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We present a new method for analyzing time series which is designed to extract inherent deterministic dependencies in 
the series. The method is particularly suited to series with broad-band spectra such as chaotic series with or without noise. 
We derive quantities, ~j(e), based on conditional probabilities, whose magnitude, roughly speaking, is an indicator of the 
extent to which the kth element in the series is a deterministic function of the (k - j ) th  element to within a measurement 
uncertainty, e. We apply our method to a number of deterministic time series generated by chaotic processes such as the 
tent, logistic and H~non maps, as well as to sequences of quasi-random numbers. In all cases the 6j correctly indicate the 
expected dependencies. We also show that the ~j are robust to the addition of substantial noise in a deterministic process. 
In addition, we derive a predictability index which is a measure of the extent to which a time series is predictable given some 
tolerance, e. Finally, we discuss the behavior of the 6i as e approaches zero. 

I. Introduct ion  

Time series which evidence characteristics of a 

b road -band  spect rum are notoriously difficult to 

analyze. Tradi t iona l  methods  such as Four ie r  

analysis or other  l inear  t ransforms usually fail to 

offer many  insights into the under ly ing structure 

of such a t ime series. Broad-band  t ime series 

appear  in many  contexts including data signaling 

processes, biomedical  applications,  and economic 

systems and,  unfor tunate ly ,  are more  the rule 

than  the exception. 

Crudely speaking, the b road -band  na tu re  of 

such series may be due to "noise" ,  to determinis-  

tic processes of a chaotic, or near-chaot ic  na ture ,  

or to a combina t ion  of both. One  impor tan t  ob- 

jective in the analysis of b road-band  series is 

dis t inguishing among  these alternatives.  In  this 

paper,  we presen t  a method  for analyzing time 

series which allows one to dist inguish be tween  

certain kinds of noise and certain determinis t ic  

processes. Our  approach is based on the con- 

s truct ion of condi t ional  probabil i t ies  for the repe- 

t i t ion of short sequent ia l  pa t te rns  of values in a 

t ime series. The  condi t ional  probabil i t ies  can be 

expressed in terms of the Grassberger -Procacc ia  

correlat ion integrals [1] and conta in  informat ion  

from the ent i re  series. If the series is genera ted  

by a chaotic process, then  our  method  samples all 

regions of the attractor.  Using this method,  we 

can determine ,  quantitatively,  the extent to which 

a term in the t ime series is a funct ion of previous 

terms in the series. As a by-product,  we are able 

to de termine ,  in the case of a chaotic system, the 

mi n i mum embedd ing  d imens ion  necessary for a 

reasonable  descript ion of the dynamics. As we 

shall make clear below, this m i n i m u m  embedd ing  

d imens ion  general ly depends  on e, the to lerance 

or uncer ta in ty  with which one  wishes to observe 

the dynamics. Finally, we in t roduce  a predictabil-  
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ity index which measures the degree to which a 

series is predictable (i.e., the extent to which a 

series is driven by reproducible deterministic dy- 
namics) given values of previous elements in the 

series. To discuss our methods we will study 

several low-dimensional maps, both with and 

without noise. 

The rest of this paper is organized as follows: 

In the next section we shall derive the condi- 

tional probabilities of interest in terms of the 

Grassberger-Procaccia correlation integrals. We 

shall also review the work of Brock, Dechert, 
Scheinkman, and collaborators [2, 3], and will 

show in what sense our work generalizes and 
extends their results. In section 3 we shall apply 

our method to several mathematical systems in- 

cluding the tent, logistic, and Hdnon maps, as 

well as to sequences of numbers generated by a 
good random number generator. We shall show 

that our method correctly indicates what are the 

dependent variables in each of these cases. In 

section 4 we discuss some technical points which 
arise in systems with converging trajectories. In 

section 5 we shall briefly discuss the e-depen- 
dence of our results. Section 6 consists of a 

summary and conclusion. 

general contexts also, but this paradigm is helpful 

for directing the discussion. 

2.1. Review of  the BDS test 

Let us suppose that we have a time series and 

we want to tell whether it is random, or whether 

it is generated by some underlying map. In this 
paper random will mean IID, that the numbers in 

the series are independent and drawn from a 
probability distribution which is identical for each 

number. A statistical test against the null hypoth- 

esis that a sequence of numbers is I ID (the BDS 
test) has recently been devised by Brock, Dechert 

and Scheinkman [2]. Their test works as follows: 

Following Grassberger and Procaccia [1], one 

forms d-tuples from the time series which one 
considers to be vectors in a d-dimensional space: 

v ( i )  = ( x ( i ) ,  x ( i -  1) . . . . .  x ( i  - d + 1)) 

= ( v l ( i ) , v 2 ( i ) , . . . , v a ( i ) ) .  (1) 

One then defines an indicator function /it(e), 
which is 1 if each Cartesian component of the 
vector v(i)  is within e of the corresponding 

Cartesian component of the vector v(j), and zero 

otherwise. Thus, 

2. Tools for analyzing time series 

Consider a time series of real numbers, x(n).  
For most of this paper we assume that n is 

discrete. We will briefly comment on continuous 
time series in section 6. The sequence x (n )  may 

have a broad-band spectrum and still be gener- 
ated by a relatively simple underlying determinis- 

tic process. Although it is not necessary for the 
application of our procedure, it may be useful to 
have in mind, as a paradigm, an underlying itera- 
tive map (either with or without noise) as the 
generator of the time series so that x(n  + 1)= 
F[{x(j)}] + rl, where F is some function which 
depends on some set of x( j ) ,  j < n + 1, and r/ is 
some stationary delta-function correlated noise. 
Our method gives useful information in more 

d 

I l l (e)  = H O(e - Ivk(i ) - vk(j)t ) (2) 
k = l  

and 

1 E l i j (e )  (3) C a ( e )  = -~ 
pairs 

where u is the number of pairs of vectors 
( v ( i ) , v ( j ) ) .  Cd(e) just measures the probability 
that two d-vectors are within e of each other in 
all their Cartesian coordinates. The BDS statistic 
proceeds from the observation that for a se- 
quence of numbers that are IID 

Nd(e ) = Cd(e ) -- [C | (e ) ]  d ~ 0 (4) 
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in a statistical sense, for any d no matter how 
large. The contribution of Brock, Dechert  and 
Scheinkman was to derive the correct normaliza- 
tion factor Kd(e) by which to divide (4) to be able 
to make a precise statistical statement. They 
showed that in the limit that the time series gets 
infinitely long, 

~a(e) = N d ( e ) / K d ( e )  (5) 

is a statistic normally distributed with a mean of 
zero and a standard deviation of one for any 
embedding dimension, d, if the sequence of num- 
bers is l iD. (The normalization factor, Kd(e), is 
not particularly illuminating, and so we do not 
present it here. It is derived in ref. (2).) Thus, (5) 
constitutes a test against the null hypothesis that 
the sequence of numbers is l iD. 

