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Network analysis has become a popular method for identifying the communication structure in a 

system where positional and relational aspects are important. In this paper, a maximum likelihood 

based methodology is presented that allows for the analysis of binary sociometric data. This 

methodology provides a network representation via estimated path-length or additive trees that 

indicate the distance between all pairs of members. The methodology is distinguished from 

traditional hierarchical clustering based procedures by its direct consideration of the asymmetry in 

a typical communication process, the simultaneous representation of structural characteristics 

(e.g., clique membership, clique cohesiveness), and the identification of the specialized communi- 

cation roles of each member (e.g., opinion leader, liaison). A penalty function algorithm is 

developed and its performance is investigated via a Monte Carlo analysis with synthetic data. An 

application examining information flows among managers is presented. Finally, directions for 

future research are suggested. 

1. Introduction 

A variety of network models have been developed to describe the 
sociometric structure of the members of small groups. Historically, 
network models have been proposed within two alternative analytical 
approaches. These approaches differ primarily in terms of the frame of 
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reference within which an actor is analyzed. In a relational approach, 
network models describe the direct connection between pairs of actors. 
Sociograms (Northway 1949; Klovdahl 1981) matrix operations meth- 
ods (Forsyth and Katz 1946; Hubbell 1965), graph-theoretic methods 
(Lute and Perry 1949; Harary et al. 1965; Lute 1950; Siedman and 
Foster 1978) and distance methods (Bock and Husain 1950) are typical 
models utilizing this relational approach. In such relational approaches, 
actors are aggregated in cliques to the degree that they are connected 
directly to each other by cohesive bonds. 

A positional approach provides a different perspective to the analysis 
of subgroup structure, where actors are aggregated into a jointly 
occupied position or role to the extent that they have a common set of 
linkages to the other actors in a system. No requirement is imposed 
that the actors in the same position have direct ties to each other. 
Hierarchical clustering based on a measure of dissimilarity derived 
from interactions with other actors (Burt 1977) and block models 
(White et al. 1975; Brieger et al. 1975) are examples of the primary 
models operationalizing this positional approach. 

In this paper, we exploit the rich tradition of subgroup-level network 
models and provide a new methodology for visually representing social 
networks that explicitly embeds single actor level analysis in a derived 
path-length tree structure. Our model can be regarded as one employing 
a relational approach. In the next section, we briefly review existing 
approaches to subgroup-level network analysis and formally outline 
our research goals. The technical details of the new proposed methodol- 
ogy and a Monte Carlo simulation study evaluating the performances 
of the algorithm are then presented. The usefulness of the model is 
illustrated with an empirical application concerning communication 
networks among managers within a firm (Krackhardt 1987). We con- 
clude with a discussion of the implications of the methodology and 
suggest directions for future research. 

2. Literature review 

In reviewing and contrasting our new methodology with existing ap- 
proaches to network structure analysis, we use the organizing frame- 
work shown in Table 1 that classifies existing models in terms of five 
dimensions: (1) visual representation, (2) incorporation of asymmetry, 
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(3) clique detection criteria, (4) incorporation of clique overlap, and (5) 
capability of performing other levels of analysis. It must be noted that 
our review is by no means exhaustive. Only subgroup-level models are 
included in this review since clique detection has been primary interest 
in network research (for a more extensive review of network models, 
see Knoke and Kuklinski 1982, and Burt 1980). 

2.1. Visual representation 

Knoke and Kuklinski (1982) argued that although simple network 
diagrams suffer from lack of parsimony, nonuniqueness, and interpre- 
tational complexity, well-constructed visual displays, especially based 
on graph theory, can convey an intuitive feel for the structure of a 
system. Several attempts have been made to provide more parsimoni- 
ous and meaningful representations through sociograms (e.g., North- 
way 1949; Klovdahl 1981). However, these models typically lack 
uniqueness and interpretability. Burt (1980) utilized hierarchical clus- 
tering based on a metric measuring relational equivalence. Our new 
methodology visually represents a social structure via an asymmetric 
path-length or additive tree, a particular type of graph which is parsi- 
monious and unique up to a set of known tree indeterminacies. 

2.2. Incorporation of asymmetry 

Most network models force the sociometric matrix to be reciprocal 
(symmetric) either to satisfy the particular metric requirements of the 
model or to make the computation easier. Since social relations be- 
tween actors are typically bidirectional (actors both initiate and receive 
contacts), network models that capture this asymmetry should prove 
more accurate in reflecting respective communication processes. 
Graph-theoretic methods (e.g., Lute and Perry 1949; Lute 1950; Sied- 
man and Foster 1978) and structural equivalence models (Burt 1980; 
White et al. 1976) explicitly consider asymmetry in their analyses. 
However, these models fail to depict the asymmetry in the derived 
representations. In our methodology, asymmetry in communication will 
be explicitly visualized by representing each individual as two different 
entities: one as a social contact initiator and the other as a social 
contact recipient. 
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2.3. Clique detection criteria 

Most network models (except graph-theoretic methods) do not provide 
objective criteria for clique detection, suggesting that it is likely that 
substantially different results can be yielded when the same data and a 
similar generic model (e.g., cluster analysis methods) are used by 
different researchers. This problem is especially critical in network 
models utilizing various types of clustering methodologies (e.g., Burt 
1980 utilizing hierarchical clustering, and Brieger et al. 1975 utilizing 
block clustering) where the number of clusters to be retained is decided 
on an ad hoc basis. We will propose a more objective foundation for 
clique detections embodied in our methodology. 

2.4. Incorporation of clique overlap 

Most network models detect cliques by forming exclusive partitions of 
groups and assign each individual to one and only one clique. However, 
an individual might easily be a member of multiple cliques. Davis 
(1967) asserts that disjoint cliques are seldom obtained in personal 
communication because a real disjoint partition is usually a sign of 
conflict which prohibits actors from participating in intense communi- 
cation. Our methodology will partially accommodate this feature of 
clique overlap by allowing for an actor to be classified to one clique as 
a contact initiator and a possibly different clique as a contact recipient. 

2.5. Levels of analysis 

There are three levels of networks analysis: single actor level, subgroup 
level, and entire system level. Traditionally, network models have been 
developed to solve problems at a specific level in a specific context, 
disregarding issues raised at different levels and/or in other contexts. 
Subgroup-level network models which attempt to detect subgroup 
patterns (cliques) completely ignore individual level analyses which 
describe each individual’s positional aspects in a system. Similarly, 
network models describing individual positions, typically, are not capa- 
ble of accommodating subgroup level analyses. Network models capa- 
ble of simultaneously handling multiple levels of analysis, i.e., individu- 
als’ positional indices, clique detection, and characteristics of an entire 
system such as social cohesion, are desirable simply because certain 
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aspects of a network at a certain level can not be fully understood 
without considering aspects at other levels. Our methodology simulta- 
neously portrays clique formation and individual roles, and provides 
measures for inter- and intra-clique relationships. 

In short, the primary goals of this paper are to develop a new 
methodology that will: 

1. derive an “optimal” representation of communication processes 
estimated from collected sociometric data; 

2. provide a parsimonious visual representation that: 
a. depicts how a group of social actors are partitioned (clique 

detection); 
b. portrays each individual’s social positions embedded in the 

group structure; 
3. accommodate the intrinsically asymmetric nature of social inter- 

actions by portraying an individual as two different entities; 
4. suggest a mathematical criteria to decide the number of cliques 

retained and the respective clique memberships; and, 
5. partially allow for multiple clique memberships. 

