = scan of EMPLOYEE + scan of DEPARTMENT
= ceiling(2,000,OO0/4,096)* 11.7 ms

+ceiling(15,000/4,0961* 11.7 ms
= 5,713 ms + 47 ms
= 5,760 ms

I/O cost (query) = 9.00*5.76 set/3,600
= ,014

I/O cost (query at frequency of 100 per day) = 1.4

58 TQBY J. TEQREY AND DGNGQXNG YANG

Relations Bytesituple Tuples Total Bytes

EMP IEMP_Nn.EMP-NAME,AUTQNPE,DEPT-NO) 200 10000 2000 KB
DEPT~~F~T-~,D~PT-NA~~,Q~F-~,E~P-NU~ 250 60 15KB

Query: Display employee number, name, office, and department name for all employees with a
given automobile type.

Update: Scan the empfoyee relation and make necessary changes as specified in an in-Gore
update f&t.

QBE reQresentation of the query

EMPLOYEE 1 HP-NO 1 FMP NAME. 1 AUT~~P~ 1 PEPT-NQ
1 P.A 1 d.6 1 l [X

DEPAR~~~ 1 DFPT-NQ [DEPT NAME 1 QFF-NQ 1 EMP_NO
f x 1 FJ:c 1p.D I

QBE reprssentstion of the updete

EMPLOYEE IEMeNo IEMP-NAME
tJ.1 l I * ; AU?-TYPF

Frequency of alf proc%sses: 1 Oolday

Fig. 4. Example 2 relations and processes.

The update of department number of every employee is accomplished with a
scan (read) and rewrite of EMPLOYEE:

T, = scan and rewrite of EMPLOYEE
= [cei1ing(2,000,000/4,096~* 11.7 msJ”2
= 11,443 ms

f/O cost (update) = 9.00”11.443 set/3,600
= .O29

I/O cost (update at frequency of 100 per day) = 2.9

Storage cost = ceiIing(Z,~O,~~4,096)*.0031 +ceiIing(15,000/4,096)‘.0031
= 1.5 per day

The extended join relation solution is to add the attributes ~~PT-~AM~
and OFF-NO to relation EMPLOYEE, thus increasing the tupfe size from 200
to 250 bytes. The size of the entire relation EXT-EMPLOYEE is 2.5 MB,
compared to 2 MB for EMPLOYEE. The cost for query, update, and storage
space for the extended relation is shown in Table 1. The results show higher
cost in alI three areas that is due to the extended join relation, mainly because
the relation EMPLOYEE is much larger than the relation ~EFA~T~ENT and
the extension EXT-EMPLOYEE is larger than EMPLOYEE and DEPARTMENT

ER-TO-RELATION DESIGN TRANSFORMATIONS 59

combined. Thus, the join relation schema is not a candidate for physical

design in this case.

To summarize, the extended join relation tends to significantly lower the
storage and processing cost for one or more joins if the joined relations are of
comparable size, if only the smaller relation is extended, or if it can avoid a
large number of random accesses to ai least one of the relations.

3. A CASE STUDY

The following case study illustrates how the usage refinement approach
easily extends a logical design methodology for simple improvements in
performance. The problem definition is followed by the solution steps of ER

model definition, functional dependency definition, transformation to rela-

tions, normalization and reduction of relations, and usage refinement. Trade-
offs among the degree of normalization, storage requirement, and query and

update costs are analyzed before the final relation definitions can be specified.

3.1. REQUIREMENT SPECIFICATION

The management of a large retail store would like a database to keep track

of their sales activities. The requirement for this database specifies six entities
and their unique identifiers as follows:

Entity Entity identifier

CUSTOMER CUST-NO

JOB JOB-TITLE

ORDER ORDER-NO

SALESPERSON SALES-NAME

DEPARTMENT DEPT-NO

ITEM ITEM-NO

Identifier length Cardinality

6 char 80,000

24 char 80

9 char 200,000

20 char 150

2 char 10

6 char 5,000

The following assertions describe the data relationships:

1. Each customer has one job title, but different customers may have the same
job title.

2. Each customer may place many orders, but only one customer may place a

particular order.
3. Each department has many salespersons, but each salesperson must work

in one department.
4. Each department has many items for sale, but each item is sold in only one

department (“item” means item type, like IBM PC).
5. Each order could be placed for several different items located in the same

or different departments.

60 TOBY J. TEOREY AND DONGQING YANG

6. For each order, items ordered in different departments must involve
different salespersons, but all items ordered within one department must

be handled by exactly one salesperson. In other words, for each order, each

item has exactly one salesperson; and for each order, each department has
exactly one salesperson.