The BDS statistic has been extensively studied 
and has been shown to have power against many 
sequences generated by deterministic maps, but 
which pass standard tests of randomness based 
on autocorrelation functions. ~d(e) is a quantity 
that measures the "clumpiness" (other than that 
due to a non-fiat probability distribution) in d 
embedding dimensions. Typically, when applied 
to a low-dimensional deterministic chaotic se- 
quence, ~d(e) becomes significantly larger than 
one for values of d in which the attractor begins 
to show some non-trivial structure, and increases 
with d for larger values. For example, when ap- 
plied to the tent rhap with e chosen to be one-half 
the standard deviation of the sequence (about 
0.25) ~2(e) is already about 300, sea(e) is about 
700, and ~d(e) continues to grow for larger values 
of d. For a noisy deterministic system with a 
higher-dimensional attractor, ~d(e) will typically 
be fairly small for low embedding dimensions and 
will begin to increase in dimensions in which the 
attractor begins to show some non-trivial struc- 
ture. 

However, it is not clear what information is con- 
tained in the BDS statistic for larger dimensions. 
For example, since the tent map is generated by a 
single variable map, all the information about the 
tent map is already contained in two embedding 
dimensions. The fact that ~d(e) continues to grow 
for larger d just reflects the fact that the attractor 
of the tent map is always a one-dimensional 
structure in any embedding dimension, and as d 
increases it becomes less likely that a one-dimen- 
sional structure could have been produced by an 
l iD process in d dimensions. On the other hand, 
maps such as the H6non map in which there is 
explicit dependence on more than one (in this 
case two) previous variables also have values of 
~d(e) that grow with d, but in this case there may 
be new information contained in higher-dimen- 
sional embeddings. 

To see how to identify cases in which higher- 
dimensional embeddings provide new informa- 
tion, let us look again at the Cd(e)'S. Consider the 
two subsequences of length d represented by two 
vectors, v(i) and v(j).  It is easy to see that Ca(e) 
is just the probability that each member of one of 
the sequences of length d is within e of the 
corresponding member of the other sequence. 
That  is, 

Ca(e ) = e ( td ,  td_ l . . . . .  t ,) ,  (6) 

where t k stands for the statement 

IVd-k+l(i) - va_k+,(J)l -< e. 

Now, suppose we have two numbers from the 
time series, x(i) and x(j)  such that I x ( i ) - x ( j ) l  
<e .  What is the probability that Ix(i + 1 ) -  

x( j  + 1)1 < e ?  This is just the conditional 
probability P(t21 tl). But, since P(ta, tl) = 
P(t2[ tl)P(tl), we have 

2.2. Indicators for dependent variables P(tz l t , )  = C21C ,, (7) 

It is clear that the BDS statistic is very useful 
at ruling out IID behavior for a time series. 

where for notational simplicity we have dropped 
the e. If the sequence of numbers is l iD, then 
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P(t2l t  1) = P ( t  2) = C,, and we have C 2 = C?. Con- 
sider 

6,  = 1 - c /c2. (8) 

If the sequence of numbers is IID, then in a 
statistical sense 6, will be zero. In fact, 6, is just 
proportional to the numerator  of the first BDS 
statistic, ~z(e). 

Although a significant deviation of 6, from 
zero indicates absence of IID behavior, the evalu- 
ation of (8) contains more precise information. 6~ 
will differ appreciably from zero if P( t z l t , ) 4 :  
P(t2). This will be the case, for example, if the 
time series is generated by a deterministic system 
with a single lag dependence. If, on the other 
hand, the time series is generated by a map in 
which x( i )  depends only on terms in the series 
other than x( i  - 1), then 6, will still be approxi- 
mately zero. 

Now consider possible dependencies of x ( i )  on 
x( i  - 2). Even if the sequence is generated by a 
map which has only explicit single lag depen- 
dence, there will still be an induced dependence 
of x( i )  on x ( i - 2 ) :  If x ( i ) = F ( x ( i - 1 ) ) ,  then 
x ( i )  = F[Zl(x(i - 2)). (In fact, it is just this induced 
dependence that is measured by forming the 
semi-invariants from the Cd'S [4].) We are inter- 
ested, however, in any dependence of x( i )  on 
x ( i -  2) in addition to this (trivial) induced de- 
pendence. Such additional dependence might be 
the result of additional explicit dependence on 
x ( i -  2) in the fundamental map, or might result 
from the non-uniform curvature in a simple single 
lag map, as we shall discuss in the next section. 

To form a measure of this additional depen- 
dence, note that 

C 3 = P ( t 3 , t 2 , t l )  = P ( t 3 l t 2 , t l ) P ( t 2 , t l )  (9) 

so that 

P (  t3lt2, t l )  = C3//62 . (lo) 

Now, if x ( i )  depends intrinsically only on x( i  - 1), 

then P(t3lt2,  t~) = P(t3lt2).  In this case, assuming 
that the system is time translationally invariant 
and using (7), (10) becomes 

C 3 / C  2 = P (  t31t2, t l )  = P (  t3lt2) 

= C 2 / / C i  . (11) 

Define 

6 2 = 1 - C 2 / C 1 C 3  . (12) 

From (11), if P(tl]t2,  t l )=P( t3[ t2 ) ,  then 6 2 = 0 .  

The extent to which 6 2 ~ 0 is a measure of the 
extent to which P(t31t2, t 1) :/: P(t31tz), and thus is 
a measure of the extent to which there is intrinsic 
dependence of x ( i )  on x( i  - 2). 

This argument can be continued, and in gen- 
eral one can define a quantity 

6j = 1 - c f / c y _  iCy +1, (13) 

which measures the degree of additional depen- 
dence of x( i )  on x( i  - j ) ,  aside from that induced 
by the explicit dependencies on x ( k )  for i - j  < 
k < i .  