3. A methodology for estimating bidirectional path-length trees from 
binary sociometric data 

3.1. A brief review of tree-fitting methodologies 

As background to the work presented, a brief review of tree-fitting 
methodologies developed in mathematical psychology is presented here. 
Further details may be found in Carroll (1976), Sattath and Tversky 
(1977) Furnas (1980) and De Soete et al. (1984). A tree is a connected 
graph without cycles where each pair of objects is joined by a unique 
path. The terminal (or external) nodes in a tree represent objects, and 
the distance between two objects is defined as either the height of the 
most immediate common ancestor (internal node) in an ultrametric tree 
(much better known as hierarchical clustering) or the length of the path 
that joins them in a path-length or additive tree. 

A tree has several attractive properties as a representation of social 
networks. First, it can portray hierarchical groupings and allow for an 
unambiguous interpretation of clusters. This feature provides the 
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fundamental motivation for developing a network model based on a 
tree structure. Second, the distance between objects can be meaning- 
fully interpreted (visually) from a tree because of its metric properties. 
Third, a visual representation of the relations among objects is unique 
(up to a set of known tree indeterminacies) once the distances among 
objects obey certain metric conditions. For example, in path-length 
trees for one-mode, two-way data (e.g., an N X N matrix of proximity 
data between a common set of actors), the indeterminacy of the root 
causes a nonuniqueness of the representation (see De Soete et al. 1984 
for a discussion of indeterminacies of such tree representations). A 
discussion of these metric conditions follows. 

Ultrametric distances for one-mode, two-way symmetric proximities 
must obey the one-class ultrametric inequality (Johnson 1967): 

d,, I max(dij, dj,), Vi, j, k, (3.1) 

where d,,y indicates the distance between actors r and s. This ultramet- 
ric inequality implies that for any three nodes in a tree, two of the 
distances are equal and the third does not exceed them, forming an 
equilateral or isosceles triangle. It also implies that given two disjoint 
clusters, all intracluster distances are smaller than all intercluster dis- 
tance, and that all the intercluster distances are equal. Even though 
hierarchical clustering has been well developed and widely used for 
representing various types of distances (e.g., similarity, social relations) 
in a tree structure (see Hartigan 1967) it has been criticized because of 
such a severe restriction on the data given these ultrametric condi- 
tions/ constraints. 

In an attempt to resolve the limitations of enforcing the ultrametric 
inequality restrictions (e.g., the restrictions on the inter- and intraclus- 
ter distances), Sattath and Tversky (1977) and Cunningham (1978) 
advocate using the more general path-length tree representation of 
proximities data (a path-length tree is also called an additive tree, free 
tree, or unrooted tree). A path-length tree is a tree with a metric in 
which the distance between nodes is equal to the length of the path 
(i.e., sum of branches) that joins them (Sattath and Tversky, 1977). This 
metric is particularly attractive for modeling social relations given this 
intuitive interpretation. The necessary and sufficient condition for 
representing two-way, one-mode proximities by a path-length tree is 
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Fig. 1. (a) Ultrametric tree representation vs (b) path-length tree representation 

the four-point inequality (Dobson 1974). That is, for all actors i, j, k, I 
in the set of actors S, 

d,, + d,, I max( d,, + d,, , d,, + djk) q (3.2) 

holds for all quadruples i, j, k, and 1. Note that this four-point 
inequality is less restrictive than the ultrametric inequality in that 
intracluster distances may exceed intercluster distances and that an 
actor outside a cluster is no longer equidistant from all objects inside 
the cluster. In Figure 1, the two representations of proximity data 
(from Sattath and Tversky, 1977) are compared for the one-mode 
symmetric case. Consider four actors A, B, C, and D. In the ultrametric 
tree (Figure la), A and B form a single cluster that is sequentially 
joined by C and D. In the path-length tree (Figure lb), A and D form 
one cluster, and B and C form another cluster. Unlike the ultrametric 
tree, the distance between A and D (intracluster) is allowed to exceed 
the distance between A and B (intercluster). Moreover, in the path- 
length tree, the distance between A and B, and the distance between A 
and C (intercluster distance) are not equal. 

Farris (1972) and Carroll (1976) show that it is possible to convert a 
path-length tree into an ultrametric tree by a simple operation. It is 
stated that t,, = dik - c, - ck satisfies the ultrametric inequality; d;, is 
the path-length distance from i to k and ci ( ck) is an additive constant 
associated with i(k), which satisfies the positivity condition for dis- 
tance. Therefore, the path-length distance, dik, is decomposable into a 
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ti, that satisfies the ultrametric inequality plus a set of additive 
constants. Thus, an ultrametric tree is actually a special case (nested) of 
the more general path-length tree. Because of this nesting, we feel that 
the path-length tree is even more appealing for depicting the nature of 
personal relationships given its additional flexibility for portraying 
different communication network shapes. 

The distance of an external node from the root in a path-length tree 
reflects its average distance from other external nodes when the root is 
chosen in a manner that minimizes the variance of distances to the 
external nodes. This heuristic uniquely determines the location of the 
root. The distance of each communication participant from the root 
can be interpreted as the degree of involvement in the communication 
process, either as an information provider or information receiver. Note 
that this property cannot be represented in an ultrametric tree in which 
all terminal nodes are equidistant from the root. 

Similarly, the distance of an internal node from the root that defines 
a cluster (clique), which contains all the terminal nodes that follow 
from it, can be interpreted as a measure of involvement of the clique in 
the communication process. Thus, the representation of relational data 
via a path-length tree is a more intuitive way to display the structure of 
communication networks by simultaneously representing clique struc- 
ture and, as will be shown, providing the basis for the calculation of 
various indices for the role of individuals and groups of individuals. 

3.2. Tree representation of two-way, two-mode (asymmetric) proximity 
data 

In network analysis, it should be recognized that the social relations 
between actors are bidirectional. A relation initiated by actor i and 
terminated by actor k may or may not be the same as a relation 
initiated by k and terminated by i. In the case of a rectangular 
proximity matrix (two-mode data where, for example, the row and 
column actors differ, or where the ik entry # to the ki entry), it is not 
possible to impose the ultrametric inequality condition on such dis- 
tances since one of the three distances will be missing for every triple. 
(Note that distances among within-class objects are not defined in such 
“ unfolding” or rectangular representations.) 

Following Furnas (1980), for asymmetric matrices with a distance 
between actors of different classes (e.g., i, j as initiators and k, 1 as 
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receivers), the following two-class ultrametric condition is necessary 
and sufficient for the representation of an ultrametric tree: 

?,I I max( I;,, tjk, t,,) for all i #j, k # 1. (3.3) 

In words, for every quadruple of points composed of two from each 
class, the two largest of the four distances must be equal. 

Necessary and sufficient conditions for a two-class, path-length tree 
can be indirectly derived using the two-class ultrametric condition in 
(3.3) above and the decomposition of path-length distances into ultra- 
metric distances and additive constants. Such a decomposition holds 
for rectangular submatrices of distances for a path-length tree (De 
Soete et al. 1984). Letting d,, be the path-length distance between 
actors from different classes and r, ( ck) be i’s (k ‘s) additive constant, 
t,, = d;, - r; - ck should satisfy the two-class ultrametric inequality 
condition. Therefore, the technique used here is to initially derive a 
two-mode ultrametric tree and then estimate row and column additive 
constants (equivalent to “star” trees having only one interior node-see 
De Soete et al. 1984). However, unlike De Soete et ul. (1984), we utilize 
a stochastic framework with binary (not proximity) data. A technical 
description of the proposed methodology follows. 