3.2. DESIGN PROBLEM

1. Using the information given above, and in particular the six assertions,

derive an ER diagram and a set of functional dependencies (FDs) that

represent all the data relationships.
2. Transform the ER diagram into a set of candidate relations. List the

relations, their primary keys, and other attributes.

3. Find the minimum set of BCNF relations that are functionally equiva-
lent to the candidate relations. Analyze performance and integrity trade-offs

that result from the definition of this minimum set.

4. Given the transactions “select all order numbers assigned to customers
who are computer engineers” and “add a new customer and the customer’s

order to the database,” analyze the performance and data integrity trade-offs

for strategies to execute these transactions with the minimum-set BCNF

schema and a refined schema designed to reduce the number of joins needed
for data retrieval.

3.3. LOGICAL DESIGN

Our first step is to develop an ER diagram (Figure 5) and a set of FDs to
correspond to each of the six assertions given. Normally the ER diagram is

developed without knowledge of all the FDs, but in this example the nonkey

attributes are omitted so that the entire database can be represented with only
a few statements and FDs. The result of this analysis, relative to each of the
six assertions given above, is as follows:

ER construct

1. CUSTOMER(many:JOB(one)
2. ORDER(many):CUST-NOcone)
3. SALESPERSON(many):

DEPARTMENTcone)
4. ITEM(many):DEPARTMENT(one)
5. No meaningful relationship
6a. ORDER(many):ITEM(many):

SALESPERSON(one)
6b. ORDER(many):

DEPARTMENT(many):
SALESPERSON(one)

Functional dependencies

CUST-NO + JOB-TITLE
ORDER-NO + CUST-NO
SALES-NAME + DEPT-NO

ITEM-NO + DEPT-NO
NONE
ORDER-NO,ITEM-NO

-+ SALES-NAME
ORDER-NO,DEPT-NO

-+ SALES-NAME

ER-TO-RELATION DESIGN TRANSFORMATIONS 61

CUSTOMER b JOB

I ORDER

SALESPERSON

1 DEPARTMENT v

Fig. 5. Extended ER diagram for the retail store database.

The candidate relations needed to represent the semantics of this problem

can be easily derived from the constructs for entities and relationships.
Primary keys are underlined.

1. CUSTOMER(CUST-NO,JOB-TITLE)
2. JOB(JOB-TITF
3. ORDER(oRDER-NO,CUST-NO)
4. SALESPERSON(SALES-NAME,DEPT-NO)
5. DEPARTMENT(DEPT-NO)
6. ITEM(ITEM-NO,DEPT-NO)
7. ORDER-ITEM-SALES(ORDER-NO,ITEM-NO,SALES-NAME)
8. ORDER-DEPT-SALES(ORDER-NO,DEPT-NO,SALES-NAME)

Candidate relations l-6 are formed directly from entities and are all

BCNF. Relation 7 is also BCNF, but relation 8 is only 3NF. Relation 8 has

two functional dependencies:

ORDER-NO,DEPT-NO + SALES-NAME

SALES-NAME + DEPT-NO

which cannot be decomposed into independent BCNF relations if the first
functional dependency is still to be preserved. Consequently it must remain in
3NF [3].

This process of decomposition and reduction of relations moves us closer to
a minimum set of 3NF or BCNF relations. Additionally, we must consider the
relations JOB and DEPARTMENT. Because we have not defined other at-

62 TOBY J. TEOREY AND DONGQING YANG

tributes in these relations, JOB and DEPARTMENT are simple relations
consisting of a single key attribute. When this occurs, and the key attribute
appears in the other relation as a nonkey, we can consider the elimination of
the simple relation. The trade-off is between the decrease in storage space
and update cost when we eliminate a relation, and the possible loss of data
integrity as a side effect of deletions on another relation in which the key of
the eliminated relation has become a nonkey. In our example, if we can justify
this trade-off and eliminate the simple relations, we have the following
minimum set of 3NF and BCNF relations:

1. CUSTOMER(GUST-NO, JOB-TITLE) BCNF

2. ORDER{ ORDER-NO, CUST-NO) BCNF

3. SALESPERSON(SALES-NAME, DEPT-NO) BCNF

4. ITEM(ITEM-NO, DEPT-NO) BCNF

5. ORDER-ITEM-SALES(ORDER-NO,ITEM-NO, SALES-NAME) BCNF

6. ORDER-DEPT-SALES(ORDER-NO,DEPT-NO, SALES-NAME) 3NF

In summ~, the reductions shown above have decreased storage space and
update cost and have maintained the normalization at a minimum of 3NF, but
we have potentially higher retrieval cost (e.g., given the transaction “list all
job-titles”) and have increased the potential for loss of integrity due to the
elimination of simple relations with only key attributes.