Two comments are in order about these re- 
sults. First, the cognescenti will notice some for- 
mal similarity between the expressions (13), and 
the test for various degrees of Markovian behav- 
ior in a time series as developed by Kolmagorov 
[5]. The difference between our work and that of 
Kolmagorov is that the 6j's express dependencies 
which are the result of averages over different 
regions of the map. The usual application of the 
formalism of Kolmagorov is to conditional proba- 
bilities for the occurrence of specific values of the 
variables, x(n) ,  of the time series. In our formal- 
ism, on the contrary, the conditional probabilities 
search the entire series and compare different 
substrings in the series for similar structure. Thus, 
the 6j's provide less specific, average information. 
On the other hand, since the 6i's represent global 
averages, we are able to use information from all 
regions of the attractor, and so by constructing 
the 6j's we use the available information more 
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efficiently. Thus, our measures of conditional 
probability embody an analysis of the global 
properties of time series. Second, it should be 
clear that the 3 /s  will be most effective at indicat- 
ing dependencies which are generated by maps 
that are in some sense smooth. Our  conditional 
probabilities measure the probability of contin- 
ued closeness of sub-sequences of numbers in the 
time series. Such probabilities will pick up depen- 
dencies generated by smooth maps in which 
nearby points map, over short times, into points 
which are also relatively nearby. But these condi- 
tional probabilities may miss effects of maps which 
are sufficiently nonsmooth. This point will be 
discussed further in the next section. 

2.3. Interpretation o f  the 8i's and the 
predictability index 

Suppose that we have computed a set of 3 /s  
for some time series. Clearly, the larger a given 3/ 
the greater  the predictability of the time series. 
We now derive a measure of the additional pre- 

dictability of the time series in terms of the 3i's. 
First, let us be precise about what we mean by 
predictability. Imagine that we have a long time 
series x(n) ,  1 < n < N ,  and we wish to predict 
x ( N  + 1). We will say that our prediction is accu- 
rate if we are able to come within + e  of the 
correct value. The predictability of the series will 
increase as the probability of reproducible subse- 
quences of strings increases. 

If  we use only the information about the proba- 
bility distribution of values in the series, then we 
will be able to come within e of the correct value 
of x ( N  + 1) about C a of the time. For example, if 
the probability distribution is unimodal and 
peaked near  the average of the x's,  then, typi- 
cally, we will guess right about C a of the time if 
we just guess the average. Suppose now that 31 is 
nonzero. The greatest  degree of predictability we 
can have from dependence on the first previous 
number  in the time series is if P(t21t 1) = 1. In 
that case it follows from (7) and (8) that 3 t = 

1 -  C a. Thus a measure of the degree of pre- 
dictability coming from one dependence is 

S, = C1 / (1  - 3 1 ) .  (14) 

If  31 = 0 then S~ = C a and, given only the value 
of the immediately preceding element, the series 
is no more predictable than random. On the 
other hand, if 3 ~ = 1 - C ~  then S 1 = 1 ,  which 
means that the series is completely predictable 
given the value of the first preceding element #~. 

Suppose now that both 3x and 6 2 are nonzero. If  
P(t31t 2, t l ) = P ( t 3 l t  2) then there is no additional 
predicability from the two-lag, and 32 = 0. If  
P(t3l t  2, t~)=  1 then the series is completely pre- 
dictable given the two previous numbers, and 

32 = 1 - Ca/(1 - 31). Therefore  (disregarding for 
the moment  the possibility of negative 3/s), the 
quantity 

52= C1/(1 -31)(1 -32) (15) 

will range between C a if 31 and t~ 2 are both zero 
and the series is no more predictable than ran- 
dom given information of the two previous num- 
bers, and 1 if the series is completely predictable 
given information of the two previous numbers. 
This process continues, and in general we may 
define 

s=c, (1-3j). (16) 

S is a predictability index which takes on values 
C a < S < 1. I f  the series is no more predictable 
than a random ( l iD)  series would be, S = C v If, 
on the other hand, a number  in the series is 
completely determined by previous values of the 
series then S = 1. In many cases 3j will be sensi- 
bly zero for j > U. In these cases, therefore, the 
denominator  of (15) can be well estimated by 

u 

I - [  ( 1 -  3j). 
j= l  

#1In exceptional circumstances some 6j's can be negative. 
See section 4 for a further discussion. 
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Another  way to describe S is to say that Sj 
measures the degree to which subsequences of 
length j are reproducible in the series to within 
_+e. Finally, the meaning of S can be made still 
clearer by rewriting the 6j's in terms of condi- 
tional probabilities. Doing this, it is not difficult 
to see that 

S = lim P(t i l t j_l , t j_2, . . . , t l ) .  
j - - ,  oo 

Thus, if S = 1, then the series is eventually com- 
pletely predictable in the sense defined above. 

2.4. Generalized deltas 

The 6j's discussed above are indicators of de- 
pendence on the j th  lag in a time series. How- 
ever, a little thought will reveal that the test for 
j -dependence  as expressed in the calculation of 
the 3j's essentially uses information about the 
time series embedded in exactly j + 1 dimensions. 
We can also ask whether  the embedding in k 
dimensions shows evidence for j-lag dependence,  
with k > j + 1. As one might expect, this informa- 
tion is not independent  of the information con- 
tained in the 6j's. But, as we shall explain below, 
it is often useful to view the information about 
dependencies in this more general way. 

With this in mind, let us suppose we have 

constructed k-tuples from a time series, thereby 
embedding the series in k dimensions. We wish 
to derive a set of indicators which are small in k 
dimensions if there is no dependence on lags 
further than j - 1. If  k > j + 1 we can write 

Ck =P( t k , t k_ l , . . . , t l )  

=P(t~ltk_~, . . . , t l )  P( tk -1 , . . . , t l )  

=P(tkltk-1 . . . . .  tl) 

×P(t~_lltk_2 . . . . .  tl) 

XP( tk_2  . . . . .  t l )  

=P(t~lt~_l . . . . .  t l )P ( t k - l l t k -2 , . . . , t l )  ''" 

XP(t~+llt i . . . . .  tl) P(t; , . . . , t~).  (17) 

If we assume dependence on lags no further than 
j - 1 steps back, then 

P(tm+jltm+j-I . . . . .  /1) 

=P(tm+jltm+j-l,. . . , tm+l) 

for 1 < m < k - j .  Assuming time translation in- 
variance, 

P(tm+jltm+j_l . . . . .  tm+l ) 

=P(tjltj_ l . . . . .  t,) 

e(t j ,  tj_ 1, t j_z, . . . ,  t,) 
P(tj_,,tj_2 . . . . .  t l )  

c, 
C j - 1  " 

(18) 

Therefore,  if there is no dependence on lags 
further back than j -  1 steps, C k can finally be 
written as 

k - j  
ck = (c#q_,) q .  (19) 

Using (19) it is straightforward to construct 
generalizations of the 6i's which are sensitive to 
the assumption of j -dependence in k dimensions. 
These are defined as 

q - ( c # q - , )  k % 
Ck 

( CJ ) k jCj (20) 
= 1 -  ~ Ck.  