3.3. The two-mode path-length tree methodology 

Let: 

ii,: 

m 

A 

a Ikm 

n rk 

U 

= 1 ,..., N contact initiators; 
= )...) 1 N contact recipients (in most network data, the row 

and column objects are the same); 
= )...) 1 M replications (e.g., communication scenarios or set- 

tings); 
= ((;;&)) and (N.X,y X bf) adjacency matrix, where: 

, if actor i mitiates contact with actor k 
in the mth replication, 

0, otherwise; 
a rkm + akrm in general, and 
a,;,,, is undefined; 

= the number of times actor i initiates contact with actor k in 
M replications; 

= (( %kmh where %km is a latent, unobservable social dis- 
tance between actor i and actor k in replication m; 
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= (( dik)), where dik is a path-length distance between actor i 

and actor k defined on a two-mode (i.e., representing both 
contact initiators and recipients as distinct terminal nodes) 
path-length tree ( uikm = dik + eik,); 

= (( tik)) a distance matrix obeying the two-class ultrametric 
inequality; 

= (r;) a vector of row additive constants for initiators; 
= ( ck) a vector of column additive constants for recipients; 
= tik + ri + ck, following De Soete et al. (1984); 

= (( eikm)), where eik,,, is an error term distribution iid N 

(0, a2); 
= a social distance threshold, where we assume that actor i 

will contact actor k in replication m ( aikm = 1) iff ulkrn I s, 
and will not iff uikm > s. 

We assume that a latent social distance exists such that actor i will 
contact actor k in a specified replication if the members of the pair are 
sufficiently “close” to one another. This specification utilizing a 
threshold concept is also used in stochastic spatial choice models (cf., 
DeSarbo and Cho 1989). This notion of distance in some social region 
and/or the threshold concept is also employed in several network 
models (cf., Burt 1980; Hubbell 1965). Here, however, the threshold 
value (s) is estimated directly and not imputed in an ad hoc manner as 
in these previous approaches. The threshold level can also be modeled 
as varying by individuals (e.g., si) in this methodology. For now, we 
assume that the threshold level is common across all respondents. 

We assume that the communication process where actor i makes 
contact with actor k in replication m is Bernoulli distributed with 
probability of contact of pikm. Thus; 

p (i initiates contact with k in replication m) 

=&km = ‘1 =P(%km 5 s, =P,km 

=@ 
i 

s - r, - ck - t,, 

(3 1 

= @(s - r, - ck - tik), (3.4) 
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since, without loss of generality, u can be absorbed in the numerator of 
the @(a) function (it can thus be assumed u = 1 since it can be directly 
absorbed in the S, r,, ck, and t,, terms without loss of any generality), 
where @( l ) is cumulative distribution of the standard normal distribu- 
tion evaluated at (0). Similarly, 

p (i does not initiate contact with k in replication m) 

=derkm > s - r, - ck - t,, ) 

=1-Q 
s - r, - ck - t,, 

(J 

= 1 - @(s - r, - ck - tjk). (3.5) 

Assuming independence over all m, i, and k indices, one can obtain 
the likelihood function: 

.M N 2%’ 

L = n n n @( .)“‘““‘(l - @( .))(l-*J 
m r#k 

= fi fi @( .)“‘A (1 - @( .))(M-Q, 

r#k 

(3.6) 

and the corresponding log-likelihood function: 

A=ln L= ff [nrk In Q(e) + (M- nlk) ln(1 - @(*))I, (3.7) 
r#k 

where Q(m) = @(s - r, - ck - tik). We can estimate s, r,, ckr and t,, by 
maximizing A subject to tik satisfying the two-class ultrametric in- 
equality. Thus, the communication network for a given set of actors is 
represented by two different sets of terminal nodes in a two-mode, 
path-length tree: one set as contact initiators and one set as contact 
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Table 2 

An example of a binary sociomatrix 

A B C D E F 

a 1 0 1 0 0 

b 1 _ 0 0 0 0 

c 0 1 _ 1 0 0 

d 0 1 1 _ 0 1 

e 0 0 1 1 0 
f 1 1 0 1 0 _ 

recipients. Note that the flexibility of setting r, = c, = 0 and estimating a 
two-mode ultrametric tree is also allowed for in this methodology. 

To motivate how the resulting two-mode path-length tree can de- 
scribe various relational aspects, let us consider a simple hypothetical 
illustration: a communication network among a group of physicians 
concerning who they seek information from concerning new 
pharmaceutical products. Table 2 presents a binary sociomatrix among 
six hypothetical physicians where uik = 1 indicates the existence of 
contact initiated by i and received by k (only one replication), and 

= 0 indicates no contact. Figure 2 depicts a communication network 
ya’two-mode path-length tree) estimated from this binary data. Since 
each individual typically performs both information giving and receiv- 
ing roles, he/she is positioned in two terminal nodes; A-F labels 
information givers and a-f labels information receivers. From a 
managerial perspective, an appropriately depicted communication net- 
work among a group of customers provides insight into how to opti- 
mize the efficiency of marketing efforts directed to that group. Market- 
ing managers are concerned with locating the key informant(s) in a 
group whose opinion substantially impacts others’ decisions. The il- 
lustrative two-mode path length tree shows that physicians D and B are 
more influential individuals (detailed interpretation of an estimated 
tree for actual communication data is described later in the paper) 
given their central positions in the derived tree. Marketing managers 
are also concerned with detecting subgroups (cliques). Customers who 
maintain cohesive bonds within their groups are more likely to behave 
similarly because they share information and develop similar prefer- 
ences. Because of the hierarchical groupings embodied in the tree 
structure, such subgroups are easily detectable. Two major cliques are 
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a f 

c 

Fig. 2. A hypothetical example of a communication network represented by a two-mode path-length 

tree. 

d 

defined in Figure 2: one consisting of individuals (A, a), (B, b), and f, 
and the other of (C, c), (D, d), F, and e. Note that individual (F, f) is a 
member of both subgroups, acting in different roles in each subgroup. 
Such insight into information flows enables marketing managers to 
direct efforts toward opinion leaders in the introductory stage of new 
products. Later, “early adopters” can be targeted within the same 
cliques. Thus, an efficient, sequential marketing program can be guided 
by the framework of opinion leadership, clique membership, and other 
relational measurements (in addition to individual attributes). 
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3.4. The algorithm 

Given a binary, sociometric array A we wish to construct a two-mode 
path-length tree whose structure reflects the communication patterns in 
A. We estimate a matrix D satisfying the two-class additive inequality 
via a maximum likelihood method employed to optimize the log-likeli- 
hood function with corresponding metric constraints by using an 
exterior penalty function approach (Rao 1979). 