Let us now look at the quantitative trade-offs of further refinement of
relations to accommodate processing efficiency. We shall assume that each of
the following transactions are to be executed once per fixed time unit:

1. Query, Select all order numbers assigned to customers who are

computer engineers.
2. Update, Add a new customer and the customer’s order to the database.

Using the minimum-it 3NF/BCNF schema, we can execute the transac-
tions in a number of different ways. Let us first assume that the relations are
all ordered physically by their primary keys. We use the following strategy for
the first transaction: Sort the ORDER relation by CUST-NO, then join rela-
tions ORDER and CUSTOMER with a single scan of each, and select only
tuples that have JOB-TITLE of computer engineer. We then project on

ER-TO-RELATION DESIGN TRANSFORMATIONS 63

ORDER-NO for the resulting display. To simplify the analysis we assume that

a sort of n tuples takes n log, n tuple accesses (TA) and that computer

engineers make up 5% of the customers and orders in the database.

TA = sort ORDER + scan ORDER + scan CUSTOMER + create ORDER-CUST

+ scan ORDER-CUST + create COMP-ENGR + project COMP-ENGR

= (200,00010g2200,000) +200,000+80,000+200,000

+ 200,000 + 200,000* .05 + 200,000* .05

= 200,000*(17.61+3.10) +80,000

= 4,222,OOO tuple accesses

Since all tuple accesses are sequential in this strategy, and assuming 10 ms

per sequential block access and block size of 1000 bytes, we estimate the I/O

service time to process this by first computing the blocking factors for relations

ORDER, CUSTOMER, ORDER-CUST and COMP-ENGR: 66, 33, 25, and 25,

respectively. We compute the physical block accesses (PBA) as follows:

PBA = cei1ing(200,000*18.61/66) + ceiling(80,000/33) + ceiling(420,000/25)

= 75,619

IOTIME = 75,619*10 ms

= 756 seconds

The strategy to execute the second transaction using the same schema is to

scan each relation (ORDER and CUSTOMER) and rewrite both relations with
the new order.

PBA = ceiling(200,000/66)*2 + ceiling(80,000/33)*2
= 10,912

IOTIME = 10,912* 10 ms
= 109 seconds

If we refine the minimum-set 3NF/BCNF schema to avoid the join in the first
transaction, the resulting schema will have a single relation ORDER-CUST
(ORDER-NO,CUST-NO,JOB-TITLE) instead of separate relations ORDER and
CUSTOMER. This avoids not only the join, but also the sort needed to get

64 TOBY J. TEOREY AND DONGQING YANG

both relations ordered by CUST-NO. The strategy for the first transaction is
now to scan ORDER-CUST once to find the computer engineers, write out the

data to disk, and then read back from disk to project the resulting temporary

relation COMP-ENGR for the final display.

PBA = ceiling(200,000/25) f [Ceiling(200,ooo’.o5/25)1*2

= 8,800

IOTIME = 8,800*10 ms

= 88 seconds

The strategy for the second transaction using this refined schema is to scan

ORDER-CUST once to find the point of insertion, and then to scan again to

reorder the relation.

PBA = ceiling(200,000/25)*2

= 16,000

IOTIME = 16,000* 10 ms
= 160 seconds

Common to the two strategies is the addition of an ORDER tuple to the

relations ORDER-ITEM-SALES and ORDER-DEPT-SALES. For the sake of

simplicity we will assume these relations to be unsorted, so the addition of a

new order will require only one tuple access at the end of the relation, and
thus negligible IOTIME.

The basic performance and normalization data for these two schemas and
the two transactions given above are summarized in Table 2.

The refined schema dramatically reduces the I/O time for the query

transaction; but the cost is the loss of performance for the update, more
storage space, and significant reduction in the degree of normalization. The

TABLE 2

Comparison of Performance and Integrity of Original Relations and Join Relation

Minimum set 3NF/BCNF schema Refined schema

(ORDER and CUSTOMER) (ORDER-CUST)

Query 756 seconds 88 seconds

Update 109 seconds 160 seconds
Storage space 5.4 MB 7.8 MB (relevant relations)
Normalization 3NF 2NF

ER-TO-RELATION DESIGN TRANSFORMATIONS 6.5

TABLE 3

Comparison of Three Schemas for Performance and Integrity

ORDER-CUSTOMER ORDER-CUST All 3 relations

Query 756 seconds 88 seconds 88 seconds
Update 109 seconds 160 seconds 269 seconds
Storage space 5.4 MB 7.8 MB 13.2 MB (relevant relations)
INormalization 3NF 2NF 2 NF, 3NF combination

normalization is reduced because we now have a transitive functional depen-

dency ORDER-NO + CUST-NO --) JOB-TITLE in relation ORRER-CUST. The

implication of this is, of course, the delete anomaly for JOB-TITLE when a

customer deletes an order or the order is filled.