With this definition 6j = (~j+l] As with the ordi- 
, d [ k ]  ,~ nary 6; s, these generalized --j+m ~ are zero for 

1 _ < m _ < k - j - 1  if the assumption of no more 
than j -dependence is valid in k dimensions. The 
extent to which they are nonzero is a measure of 
the extent to which that assumption is not true. 
The utility of the generalized 6's lies in the fact 
that a time series may have a j-lag dependence 
which is weak and results in a 6j which is nonzero, 
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but not too large. (This may be the case, for 
example, in a noisy deterministic system.) In such 
a case it may not be clear from the value of 6j 
whether or not there is j -dependence.  On the 
other hand, if there is j -dependence,  then ~}k] 
should grow with increasing k, while values of 
6~ k] that are roughly independent of k are consis- 
tent with no significant j -dependence.  Examining 
the k-dependence of ~k] gives us a longer lever 
arm with which to study the j -dependence of the 
time series #2. Finally we note again that since the 
3 i and the ~}~l are both expressed in terms 

of the C~, the 6j are a complete set of variables in 
terms of which the 6~k] can be expressed. Specif- 
ically, it is easy to show that 

k - 1  

a} k] = 1 - 17  (1 -am) k - m  (21) 
m=j 

3. Application to mathematical examples 

3.1. Random numbers 

First we apply our method to quasi-l iD se- 
quences generated using a good random number  
generator.  For such sequences, we expect all of 
the 6j to be essentially zero indicating that there 
are no dependencies of one member  of the se- 
quence on any other. Table 1 lists the values of 
6j, j = 1 . . . . .  5 for two I ID sequences, one gener- 
ated using a uniform distribution and the other 
using a Gaussian probability distribution. Each 
sequence consists of 1000 points and our choice 
of tolerance, e, is equal to one half of the stan- 
dard deviation of the sequence, as it is for all of 
the sequences examined in this section. Note that 
the largest value of 6j is about 0.05. This gives a 
measure of the size of the statistical fluctuations 
about zero, which should be considered insignifi- 

#2In fact, 6~ k] are just proportional to the numera tor  of the 
BDS statistic (eqs. (4) and (5)), in k + 1 embedding dimen- 
sions. The dependence of the BDS statistic on embedding 
dimension has been useful in examining the null hypothesis of  
l iD  behavior. See refs. [2, 3] for more discussion. 

Table 1 
6j and predictability index for random sequences.  

Uniform Gaussian 
j random numbers  random numbers  

~j sj ~j 

0 0.265 0.264 
1 - 0.00296 0.264 0.0495 0.278 
2 - 0.00882 0.262 - 0.00314 0.277 
3 0.00809 0.264 0.0158 0.281 
4 0.0671 0.283 0.00738 0.283 
5 0.0228 0.290 - 0.00344 0.282 

cant in series of 1000 points. A value for one of 
the 6j significantly greater  than this can, with 
reasonable confidence, be taken as an indication 
of dependence. Notice also that some of the 6 i 
are negative. These negative values are not statis- 
tically significant in these series. However it is 
possible to obtain negative values of ~j that are 
significant in certain systems. We shall discuss 
this in section 4. 

In table 1 we also list values of Sj, the approxi- 
mation to the predictability index taking into 
account 6k, k = 1 . . . . .  j. In both cases we see that 
S t is approximately equal to C 1 independent of j, 
as we expect for a random sequence. 

3.2. The tent map 

The next simplest system to which to apply our 
method is the tent map defined by 

x(n  + 1) = 2 x ( n ) ,  

= - 2 x ( n )  + 2, 

T[x(n)] .  

x (n)  ~ 1 / 2  

x(n)  ~ 1 / 2  

(22) 

This map produces a chaotic sequence of num- 
bers uniformly distributed on the unit interval. 
The autocorrelation functions of a sequence gen- 
erated by this map are the same as those of a 
series of uniformly distributed l iD  numbers [6]. 
The first column in table 2 ((r = 0) lists the 6~ for 
j = 1 . . . . .  7 calculated for a sequence of 1000 tent 
map-generated points. The large value of 8] indi- 
cates that P(t 2 t])4:P(t 2) and so the sequence 
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Table 2 
6j and predictability index for sequences generated by the tent map with noise of strength ~r. See eqs. (22) and (23). 

j o" = 0.0 cr = 0.1 o- = 0.3 o" = 0.6 

a~ Sj aj s i aj sj aj sj 

0 0.267 0.268 0.269 0.274 

1 0.521 0.557 0.508 0.544 0.472 0.509 0.285 0.383 
2 0.0145 0.566 0.00595 0.548 0.0117 0.516 0.015 0.389 

3 -0 .00632 0.562 -0 .00880 0.543 0.000916 0.516 -0.00498 0.387 
4 0.000467 0.562 - 0.00295 0.541 - 0.00196 0.515 0.00934 0.390 

5 -0 .00424 0.560 -0.00623 0.538 0.00440 0.517 -0 .00844 0.388 
6 0.00426 0.562 - 0.00275 0.536 - 0.0201 0.507 - 0.0512 0.369 
7 -0 .00870 0.557 0.0128 0.543 0.00976 0.512 0.0159 0.375 

exhibits one dependence.  It  also tells us, afor t ior i  
that the data are not l iD,  in sharp contrast to the 
results for the random sequence. The rest of the 
6 i are small, indicating that there is no significant 
dependence greater  than one, and that two di- 
mensions are enough to reveal the dynamics of 
the attractor. These results are clearly consistent 
with eq. (22). 

Table 2 also shows the results of applying our 
test to the tent map plus uniform l iD  noise. 
These sequences are generated according to the 
equation 

x(n+l)=(T[x(n)]+~r~7) m o d l ,  (23) 

where rl is a uniform random deviate between 
- 0.5 and 0.5 and or is a pa ramete r  describing the 
strength of the noise. It is not difficult to see that 
as o- varies between 0 and 1 the sequence crosses 
over from a purely deterministic sequence (cr = 0) 
to a purely random one (~r = 1). Consistent with 
this, we note that as or increases 61 decreases. On 
the other hand, 6~ is still significant even for 
moderately large values of ~. Thus, our test is 
sensitive to the underlying dynamical depen- 
dence, even in the presence of significant noise. 
Of  course, when o-= 1, ~51 is statistically indistin- 
guishable f rom zero. 

In table 2 we also present  Sj for the tent map 
with different amounts of noise. We note that (i) 
for all the maps listed here, S 1 is considerably 
larger than S O ( =  CO, indicating additional infor- 

mation and predictability from incorporating 
information about one-dependence,  (ii) S i is 
substantially unchanged for j > 1 and (iii) for a 
given j, Sj decreases with increasing noise. All of 
these effects are just what we expect. We note 
also that for the tent map without noise, S 1 is 
about 1/2 ,  whereas one might expect that S 1 
should be one since for j = 1 we have incorpo- 
rated all the dynamics of the tent map and there 
is no additional noise. However, since e is non- 
zero we are not incorporating all the detailed 
information about the map into this calculation, 
nor are we seeking predictability to bet ter  than 
+e .  As e goes to zero $1 is expected to increase 
toward one in the absence of noise, as we shall 
discuss in section 5. 