Penalty methods are procedures for approximating constrained opti- 
mization problems by unconstrained problems. The approximation is 
accomplished by adding to the objective function a term that prescribes 
a high cost for violating the specified set of constraints. Associated with 
this method is a penalty parameter (p) that determines the severity of 
the penalty and, consequently, the degree to which the constrained 
problem approximates the original constrained problem. As the en- 
forcement of the constraints is made more exact by iteratively increas- 
ing the penalty parameter, the solution to the unconstrained penalty 
problem approaches the solution to the original constrained problem. 
The specific steps of the penalty function algorithm are summarized in 
the Appendix. 

Once the final estimates of t,, (i # k), r,, and ck are obtained, the 
two-mode, path-length tree can be constructed. First, a symmetric 
grand matrix G(2N X 2N) satisfying the one-class ultrametric in- 
equality is constructed from the final estimates of T. Following Furnas’ 
(1980) procedure, the T matrix fills the two N X N submatrix within G 
for the last (first) N rows and the first (last) N columns. The remaining 
two submatrices consisting of the first N rows and columns and the 
last N rows and columns can be estimated as follows: 

/ 
t(,-N)b ifN+lIaI2N 

and 1 I b I N 

kn[ max( t;, , tib)] ifl<a<N 
&II = i=l,...,N and 1 I b I N 

m+nax(tc,-,jk, tcb-Njk)] ifN+l<a<2N 

,k=l,...,N and N+lsb<2N]. 

Then, G is submitted to any standard hierarchical clustering method 
(e.g., Johnson 1967) which, by definition above, renders a perfect fit to 



120 J. Cho and W.S. DeSarho / Stochastic tree methodolo~ 

G. This ultrametric tree is converted to a path-length tree by defining 
the length of a branch to be the difference in height values of the two 
nodes (either terminal or internal) connected by that branch (Dobson 
1974). Finally, each row and column additive constant is added to the 
length of the associated branch that connects the terminal nodes to the 
first internal node. The resulting two-mode path-length tree thus con- 
tains two sets of terminal nodes: one as contact initiators and the other 
as contact recipients. 

3.5. Other discrete nonspatial models 

As alternative ways of graph-theoretical representation of proximity 

data, more general graph-fitting methodologies have been proposed 
recently (Hutchinson 1989; Klauer and Carroll 1989) for metric prox- 
imity data. While tree structures accomplish parsimonious representa- 
tion of the data by imposing certain metric restrictions such as the 
ultrametric condition or path-length condition, general graph method- 
ologies achieve parsimony by eliminating redundant links between 
nodes without imposing strict metric restrictions on the distances. In 
general, the distance from one node to another is a function of the 
lengths of the paths connecting the two nodes. In a complete graph, 
where all nodes are reciprocally connected, each distance corresponds 
to the length of the link. Of particular interest is the minimum 
path-length metric, since this distance function maximizes parsimony 
by deleting all redundant links without substantially losing goodness- 
of-fit. 

The NETSCAL (Hutchinson 1989) methodology is a two-step proce- 
dure that determines which pairs of nodes are directly connected by an 
arc, and then estimates a pair of lengths for each arc. The link structure 
is chosen according to the following heuristical principle: 

If d,,.<min(max{d,,, d,,}: ZZX, y), 

then, (x, y) is an arc. 

In words, a minimum distance between x and y cannot result from an 
indirect path-length through a third node if, for all third nodes, one of 
the component distances (d,, or d,,) is greater than d,, (Hutchinson 
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1989). This provides a sufficient, but not necessary, condition for the 
presence of an arc; thus, graphs that are not connected may arise 
(Klauer and Carroll 1989). While a Monte Carlo simulation and 
applications to various data sets demonstrate the practical utility of the 
algorithm (Hutchinson 1989), serious problems with locally optimal 
solutions have been uncovered recently by Klauer and Carroll (1990). 

More recently, Klauer and Carroll (1989) proposed a mathematical 
programming approach to fitting general network graphs to interval 
scale proximity data. This method removes L links (L is user-specified 
and fixed) if there are L different triples that satisfy the triangle 
inequality as an equality. (In NETSCAL, the link structure and the link 
weights are determined in separate steps.) In the Klauer and Carroll 
approach, the goodness-of-fit is maximized while the number of links is 
fixed. Tree structures can be regarded as a special case in these general 
graph structures where the number of links is equal to the number of 
objects minus one. Unfortunately, the user is assumed to know L, the 
total number of connecting links in the network, or cycle through 
several analyses varying L. Even with the cycling, there are no robust 
statistical tests known for selecting the appropriate L. 

In sum, methodologies utilizing a minimum path-length metric are 
more general than tree structures in representing various kinds of 
proximity data. However, as discussed above, several potential prob- 
lems exist with the usage of such models. In addition, neither NETS- 
CAL nor the Klauer and Carroll methods operate on binary relational 
data. Sociometric communication networks can be more usefully 
analyzed via tree structures since one of the major concerns of investi- 
gating such structures is to define hierarchically organized patterns. 

4. A Monte Carlo simulation study 

4.1. Overview of the procedure 

To examine the performance of the proposed methodology, a Monte 
Carlo analysis was performed where five independent factors relating 
to data, error, and algorithm parameters were experimentally manipu- 
lated to create synthetic data for testing. These independent factors, 
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Table 3 

Independent factors hypothesized to affect methodology performance 

Factor Level Code 

A. No. of row/column elements (N) 

B. Number of replications (M) 

C. Error (o*) 

D. Starting values 

E. Penalty increase (p) 

N=6 

N=8 

N=lO 

M=l 

M=3 

M=5 

o*=o 

02 =lO 

al=20 

Random 

0 

Data * 

5 

10 

100 

1 

2 

3 
1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

* We set the starting value of t,I to (l- n,k/M)(t,,, - t,,,), where t,,, (t,,,) is upper (lower) 

limit value of the estimates. Thus, if i and k are tied in every relationship (nrk = M), tzA is set 

to 0, and if i and k are not tied at all in any relationship (nrk = 0), t,k is set to 100 (we set 100 

for t,iln and 0 for t,,,). 

hypothesized to affect the estimation of path-length structures, were: 

(9 
(ii) 
(iii) 

the number of actors (N = 6, 8, and lo), 
the number of replications (A4 = 1, 3, and 5), 
the amount of error (N(0, a2) added to the data (no error, 
a2 = 10, and o2 = 20), 

(iv) 
(v) 

starting values (random, 0, and the data), and 
the rate of penalty parameter increase (by a factor of 5, 10, and 
100). 

Table 3 provides a description of these five independent factors. 
Two overall areas of methodological performance were measured: 

the overall goodness-of-fit and the amount of computational effort 
required. Overall goodness-of-fit was operationalized in terms of: 

(9 

(ii) 

the normalized (for number of observations) log-likelihood value, 
and 
the simple matching coefficient between the actual input binary 
data (A) and the model predicted values (A). 
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Computer usage for each run was operationalized in terms of: 

(i) CPU time (in seconds on IBM Mainframe model 3090), and 
(ii) the number of major iterations required for convergence. 

Note, the first two independent factors determine the size of the 
problem and the degrees of freedom in the estimation, and are expected 
to increase the amount of computational effort as they increase. Also, 
better goodness-of-fit is expected as the number of replications is 
increased because of the gain in degrees of freedom. Increasing error 
variance may negatively affect both the goodness-of-fit and computa- 
tional effort. The fourth and the fifth factors gauge the sensitivity of 
the estimation procedure to various user options. A rapid increase in 
the penalty parameter in the fifth factor (e.g., increase by a factor of 
100) may reduce computational effort, but is expected to negatively 
affect goodness-of-fit, since the likelihood of speeding to a locally 
optimal solution is greater. A summary of the anticipated effects of 
independent factors on methodological performance is provided in 
Table 4. 