We can illustrate the trade-off between degree of normalization and

performance with a simple alternative schema. In this case, instead of replac-

ing ORDER and CUSTOMER by ORDER-CUST, we keep all three relations in
the database. Thus normalization for these relations is preserved from the

original schema. The cost is not only for increased storage space and update

I/O time, but also for a greater choice of retrieval options requiring more
query optimization software. The performance changes are summarized in

Table 3.

4. CONCLUSION

A practical approach to extending a logical database design methodology

for database usage has been presented and illustrated with several detailed

examples, extending previous work based upon requirements analysis using
the ER model and its transformation to the relational model. The extensions

focus on the trade-offs between normalization, minimization of the number of

relations, and the relation refinements to improve query processing at the

expense of update and storage cost. The degree of normalization provides a

well-defined level of data integrity in terms of the delete anomaly.

The significance of these performance and data integrity differences de-

pends upon the global set of objectives and computing environment for the
database, and must be analyzed in that context. For instance, the performance

differences must be evaluated for all relevant transactions, present and pro-
jected. Storage space differences may or may not be significant in the comput-
ing environment. Deletion integrity problems need to be evaluated on a
case-by-case basis to determine whether the side effects of certain tuple
deletions are destructive to the objectives of the database. In summary, the
database designer now has the ability to evaluate the trade-offs among query,

66 TOBY J. TEOREY AND DONGQING YANG

update, storage space, and integrity associated with normalization. This knowl-
edge can be applied to a variety of database design problems.

APPENDIX I

.WMMARY OF LOGICAL RELATIONAL DATABASE DESIGN STEPS

1. Extended ER (EER) modeling of requirements
1.1 Identify entities and attach attributes to each.
1.2 Identify generalization and subset hierarchies.
1.3 Define relationships.
1.4 Integrate multiple views of entities, attributes, and relationships.

2. Transformation of the EER model to relations
2.1 Transform every entity into one relation with the key and nonkey

attributes of the entity.
2.2 Transform every many-to-many binary (or unary) relationship into a

relationship relation.
2.3 Transform every ternary (or higher n-ary) relationship into a relation-

ship relation.

3. Normalization of relations
3.1 Derive the primary FDs from the EER diagram.
3.2 Examine all the candidate relations for MVDs and secondary FDs.
3.3 Normalize all candidate relations to the highest degree desired, elimi-

nating any redundancies that occur in the normalized relations.

4. Usage refinement (logical/physical design boundary)
4.1 Select dominant processes.
4.2 Define join relations.
4.3 Evaluate total cost for storage, query, and update.
4.4 Consider the possible effects of denormalization.

REFERENCES

1. P. Bertaina, A. Dileva, and P. Giolito, Logical design in CODASYL and refational
environments, in Methodology and Tools for Dura Base Design 6. Ceri, ed.), North-Hol-
land, Amsterdam, 1983, pp. 85-117.

2. P. P. Chen, The entity-relationship model-Toward a unified view of data, ACM Trans.
Database Sysrem 1(1):9-36 (March 1976).

3. C. J. Date, An Introduction to Database Systems, Vol. 1 (4th ed.), Addison-Wesley,
Reading, MA, 1986.

ER-TO-RELATION DESIGN TRANSFORMATIONS 67

4. I. Hawryszkiewycz, Database Analysis and Design, SRA, Chicago, 1984.
5. D. Howe, Data Analysis and Data Base Design, Arnold, London, 1983.
6. W. H. Inmon, Optimizing performance with denormalization, Database Programming

and Design 1(1):34-39 (December 1987).
7. W. Kent, A simple guide to five normal forms in relational database theory, Comm.

ACM 26(2):120-125 (February 1983).
8. D. Maier, Theory of Relational Databases, Computer Science Press, Rockville, MD, 1983.
9. M. Schkolnick and P. Sorenson, DENORMALIZATION: A performance oriented

database design technique, in Proceedings of the AICA 1980 Congress, Bologna, Italy,
AICA, Brussels, 1980, pp. 363-377.

10. T. Teorey and J. Fry, Design of Database Structures, Prentice-Hall, Englewood Cliffs, NJ,
1982.

11. T. J. Teorey, D. Yang, and J. P. Fry, A logical design methodology for relational
databases using the extended entity-relationship model, ACM Computing Surwys
18(2):197-222 (June 1986).

12. M. M. Zloof, Query by example, Proc. Natl. Computer Conf., Vol. 44, AFIPS Press, 1975,

pp. 431-438.

Receiued 16 March 1988; accepted 30 September 198X