It is worthwhile to describe one other effect. 
Consider a sequence generated by taking every 
third iterate of the tent map, i.e., 

x(n + 1) --- T[3][x(n)], 

with T(x) given in (22). It turns out that the ~i 
for this sequence are all small. No indication of 
one-dependence is present  as would be expected 
from a one-dependent  deterministic map. Fur- 
ther, the predictability index S ~ C 1 despite the 
fact that the sequence is deterministic. This can 
be understood by noting that Tt3l(x) oscillates 
rapidly between zero and one and in fact oscil- 
lates several times in an interval of length e 
(which we set equal to one half the standard 
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deviation, as previously explained). Hence  the 
sequence is not  reproducible  on this scale of  e 

because the underlying map  produces  sequences 
which are too  rapidly divergent. In section 5 we 

shall discuss fur ther  the e dependence  o f  indica- 

tors. 

3.3. The logistic map 

Next we examine the logistic map at the point  

of  fully developed chaos. This map,  defined by 
the equat ion 

x ( n  + 1) = 4 x ( n )  [1 - x ( n ) ] ,  (24) 

also generates  a chaotic sequence of  numbers  

distributed on the unit interval. However ,  in this 

case the distribution is not  uniform because of  

the nonuni form curvature in the quadrat ic  map. 
The  first column in table 3 lists the values of  6~ 

computed  for a sequence of  1000 points gener- 

a ted from this map with e again equal to half  the 
s tandard deviation of  the distribution. These  re- 

sults clearly indicate one-dependence ,  consistent 
with the form of  the map  (24). However,  note  

that  62, a l though small, is just on  the verge of  
being significant. In fact, even though according 

to the map  (24) x(n  + 1) depends  explicitly only 

on x(n),  62 is significantly different f rom zero for 

some values of  e. This is due  to the nonuni form 
curvature  of  the map (24), which induces changes  

in the nontrivial dependencies  in higher  condi- 

tional probabilities as we shall discuss in more  
detail in section 5. This effect notwithstanding, it 

is nonetheless  true that  the major  dependence  

indicated by the 6s's is dependence  on the imme- 

diately preceding variable, as we expect f rom eq. 
(24). 

Finally, in table 3 we also show the values of  6j. 

calculated for sequences o f  1000 points genera ted  

by a noisy logistic map.  In particular, the form 

(23) was used with T[x(n)] taken to be the right- 

hand  side o f  (24). As with the tent  map,  6 t 

decreases with increasing noise, but  even for fairly 
large values of  o,, it is large enough  to clearly 

signal the presence of  an underlying deterministic 

process. The  values o f  Sj are also included in this 
table. They  follow the same qualitative pa t te rn  as 

those in table 2, and similar comments  apply here 

also. 

3.4. The H~non map 

The H6non  map  has a chaotic  regime which 

defines a s trange at t ractor  with correlat ion di- 
mension 1, --- 1.22. It is defined by the equat ion 

x ( n  + 1) = 1 - a x 2 ( n )  + b x ( n -  1) (25) 

with a = 1.4 and b = 0.3. The  6j for this map,  
listed in table 4, indicate two-dependence  as ex- 

pected f rom the form of  (25). Al though  both  61 

and 62 are large, 61 is significantly larger than 6 2 
showing that  the dependence  of  x(n  + 1) is 

Table 3 
8j and predictability index for sequences generated by the logistic map with noise of strength tr. See eq. (24). 

j tr = 0.0 q = 0.1 tr = 0.3 ~r = 0.6 

% sj 8~ % % sj % sj 

0 0.296 0.290 0.283 0.284 
1 0.452 0.540 0.390 0.475 0.364 0.445 0.193 0.352 
2 0.0377 0.561 0.0726 0.513 0.0474 0.467 0.00841 0.355 
3 - 0.0166 0.552 - 0.00315 0.511 0.00630 0.470 - 0.00284 0.354 
4 - 0.0134 0.545 - 0.00457 0.509 0.000818 0.470 0.0140 0.359 
5 - 0.0117 0.539 0.000965 0.509 - 0.00296 0.469 0.0194 0.366 
6 - 0.000480 0.539 0.0180 0.519 0.00119 0.469 0.0143 0.371 
7 - 0.0165 0.530 - 0.0337 0.502 - 0.0142 0.463 0.0204 0.379 
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Table 4 
6j and predictability index for a sequence generated by the 
H~non map. See eq. (25). 

j 6j sj 

Table 5 
6j for interwoven sequences of logistic and H6non maps. 
See eqs. (26) and (27). 

3 logistic maps 2 H~non maps 

0 0,290 a 1 0.00163 0.0332 
1 0.442 0.520 62 - 0.00215 0.428 
2 0,193 0.644 63 0.455 - 0.00213 
3 - 0.0343 0.623 6 4 0.00258 0.198 
4 0.0397 0.648 65 - 0.00800 0.00985 
5 0.0225 0.663 66 0.0242 - 0.0363 
6 0.00574 0.667 67 - 0.0196 -0.0165 
7 0.0295 0.687 68 0.0242 0.0297 
8 - 0.00171 0.686 69 -0.0280 -0.0241 
9 0,0435 0.717 

stronger on x ( n )  than is the conditional depen- 
dence on x ( n  - 1). One interesting practical im- 
plication of this result is the following: According 
to a theorem of Takens [7], if a sequence pos- 
sesses an attractor that can be embedded in a 
manifold of dimension m, then an embedding 
dimension for the times series of dimension 
2m + 1 is sufficient to capture all the topological 
structure of the attractor. On the other hand, if 
f rom a practical point of view, one is only inter- 
ested in the structure of the attractor to within e, 
then a sufficient embedding dimension for the 
time series is just given by the largest value of j 
for which the 6i's are significantly different from 
zero. Sometimes this will be smaller than the 
Takens limit. 

We include in table 4 the values of Sj for the 
H6non map. Note that S o < S 1 < $2, and that the 
S t for j > 2 are substantially unchanged, as we 
expect. 

woven according to the equations 

x ( 3 n  + 3) = 4x (3n ) [1  - x ( 3 n ) ] ,  

x ( 3 n  + 4) = 4x(3n  + 1)[1 - x ( 3 n  + 1)],  

x (3n  + 5) = 4 x ( 3 n + 2 ) [ l - x ( 3 n + 2 ) ] .  (26) 

These results are completely consistent with our 
expectations. The only sizable 6 i is 63. The small 
values of the rest of the 6 i indicate that there are 
no dependencies other than j = 3 in the data, as 
we expect from the map (26). (We are ignoring 
here the marginal induced dependence referred 
to in section 3.3.) 