These five factors were combined via an asymmetric fractional 
factorial 35 design (Addleman 1962) for main-effects-only estimation 
(as in DeSarbo and Carroll 1985). Sixteen experimental trials were 
designed and are listed in Table 5. Note, this modest Monte Carlo 
analysis is not presented as a definitive test of the methodology, but 
only as a preliminary indication of the performance of the procedure. 
Clearly, a full factorial design with replications and perhaps additional 
factors would have been preferable if computer expense were not a 
limiting aspect. We leave this for future research. 

Table 4 

Summary of anticipated effects of independent factors on dependent measures 

Factor 

A. Increase in N 

B. Increase in A4 

C. Increase in 17’ 
D. Starting values 

(Data option) 

E. Rapid increase in p 

Goodness-of-fit Computational effort 

No effect Negative 

Positive Negative 
Negative Negative 

Positive Positive 

Negative Positive 
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Table 5 
35 Fractional factorial experimental design 

Trial: Factors: 

A B C D E 

1 1 1 1 1 1 
2 3 2 2 1 2 
3 2 3 2 1 3 
4 2 2 3 1 2 
5 2 2 2 2 1 
6 2 1 3 2 2 
7 3 2 1 2 3 
8 1 3 2 2 2 
9 3 3 3 3 1 

10 1 2 2 3 2 
11 2 1 2 3 3 
12 2 2 1 3 2 
13 2 2 2 2 1 
14 2 3 1 2 2 
15 1 2 3 2 3 
16 3 1 2 2 2 

For each experimental trial, D were generated from exact two-mode, 
path-length trees that were randomly constructed for each trial. A value 
of s was then randomly generated. Error was then generated from a 
Normal (0, a2) distribution and added to D to obtain D* (error-per- 
turbed distances). Finally, A (error-contained binary data) was created 
from D* using the threshold rule, and was utilized as the input data for 
each trial. 

4.2. Results and analysis 

The average matching coefficient measuring goodness-of-fit was excep- 
tionally high (0.977). The average CPU time used was 90.8 seconds 
requiring an average of 14.5 major iterations. The four dependent 
measures were analyzed via multiple regression (as in conjoint analysis), 
where the experimental design was converted to dummy variables. 
Results for the dependent measures are shown in Table 6. The coeffi- 
cient displayed next to each factor level represents the regression 
coefficient for that level. The intercept term represents the combined 
effect of level 1 of all factors. Note that a logit transformation 
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Table 6 

Multiple regression results of the Monte Carlo simulation 

Factor/Level Dependent variable 

*1 r, r, r, 
A. N=8 -6.31 - 1.50 0.87 46.54 

A. N=lO 

B. M=3 

B. M=5 

c. u2 =lO 

c. 02=20 

D. Start = 0 

D. Start = data 

E. p x 10 

E. pxl0 

Intercept 

S.E. 

R2 

Adj R2 

F 

- 68.52 - 0.67 

- 26.70 0.05 

- 29.94 -2.23 

- 30.54 -1.35 ** 

- 47.51 -8.52 ** 

55.99 - 0.76 

27.43 0.16 

0.62 -1.15 

24.04 0.15 

- 0.03 13.80 

42.70 2.79 

0.76 0.85 

0.32 0.54 

1.64 2.72 

3.50 

- 3.30 

- 0.25 

- 2.85 

- 3.30 

-5.45 

- 5.05 

- 4.60 

- 6.50 

25.03 

5.32 

0.65 

0.25 

0.94 

126.00 * * 

- 1.83 

- 21.07 

- 1.91 

- 24.12 

- 37.83 

- 16.70 

18.24 

53.41 

27.54 

61.14 

0.86 

0.60 

3.26 

* * P 50.01. 

Y, : Log-likelihood value. Y,: Matching coefficient. 

I’?: Number of major iterations. Y4: CPU time in seconds. 

[log Y/(1 - Y)] was applied to the matching coefficients (a transforma- 
tion for normality assumptions to be more tractable) since they are, by 
definition, restricted between the values of 0 and 1 (Pendyck and 
Dubinfield 1981). 

Concerning the normalized log-likelihood dependent variable, Y,, no 
independent factor level is significant, indicating consistent fitting over 
all independent factor levels. For Y,, the two higher error levels appear 
to significantly detract from the matching coefficient, although the 
entire regression equation is not significant. While there are no signifi- 
cant independent factor levels affecting Y3, the number of major 
iterations required for convergence, larger numbers of replications do 
significantly affect CPU time. Thus, larger data sets appear to require 
somewhat more extensive computational effort as might be expected. 
Also, as one adds more error to the data, goodness-of-fit appears to 
suffer somewhat. The results of this modest simulation analysis demon- 
strate the somewhat robust performance of the methodology. Again, 
these results should be considered preliminary given the small scope of 
this analysis. 
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5. Application 

5.1. Data description 

Krackhardt (1987) collected data from a small high-tech manufacturing 
organization on the (U.S.) west coast. In his research, all the network 
members indicated “perceived” relationships among all dyads. Twenty- 
one management-level employees (supervisors through president) were 
asked: “Who would person X go to for help or advice at work?” Below 
the question, twenty managers were listed, resulting in three-way (21 x 
21 X 21) binary, sociometric data. The elements of the matrix can be 
represented as u,~,,~ where i is the “sender” of the relationship, k is the 
the “receiver” of the relationship, and m is the “perceive? of the 
relationship between i and k. Thus, u~,,~.* = 1 would be interpreted to 
mean that person 8 thinks person 3 approaches 12 for help and advice. 
For the purpose of demonstrating the methodology here, six employees 
were excluded since they were perceived to have very few contacts with 
others. 

5.2. The stochastic path-length tree analysis 

5.2.1. Clique detection 
The greatest challenge in network analysis is how to formally define 
“cliques” (see Lankford 1974). Even though several formal definitions 
are proposed in graph-theoretic approaches, such as the ‘maximal 
complete subgroup” (Lute and Perry 1949), the “maximal strong 
component” (Harary et al. 1965), the “n-clique” (Lute 1950) and the 
“k-plex” (Siedman and Foster 1978), there is no formal clique defini- 
tion proposed in distance approaches. This problem is present in most 
clustering methodologies where the number of clusters to be retained is 
typically selected in an ad hoc manner. The most generally accepted 
clustering rule in traditional hierarchical clustering, for example, is to 
choose some arbitrary distance value on the derived tree, and define 
clusters or cliques in terms of groups of actors who join below this 
value. At some point, an appropriate value of this criteria is selected 
that most strikingly shows the pattern of clustering (see Burt 1980 for 
such a procedure). This ad hoc criterion, however, does not always 
render the “optimal” clique detection, especially when a strikingly clear 
pattern of clustering is not present. Here, we propose a new method to 
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Fig. 3. The estimated two-mode ultrametric tree for the network data. Estimated threshold 

level(s) = 0.683. 

estimate the threshold value (s) embodied in the estimation of the tree 
structure. 