Also in table 5 are listed the results of applying 
our test to a sequence of two H6non maps inter- 
woven according to the equations 

x ( 2 n  + 1) = 1 - ax2(2n  - 1) + b x ( 2 n  - 3), 

x ( 2 n  + 2) = 1 - a x 2 ( 2 n )  + b x ( 2 n  - 2). (27) 

Only 62 and 64 are significantly different from 
zero, consistent with eqs. (27). 

3.5. Interwoven sequences 

To further test the efficacy of our procedure,  
we have studied some sequences composed of 
interwoven sets of numbers  generated by simple 
maps. Table 5 shows the values of the 6j gener- 
ated from a sequence of three logistic maps inter- 

4. Negative ~j's 

We have already noted that some of the 6i's 
are negative. From (13) and (10) one sees that 

P( t j+ l i t j  . . . . .  t2) 
6 i =  1 - P ( t j + , l t  i . . . . .  t , ) '  (28) 
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SO 

8 s < O ¢ * P ( t j + , l t  s . . . .  , t , )  <P( t s+ , l t s  . . . . .  t2). 

This statement, that we lose predictability 
(or, better, reproducibility) by considering more 
information, seems contradictory, but can be un- 
derstood in light of the exact relation among 
conditional probabilities 

P ( t j + l l t  j . . . .  , t2)  = P ( t j + l l t  , . . . . .  t , ) P (  t l )  

+ P( t j  +1 Its . . . . .  ~ )  P(T1) , (29) 

where g stands for not t I and P ( g ) =  1 - P ( t l ) .  
From (29) it is easy to show that 

6j < 0  ¢¢" P (  t j+ l [tj . . . .  , t l )  < P (  ty+ , [ts, . . . , t2 ) 

< P( t j+  1 It s . . . . .  g )  (30) 

and 

a,=o  t , )  = 

= P( t j+  ~ Its+ ' It s . . . . .  ~ ) .  (31) 

If 6 i < 0 we gain predictability for tj+ 1 by consid- 
ering the information that tl is not true rather 
than the information that t I is true. In maps with 
nonuniform curvature, trajectories will diverge at 
different rates (or may even temporarily con- 
verge) depending on the local curvature. It is 
possible, therefore, that the probability that two 
trajectories will be close several time steps in the 
future will be larger if they are not close cur- 

rently. Such an effect will result in negative values 
of 8j which are statistically significant. 

As a simple example of such a sequence, con- 
sider a sequence of the symbols 1, 2, and 3 
formed according to the following rules: 

1 is always followed by 2; 

2 is always followed by 3; 

3 is followed with 50% probability 

by either 1 or 2. (32) 

Such a sequence obviously does not have uniform 
divergence of trajectories since it is completely 
deterministic in some parts and uniformly ran- 
dom in others. The 8i's for this sequence, pre- 
sented in table 6, show a strong indication of 
one-dependence and a smaller indication of 
three-dependence as we might expect from the 
rules (32). In addition 82 is negative. In fact, one 
can calculate the probababilities exactly for this 
sequence. We find that P( t3 l t  2) = 9,7 P(t31t2, tl ) 
=7,5 and P(t3l t2 ,  ~ ) = 1  so that (30) for j = 2 i s  
indeed satisfied and 82 4 = -  ~ ,  consistent with 
table 6. A similar analysis shows that the negative 
value for 3 4 is also a significant indication and 
not just a statistical fluctuation. To test in general 
whether an observed negative value of 8j is sig- 
nificant, one can study the sequence 6~ kj and see 
whether these numbers become increasingly neg- 
ative as k increases. In the example (32), the 8 tkj 
and the 8t4 kJ remain negative and increase in 
magnitude with increasing k indicating further 
that the negative values provide significant infor- 
mation about the sequence as discussed at the 

T a b l e  6 

T h e  t~ kl, fo r  j = 1 . . . .  , 7  a n d  k = 2 , . . . ,  8 fo r  a s e q u e n c e  g e n e r a t e d  by  the  ru les  (32). 

2 0 .538 
3 0 .768 - 0 .0905 

4 0 .896 - 0 .0610 0 .108 

5 0 .950 - 0 . 1 0 1  0.151 

6 0 .976 - 0 .144 0.191 

7 0 .989 - 0 .147 0 .256 
8 0.995 - 0 .197 0.288 

- 0 . 0 6 6 7  
- 0 . 1 3 9  - 0 .000991 

- 0 . 1 7 4  0.033 0 .0350 
- 0 .259 0 .0273 0 .0302 - 0 . 0 4 1 5  
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end of section 2. Specifically in this case the 
negative values provide informat ion about  
the presence of regions of alternating conver- 
gence and divergence of trajectories. 

The logistic map, because of its nonuniform 
curvature, also shows regions of varying degrees 
of divergence as well as a region of convergence. 
(See the discussion in section 5.3.) The 6~ kl for 

this map are presented in table 7. Although the 

magnitudes of fi 3 through 8 7 are too small to 
indicate any dependence,  the 8~ kl for these de- 
pendencies are negative and grow in magnitude 
with increasing k (particularly for j = 3 and 4). 
Hence,  when s equals one half the standard 
deviation of the sequence, there is a significant 
probability that two subsequences of the logistic 
map whose initial separation is greater  than e 
will converge to become temporarily separated by 
less than e. At other values of e, this effect may 
be less pronounced. The results for the logistic 
map may be contrasted with the results for the 
tent map presented in table 8. Note that while 
most of 8 3 through 8 7 are negative, there is no 

trend of significant growth in magnitude of the 
8~ kl with k as there is for the logistic map. But 
the tent map has a slope of constant magnitude 
and hence a uniform rate of divergence so these 
results are consistent with our expectations. 

5. e dependence  

Thus far in this paper  we have chosen the 
tolerance, s, to be one half the standard devia- 
tion of the sequence being examined, and we 
have found that with this choice of e our test 
gives a reasonable description of the depen- 
dencies involved. We now wish to examine the 
sensitivity of these results to the choice of e. 
Specifically, we wish to examine the results in the 
limit that e becomes small. 

The s dependence of the coefficients Ca(e) has 
already been studied by several investigators. 
Takens [7] has considered the case of a time 
sequence which has a chaotic attractor. He 
has shown that subject to some technical assump- 

Tab le  7 

T h e  8~ kl, f o r j  = 1 , . . .  ,7  and  k = 2 , , . .  ,8  for a sequence  g e n e r a t e d  by the logistic map .  

k 6~ kl 6[2 kl 8 [k] 6[4 k] 6~ kl fi~kl 8% k, 

2 0.452 

3 0.711 0.0377 

4 0.845 0.0586 - 0.0166 

5 0.915 0.0667 - 0 . 0 4 7 3  

6 0.956 0,0639 - 0.0916 

7 0.975 0,0606 - 0 . 1 3 8  

8 0.986 0.0418 - 0 . 2 0 7  

- 0.0134 

- 0.0391 - 0.0117 

- 0 . 0 6 5 9  - 0.0240 - 0 . 0 0 0 4 8 0  

- 0.111 - 0.0536 - 0.0174 - 0.0165 

Tab le  8 

T h e  6~ kl, for j = 1 , . . . ,  7 and k = 2 . . . . .  8 for a s equence  g e n e r a t e d  by the tent  map .  

2 0.521 

3 0.774 0.0145 

4 0.892 0.0227 - 0 . 0 6 3 2  

5 0.949 0.0312 - 0.0122 

6 0.976 0.0356 - 0 . 0 2 2 5  

7 0.988 0.0440 - 0.0284 

8 0.994 0.0442 - 0 . 0 4 3 4  

0.00047 

- 0.00331 - 0.00424 

- 0 . 0 0 2 8 1  - 0.00421 - 0.00426 

- 0 . 0 1 1 0  - 0.0129 - 0 . 0 0 0 1 2 4  - 0.00870 
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tions #3 the Cd(e) are related to the correlation 
dimension v and K 2, the second-order Kol- 
mogorov entropy, of the attractor by the follow- 
ing formulas: 

v= d-*o~lim ( lim lnCa(e) In e (33) 

and 

K2 "-~ ,lictor ( li~In~0,d In Cd(e_______~))_d " (34) 

Takens has further shown that if m is the dimen- 
sion of a manifold containing the attractor, then 
the right-hand side of (33) reaches its d ~ oo limit 
for every d > 2m. Accordingly, Grassberger and 
Procaccia [1] assume that 

Ca(e) d ~  e~ e -aK~ 
e--~O 

and investigate corrections to this leading behav- 
ior. It is these corrections which determine the 
asymptotic behavior of the conditional probabili- 
ties and the 6j(e). 

Without loss of generality we can define cor- 
rections to (33) and (34) by letting 

These corrections determine the e dependence of 
the conditional probabilities since 

P(tj+lltj, ti_, . . . . .  t l )  

q+t(e) 
cA ) 

= e - [ K 2  +~(e)] e °tj+l --aj eyJ+l(e)- 'yj(e ) 

= e - [ K z + f l ( e ) ] ' e D l ( a j + i )  eDl(Yi+l(e)) ,  (37) 

where D n is the nth discrete difference operator. 
In addition from (13) we see that 

t~j(6) = 1 - e -yj+l(e)+2~9(e)-~ ' j - l (e)  e - a j + 1 + 2 % - % - 1  

= 1 - e-°2(~J(~)) e - °~ (" i ) ,  ( 3 8 )  

so the curvature of aj and yj as a function of j 
determines the e-dependence of the  ~j#4 

The discussion of section 4 notwithstanding, 
the most significant 6i's are usually nonnegative 
so that the conditional probabilities in (37) do not 
generally decrease as the dependence increases, 
i.e. 

P(tj+eltj+l,t s . . . .  , t l )  ~ e ( l j + l l l j ,  l j -1  . . . .  , t l ) -  

If this inequality holds for all e, then 

C a (e) = e ~ +"~ e-dt~c2 +~(,)1 er~(~). (35) 

As shown in the appendix, any Ca(e) satisfying 
(33) and (34) can be written in the form (35) with 
a, /3 and y satisfying the limits 

ln(e) DI(Cej+2 ) +Dl('Yj+2(e)) 

> ln(e) D,(%+,) + Dt(39+l(e)), 

o r  

(39) 

lim a d =  limr/3(e ) = lim Yd(e) 
d---~ ~ e 0 d ---~ ~ - d  

= l im ~ = 0 .  ( 3 6 )  
e ""* 0 

+ D [ 3'j(e) 1 D2(%) 2~ lne  ] -<0 for a l l e < l .  (40) 

Then, taking the e ~ 0 limit and using the fourth 
limit from (36) we see that 

#3However,  some unusual  sequences do not  obey these 
assumptions.  See the discussion of the Zaslaskii map  in ref. [1] 
for an example of  a sequence whose  Ca(e) do not exhibit 
power  law behavior  in e and hence do not  satisfy (33). The 
e-dependence of the t3j for such sequences  has not  yet been 
studied. 

D2(aj)  < 0. (41) 

#4In order  that (38) be correct for j = 1, and also that (8) fit 
the form of (13), we normalize by defining Co(e) = 1, fl(e) = 
- K  2 and Y0(e )=  0 for all e, and o% = - v .  
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This result, that in well-behaved cases the func- 

tion a t is not concave, restricts the limiting be- 
havior of the 6t(e) considerably, as we shall see. 

To study this limiting behavior of 6j(e) more 
closely, we consider separately the two cases 

Oz(a t) < 0 a n d  O2(ol j) = 0. Whenever  D2(a t) < 0 
the term e-02(% ) in (38) approaches zero as e 
approaches zero. Although the factor e-t)2(vJ (~)) 

may diverge as e approaches zero, it follows from 
the fourth limit in (36) that it will diverge slowly 
enough so that 

lim e-D2(YJ(e)) ,E-D2(aJ) = O. 
E--)O 

Hence from (38) whenever D2(a  t) < 0, 

lim 6t(e ) = 1. ( 4 2 )  
e ----) 0 

If D2(a j) = 0 we see from (38) that 

, ~ j ( ~ ) . 2 o  1 - e o~(~(.) .  (43) 

and from (40) that 

D ) 21 lne  < 0  for a l l e < l  

St(e) to a precision e =-10 4 and a clear 
approach to one is never observed unless 

D2(a t) < O. 
The saturation of the limd_~ ~ for d >  2m 

(where m is the dimension of a manifold contain- 
ing the chaotic attractor of the time sequence 
under  investigation) in (33) further constrains the 
limiting behavior of the St(e) for j >__ 2m + 1. This 
saturation means that a i = 0 for j >_ 2m. The 
results we examine below indicate that in some 
cases the d ~ oo limit in (33) becomes saturated 
at a value of d smaller than 2m, so in these cases 
a t = 0  for some values of j less than 2m. In 
general we can state that for every sequence for 
which the limits in (33) and (34) are well defined, 
there exists an integer J0 -< 2m + 1 such that 

aj  = 0 for j > J0 - 1, 

a t 4= 0 for j =J0 - 2. (45) 