In our estimated two-mode ultrametric trees, the location of s is 
defined since the distance from all the terminal nodes are equidistant 
from the root. However, the location of s is not uniquely defined in 
additive trees because it varies for each dyad or pair of actors. Thus, 
the approach we propose here is to define cliques utilizing the threshold 
value estimated in the two-mode ultrametric tree (holding r, = ck = 0). 
The resulting two-mode ultrametric tree is shown in Figure 3. The 
estimated threshold value (s) in this two-mode ultrametric tree(s) 
equals 0.683 and determines five clusters/cliques and six isolates. We 
use the letters A-O to represent the individuals as information givers 
(or contact recipients) and letters a-o to represent information re- 
ceivers (or contact initiators). Reading from left to right in Figure 3, 
clique 1 consists of actors (K, k), (A, a), (H, h) and D; clique 2 of 
actors (J, j), E, 0, and M; clique 3 of actors B, F, d, and n; clique 4 of 
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Fig. 4. Hierarchical clustering of the network data utilizing Burt’s (1977) model. 

actors g, L, i, c, and N; and, clique 5 of actors G and 1. Actors e, o, m, 
b, I, and f are depicted as isolates. 

Note that Figure 3 also depicts overlapping clique structure. Individ- 
ual (D, d) is a member of both cliques 1 and 3, acting as an informa- 
tion giver in clique 1 and as an information receiver in clique 3. 
Similarly, individual (G, g) participates in clique 5 as an information 
giver and in clique 4 as an information receiver. Individual (N, n) acts 
as an information giver in clique 4 and an information receiver in 
clique 3. 

Figures 4 and 5 show the comparative representations of the aggre- 
gated or pooled data using a derived dissimilarity measure when it is 
submitted to hierarchical clustering (Burt 1977) and to block clustering 
(Brieger et al. 1975) respectively. One can easily see that there are 
substantial difference in these three results (Figures 3, 4, and 5). This is 
due to the differences in the data requirements and assumptions of 
these methodologies (recall that Burt’s procedure and block clustering 
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Fig. 5. Block clustering results for the network data using the Brieger et al. (1975) method. 

are positional approaches, while the proposed methodology takes a 
relational approach). In addition, the later two approaches do not 
depict the asymmetry in A. 

5.2.2. Construction of sociometric indices 
After detecting cliques using the two-mode ultrametric tree, we proceed 
to estimate the additive constants ( Y,‘S and ck’s). A two-mode, path- 
length tree portraying the communication network among these fifteen 
managers is shown in Figure 6. The log-likelihood value is - 38.2 and 
the simple matching coefficient is 0.913. Again, the capital letters A-O 
represent individuals as information givers (or contact recipients) and 
the small letters a-o represent information receivers (or contact ini- 
tiators), thus portraying the asymmetric (two-mode) nature of com- 
munication. The distance between two actors ( dik) is the sum of the 
lengths of vertical bars that link them. 
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Fig. 6. The estimated two-mode path-length tree for the network data. 

I f 

A variety of indices can be devised to summarize various characteris- 
tics of individual actors, subgroups, and the entire network. In addition 
to clique detection, one can derive a variety of sociometric measures 
from this methodology which describe a number of different aspects of 
the communication process. In the next sub-section, existing methods 
for constructing sociometric indices are briefly reviewed and new 
measures for these indices derived from the resulting path-length tree 
are discussed. 

5.2.2. I. Indices for groups of individuals 
(i) Clique cohesiveness Much research related to the construction of 
group indices are concerned with the cohesiveness of a group. Proctor 
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and Loomis (1951) use the number of mutual choices in a binary 
sociometric matrix of direct contacts divided by the maximal possible 
number of such choices as an index of group cohesiveness. The follow- 
ing measure for clique cohesiveness based on the estimated path length 
tree is proposed: 

where: 

;, 
: indexes an individual as a contact recipient in clique c, 
: indexes an individual as a contact initiator in clique c, 

N,, = the number of i’s in clique c, 

NC2 = the number of k’s in clique c, and 

d;, = the path-length distance between actors i and k. 

This measure can be regarded as the average social distance among 
members within a clique. Subgroup cohesiveness measures computed 
for the cliques defined via (5.1) are shown in Table 7. In this applica- 
tion, it appears that cliques 2, 3, and 5 are the most cohesive groups, 
whereas clique 4 is the least cohesive. 
(ii) Interclique relations Asymmetric interclique relationships can be 
analyzed in terms of the strength and direction of these relationship. A 
measure indicating the strength of the relationship between cliques is 
posited as an average distance between all possible dyads, one as a 

Table I 

Clique cohesive measures 

Clique Proposed 

measure * 

1 0.21 

2 0.16 

3 0.14 
4 0.37 

5 0.13 

* The range of this measure has been standardized to sum to 1.00. 
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Table 8 

Average path-length between cliques 

Recipients Initiators AVG 

1 2 3 4 5 

1 93.0 111.5 123.3 141.0 117.2 

2 107.0 _ 118.5 113.3 131.0 117.5 

3 112.0 88.0 88.3 106.0 98.6 

4 128.7 105.0 93.5 101.0 107.1 

5 127.0 103.0 91.5 81.3 100.7 

AVG 11x.7 97.2 103.8 101.6 119.8 

contact recipient from clique a and the other as a contact initiator 
from clique b (IC,,): 

c c dd 
rc,b = 

,ra Irb 
N N , a+b, 

a h 
(5 4 

where : 

; 
: indexes actors as contact initiators in clique a, 
: indexes actors as contact recipients in clique b, 

N,, Nh =number of i’s in clique a, number of l’s in clique b. 
Table 8 lists the IC,,s of all possible combinations of the five 

cliques. The table indicates the communication flows (directions of 
interclique relationship) of clique 2 -+ clique 1, clique 2 + clique 3, 
clique 3 + clique 4, clique 3 + clique 5, clique 4 -+ clique 3, and clique 
4 -+ clique 5. The column/row average of Table 8 can be computed to 
represent each clique’s opinion leadership/followership. It appears that 
clique 3 plays an opinion-leading role as a group, while clique 2 is most 
active in acquiring information. 

5.2.2.2. Indices for individuals 
Individual indices are not only functions of a single individual, but also 
refer implicitly to some set of other persons with whom the individual 
is related. An example is the number of contacts an individual receives 
from a group as a whole or from cliques to which the individual 
belongs. One individual index is his/her row or column total in the 
sociomatrix, i.e., the number of choices he/she gives and receives. An 
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actor is “isolated” on the periphery of a system if he/she has no 
relations with others in the system (see also Bavelas 1950; Freeman 
1979; Lin 1976; Niemien 1974 for measures of individual prestige, 
centrality, and liason). As discussed before, most analysis methods for 
determining individual actors’ social position are performed without 
considering subgroup level and/or system level aspects. We propose 
some important measures for individual roles which we can derive 
directly from the tree in Figure 6. 
(i) Op. I d h’ f 11 mzon ea ers zp/ o owership In Figure 6, the path length from 
the terminal node (representing an actor as a contact recipient) to the 
root of the tree can be considered as an indirect measure of the degree 
to which an actor is involved in a communication activity as an 
information source, i.e., opinion leadership. This is because the closer 
an actor is to other individuals as an information giver, the higher the 
corresponding node is located. Although the root in the path-length 
tree is, in general, arbitrarily determined, the procedure mentioned 
above (construct ultrametric tree first using trk, then add constants r, 
and ck to each appropriate terminal node) uniquely defines the root. 
For instance, actor A’s and B’s opinion leadership measures are 0.58 
and 0.50, respectively, implying that B is contacted by more actors than 
A. Similarly, the height from the terminal nodes of a-o to the root 
shows how actively an actor seeks advice from peers (opinion follower- 
ship). Note that these indices are visually embedded in the social 
structure, measured relative to all participants in a system. Opinion 
leadership/ followership measures computed by path-length distances, 
along with average column/row totals of l’s and the centrality measure 
proposed by Bavelas (1950), are listed in Table 9. Individual B ap- 
parently receives the most requests for advice, while individual o 
apparently initiates contacts with nearly everybody. Other participants 
appear to maintain a moderate amount of contacts with some varia- 
tions. It must be mentioned that opinion followership is not necessarily 
negatively correlated with opinion leadership; for instance, an absolute 
isolate neither provides nor seeks information. 

Pearson correlation coefficients between the proposed measure and 
the column/row totals of l’s were computed to test the validity of this 
measure in comparison with the traditional individual index. High 
correlations ( - 0.86 of opinion leadership measure and - 0.83 of opin- 
ion followership measure) support the construct validity of the newly 
proposed measure. 
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Table 9 

Opinion leadership/followership measures 

Individual Leadership Followership Bavelas’ centrality 

XI XI Y, yz 

A 0.58 8 0.88 

B 0.50 12 0.73 

C 0.82 2 0.58 

D 0.73 5 0.64 

E 0.77 3 0.61 

F 0.63 8 1.00 

G 0.54 9 0.70 

H 0.68 7 0.71 

I 0.81 3 0.62 

J 0.70 6 0.54 

K 0.57 8 0.75 

L 0.74 5 1.00 

M 0.82 3 0.72 

N 0.72 5 0.83 

0 1.00 1 0.50 

X,, Y, : Proposed opinion leadership/followership. 

X,, Y,: Average column/row total of 1’s. 

Pearson correlation between X, and X, = -0.86. 

Pearson correlation between Y, and Y, = - 0.85. 

3 0.13 

2 0.16 

11 0.15 

7 0.16 

9 0.14 

0 0.09 

5 0.16 

6 0.15 

9 0.14 

9 0.17 

3 0.13 

1 0.07 

5 0.09 

2 0.09 

14 0.17 

(ii) Liaison identification Figure 6 also illustrates visual detection of 
liaisons. In our methodology, an actor belonging to two different 
cliques is defined as a liaison. As discussed above, actors (G, g), (D, d), 
and (N, n) perform a liaison role. It should be emphasized again that 
the procedure not only identifies liaisons, but also shows the direction 
of information flows across cliques. 

6. Conclusion 

A stochastic, path-length methodology for analyzing two-mode, binary, 
sociometric data is presented and successfully tested. A penalty-func- 
tion-based methodology is developed to estimate a tree structure and 
the respective parameters. Its robustness to various data and algorithm 
factors are investigated using factorially designed synthetic data. An 
application study of the methodology to actual sociometric data is 
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presented. The interpretation of the social structure is discussed and 
various sociometric measures are derived. 

While the results of the methodology are promising, several areas of 
future research can be identified. Concerning methodological issues, 
the preliminary simulation results demonstrate that the algorithm per- 
forms reasonably well. However, the behavior of the algorithm needs to 
be investigated further where a number of additional independent 
factors (e.g., misspecification of the distribution of erkm) are also 
experimentally varied. As previously mentioned, more ambitious Monte 
Carlo analyses need to be conducted using more complex experimental 
designs (e.g., full factorial designs with replications per cell). In ad- 
dition, the procedure must be tested with respect to violations in the 
independence assumptions inherent in the construction of the likeli- 
hood function, although such tests with similarly constructed spatial 
multidimensional scaling models (see DeSarbo and Cho 1989; DeSarbo 
and Hoffman 1986) demonstrated robustness to several such violations 
to these independence assumptions. 

A number of promising research opportunities are suggested to 
extend this methodology. This methodology can be easily modified to 
accommodate various types of metric network data that specify the 
strength or number of contacts among dyads. Multiple path-length 
trees can also be estimated for a particular data set. As discussed in 
Carroll and Pruzansky (1980) when there are multiple hierarchies in a 
data set, two or more trees can be fitted to represent these separate 
hierarchies (this idea can be thought of as a multidimensional generali- 
zation of the single-tree structure). Finally, comparisons with three-way 
multidimensional scaling representations derived from such binary data 
(e.g., Jedidi and DeSarbo 1991) for selected applications would prove 
of value. 

On the substantive side, several research directions using this path- 
length methodology can be speculated. The proposed methodology has 
wide applicability because of the rich information provided concerning 
sociometric relations. Whenever an explicit understanding is needed of 
the personal or interorganizational interactions at a dyadic level, a 
subgroup level, or an entire group level, the proposed method of 
network analysis can be gainfully employed. 
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Appendix 

A penalty function algorithm for estimation 

Phase I: Starting value generation 

Starting estimates of t,, can be set using one of the following two 
methods: 
(i) randomly generate t,, from a Uniform distribution, or 
(ii) use the input data, i.e., set the starting value of ti, to (1 - 

n,!JM)(tmax - tmin ), where tmax( tmin) is the upper (lower) limit 
value of the estimates. Thus, if i and k are tied in every relation- 

ship (n,, = M), tik is set to 0; if i and k are not tied in any 
relationship ( nrk = 0), tik is set to 100 (we set 100 for t,,, and 0 for 

tmin). 

Initialize the major iteration index (MI) = 0 and set p = 0. 

Phase II: Estimate T, r, c, and s 

The estimation problem can be stated as: 

MaximizeA=ln L= ff [n ,,+ In @(*> + (M- nik) ln(l- @(*>)], 
l#k 

(A-1) 

subject to the condition that T satisfies the two-class ultrametric 
inequality. Using an exterior penalty function approach, this con- 
strained optimization problem is solved by sequentially maximizing the 
unconstrained function: 

Z( 0, p) = A (iI> - pP(T) with P > 0, (A.4 

for an increasing sequence of p values, where D denotes a stacked 
vector of all the parameters to be estimated (i.e., tlk, r,, ck, and s). The 
first component in (A.2) is given in (A.l), and the second component, 
P(T), is a penalty function that expresses how strongly T deviates from 
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the two-class ultrametric inequality condition. The penalty function is 
defined as (De Soete et al. 1984): 

N i-l N k-l 

‘CT) = C C C C b,jkl- ‘ijkl)‘7 
r=2 /=I k=2 I=1 

where uiJkl = max( trl, tik, tjk, tjl) ; and (fw 

’ max( tr[, fjk > tj,) if UIJkl = tik, 

max( tiky tjk> tj/) if Uijk/ = tl/, 
v,jkl = 

max( ti/3 tik) 'j/) if uijkl = tJk ) 

max(t,[, t,k, tjk) if U;jkl = tj,. 

(A-5) 

With this framework, we now estimate T, r, c, and s. Estimates of 
these parameters are sought to maximize the augmented log-likelihood 
function in (A.2) using a quasi-Newton gradient search method, where 
the partial derivatives Of z( 52, p) with respect t0 tik, r,, ck, and s are: 

=xa P> am-q a-w 
at,k =-3q-- p ati, ’ 

(A4 

where: 

+p =+(.) CM- %k) nrk -- 

0 - W)) w> 

am? N i-l N k-l 

~ =2 c c c c (Uijki-uijkl)(e~~/-_f;f~l): 
at,k ;=I J=l k=l /=l 

WI 

(A@ 

ab 1 
eijkt = 

if uijkr = t,, and a = i or j, while b = k or 1, 

0 otherwise, 
(A.91 

$1 = 
1 if viJk[ = t,, and a = i or j, while b = k or I, 

0 otherwise, 
(A.lO) 
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(AX) 

(A.12) 

(A.13) 

where +( 0) is the standard normal density and @(*) is the associated 
standard normal cdf, each evaluated at (0). Iterations of the quasi- 
Newton gradient search procedures occur until no subsequent improve- 
ment in the objective function is realized. 

Phase III: Test for convergence 

i#k 

< c (a small constant - O.OOl), stop; 

otherwise, go to Phase IV. 

Phase IV: Update p 

Set MI=MI+l and pLM’+‘]=R X pLMI1 (default value of R = 10). 
Go to Phase II. 

References 

Addleman, S. 
1962 “Orthogonal main-effect plans for asymmetrical factorial experiments”. Technometrics 4: 

21-46. 

Bavelas, A. 
1950 “Communication patterns in task oriented groups”. Journal of Acoustic Society of 

America 22: 271-281. 

Bock, R.D. and S.Z. Husain 
1950 “An adaptation of Holzinger’s B-coefficients for the analysis of sociometric data”. 

Sociometry 13: 146-153. 

Brieger, R.L., S.A. Boorman and P. Arabie 
1975 “An algorithm for clustering relational data with application to social network analysis 

and comparison with multidimensional scaling”. Journal of Mathematical Psychology 12: 

328-383. 



J. Cho and W.S. DeSarbo / Stochastic tree methodology 139 

Burt, R.S. 
1977 “Positions in multiple network system. Part One: A general conception of stratification 

and prestige in a system of actors cast as a social typology”. Social Forces 57: 1066131. 

Burt, R.S. 
1980 “Models of network structure”. Annual Review of Sociology 6: 79-141. 

Carroll, J.D. 

1976 “Spatial, non-spatial, and hybrid models for scaling”. Psychometrika 41: 439-463. 

Carroll, J.D. and S. Pruzansky 

1980 “Discrete and hybrid scaling models”. In E.D. Lantermann and H. Feger (eds.), 

Similarity and Choice. Bern: Hans Huber. 

Cunningham, J.P. 

1978 “Free trees and bidirectional trees as representations of psychological distance”. Journal 

of Mathematical Psychology 17: 165-188. 

Davis, J.A. 
1967 “Clustering and balance in graph”. Human Relations 20: 181-187. 

DeSarbo, W.S. and J.D. Carroll 
1985 “Three-way metric unfolding via weighted alternating least squares”. Psychometrika 50: 

275-300. 

DeSarbo, W.S. and D. Hoffman 

1986 “Simple and weighted unfolding MDS threshold models for the spatial analysis of 

binary data”. Applied Psychological Measurement IO: 247-264. 

DeSarbo, W.S. and J. Cho 

1989 “A stochastic multidimensional scaling vector threshold model for the spatial representa- 

tion of ‘Pick Any/N’ data”. Psychometrika 54: 105-129. 

De Soete, G., W.S. DeSarbo, G.W. Furnas and J.D. Carroll 

1984 “The estimation of ultrametric and path-length trees from rectangular proximity data”. 

Psychometrika 49: 289-310. 

Dobson, A.J. 
1974 “Unrooted trees for numerical taxonomy”. Journal of Applied Probabihty II: 32-42. 

Farris, J.S. 

1972 “Estimating phylogenetic trees from distance matrices”. American Naturalist 106: 645- 

668. 

Forsyth, E. and L. Katz 

1946 “A matrix approach to the analysis of sociometric data: Preliminary report”. Sociometry 

9: 340-347. 

Freeman, L.C. 

1979 “Centrality in social networks: Conceptual clarification”. Socia/ Networks I: 215-239. 

Furnas, G.W. 

1980 “Objects and their features: the metric representation of two class data”. Unpublished 
Doctoral Dissertation, Stanford University, Stanford. 

Harary, F., R. Norman and D. Cartright 

1965 Structural Models. New York: Wiley. 

Hartigan, J.A. 

1967 “Representation of similarity matrices by trees”. Journal of the American Statistical 

Association 62: 1140-1158. 

Hubbell, C.H. 
1965 “An input-output approach to clique identification”. Sociometty 28: 377799. 

Hutchinson, J.W. 

1989 “Netscal: A network scaling algorithm for nonsymmetric proximity data”. Psycho- 

metrika 54: 25-51. 



140 J. Cho and W.S. DeSarbo / Stochastic tree methodology 

Jedidi, K. and W.S. DeSarbo 

1991 “A stochastic multidimensional scaling methodology for the spatial representation of 

three-mode, three-way binary data”. Psychometrika, forthcoming. 

Johnson, SC. 

1967 “Hierarchical clustering schemes”. Psychometnka 32: 241-254. 

Klauer, K.C. and J.D. Carroll 

1989 “A mathematical programming approach to fitting general graphs”. Journal of Classifi- 

cation 6: 247-270. 

Klauer, K.C. and J.D. Carroll 

1990 “A comparison of two approaches to fitting directed graphs to nonsymmetric proximity 

measures”. Working Paper, Bell Laboratories, Murray Hill, NJ. 

Klovdahl, AS. 

1981 “A note on image of networks”. Social Networks 3: 197-214. 

Knoke, D. and J.H. Kuklinski 

1982 Network Analysis. Beverly Hills: Sage Publications, Inc. 

Krackhardt, D. 

1987 “Cognitive social structures”. Social Networks 9: 108-33. 

Lankford, P.M. 

1974 “Comparative analysis of clique identification methods”. Sociometry 37: 287-305. 

Lin, N. 

1976 Foundations of Social Research. New York: McGraw-Hill. 

Lute, R.D. 

1950 “Connectivity and generalized cliques in sociometric group structure”. Psychometrika 

15: 169-190. 

Lute, R.D. and A.D. Perry 

1949 “A method of matrix analysis of group structure”. Psychometrika 14: 95-117. 

Niemien, J. 

1974 “On the centrality in a directed graph”. Social Sctence Research 2: 371-378. 

Northway, M.L. 

1949 “A method for depicting social relationships obtained by sociometric testing”. Soclome- 

try 3: 144150. 

Pendyck, R.S. and D.L. Rubinfeld 

1981 Econometric Models and Economic Models. New York: McGraw Hill. 

Proctor, C.H. and C.P. Loomis 
1951 “Analysis of sociometric data”. In M. Jahoda et al. (eds.), Research Methods in Social 

Relations. New York: Dryden. 

Rao, S.S. 

1979 Optimization Theory and Applications. New York: Wiley. 

Sattath, S. and A. Tversky 

1977 “Additive similarity tree”. Psychometrika 42: 319-345. 

Siedman, S.B. and B.L. Foster 
1978 “A graph-theoretic generalization of the clique concept”. Journal of Mathematical 

Sociology 6: 139-54. 

White, H.C., S.A. Boorman and R.L. Brieger 

1975 “Social structure from multiple networks: Blockmodels of roles and positions”. Amen- 

can Journal of Sociology 81: 730-80. 