Then, using (41), we have D2(a t) = 0 for j >-J0, 
a n d  O2(a t) < 0 for j = J 0 -  1. Therefore,  

lim 6 t , _ l ( e  ) = 1, 
g ---9 0 

6t(e ) < 1  w h e n e < l f o r j > _ j 0 .  (46) 

or, 

D2(yt (e) )  > 0 for all e < 1. (44) 

Hence,  whenever D2(%) = 0, 6j(e) is less than 1 
for all e less than 1. Note that this does not rule 
out the possibility that l i m ~ 0 a j ( e ) = l  when 
Dz(a  j) = 0. But the fourth limit in (36) and eq. 
(43) imply that when D 2 ( a i ) =  0, aj(e) ap- 
proaches its limiting value more slowly than e ~ 
for any positive real exponent K. Thus, since one 
is unable to observe the behavior of St(e) with 
infinite precision, it is difficult to discern the 
e --* 0 limiting value of 6j if D2(a  t) = 0. On the 
other hand, if D2(a j) < 0, then the factor e -D2("j) 
in (38) controls the approach of 6j(e) to one. This 
approach is obviously much easier to observe. In 
the examples below we study the behavior of 

8j(e) can exhibit either of these two behaviors 

when j < J 0 -  1. 
Next we study some examples and examine the 

asymptotic behavior of the 8j(e) for the tent map, 
the logistic map and the Hdnon map. 

5.1. The tent map 

Fig. l a  is a plot of 81(e) for the tent map. Note 
that 8](e) approaches 1 as e approaches 0. By 
contrast in fig. Ib, we plot ~2(e),  63(e) and 64(e). 
All these 8j(e)'s are consistent with zero for the 
range of e shown. These results follow from 
certain general properties of the tent map. The 
tent map has correlation dimension u = 1 and so 
a 0 = -  1 (see footnote 4). Any time sequence 
defines a measure,  called its natural measure,  as 
follows: The measure rn(I) of an interval I is 



R. Sauit and M. Green / Time series and dependent variables 109 

1.00 

0.88 

0.76 

off 
0.64 

0.52 

(a) 
0.40 i 

-5.0 -4 .0  
I I I 

- 3 . 0  - 2 . 0  -I.0 

Log (E) 
(a) 

0.010 

0.005 

- 0.005 i 

-0.010 b) 

-5.0 

8., z ( ~ )  

. i 

k \ ,  - ' 
I : t / 

I I I I 
- 4 . 0  - 3 . 0  - 2 . 0  -1 .0  0 

Log (E) 

(b) 

Fig. 1. (a) 61(e) for the tent map. (b) 82(e) through 8a(e) for 
the tent map. 

defined to be the frequency with which the time 

sequence visits that  interval. This allows us to 

define a density function p(x) by requiring that 
for any interval I, 

m ( I )  = f / p ( x )  dx .  (47) 

ous natural  measure  and we conclude that  

- -  2 ( f , 2 ( y ) d . / . -  E v + : i  . ( 4 8 )  
e - , 0  \ a  ] e ~ O  

where the last equality follows f rom (35) and 

implies that  a 1 + /.' = 1. For  the tent  map p(x) - 1 
so that (48) applies, and in addit ion v = 1. Thus 

a I = 0. Fur thermore ,  it is clear f rom (22) that a 
one-dimensional  manifold will contain the attrac- 

tor of  the tent  map,  and so (45) implies that for 

some J0 < 3, a j  equals zero for j > J 0 - 1 .  In 
addition, f rom (41) we know that  a j  is never 

concave. The  only way all three of  these condi- 

tions can be satisfied is if a i = 0 for j > 1 so that 

J0 = 2. Hence  D 2 ( a  1) = G 0 = - ] and from (43) we 
see that 6 t ( e )  approaches  1 as e approaches  0. 
Also from (43) we find that  for j > 2, 6j(e) is less 

than one when e is less than one. But the tent  
map is a simple one-dimensional  deterministic 

map having a slope with constant  magnitude,  so 

for any value of  e we expect that  we will attain 
maximum predictability with only a one-lag de- 

pendence.  This is reflected in the observed small 

values for t~Z(e)  through 64(e). 
W h e n  D2(a j) = 0 and 6j(e) is small (and con- 

versely when Dz(yj(e)) is small) it can be shown 

from (43) that ~ j ( e ) ~  D2(Yi(e)), and hence that 

when D2(a  j) = 0 

~s(e) << 1 ~ D2(yj(e)) << 1. (49) 

Thus the correct ions D2(yj(e)) are also small for 
all j > 2. This result will be compared  below to 

the quite different results f rom the logistic map 
where we will see that two simple heuristic argu- 

ments  concerning the variation of  slope of  the 
two maps lead to a bet ter  unders tanding of  the 

values for ~2(e) through 64(e) in both maps. 

5.2. The logistic map 

If  for any x 0 and y, g(y) = fxrop(x)dx is continu- 
ous then we say that  the sequence has a continu- 

The  logistic map also has a correlat ion dimen- 
sion v = 1 and a cont inuous natural  measure  so it 



1 . 0 0  follows that  J0 = 2 exactly as for the tent map.  
Fig. 2a shows 61(e) for the logistic map,  and 

indeed it asymptotically approaches  one as in the 

tent map.  However ,  t~Z(E ) and 63(e) for the logis- 

tic map (shown in figs. 2b and 2c) do not  show the 
same small f luctuations about  zero as they do in 

the tent  map.  Rather ,  as e---, 0 they approach  a 

non-zero  limit less than one. For  j >__ 4 the 6i(e) 

are statistically consistent with zero for small e. 

Thus,  for small enough  e the logistic map  exhibits 
two- and th ree -dependence  even though  the map  

is explicitly only one-dependent .  This extra de- 

pendence  is induced by the non-uni form slope of  

the logistic map,  which causes a nonuni fo rm di- 
vergence of  nearby trajectories and hence  a slower 
approach  to zero of  the 6j(e) as a funct ion of  j #5 

Since 62(e) and 63(e) are nonzero  for the logistic 

map,  Dz(yj(e))  is also statistically nonzero  for 
j = 2 and 3, according to eq. (49). This can be 

unders tood  by noting that  for the tent  map, the 

parameters  u and K 2 are sufficient to describe 
the divergence of  nearby trajectories (which after 

all is de te rmined  by only one parameter ,  the 
constant  slope of  the tent  map).  Hence,  the cor- 

rections, ad, /3(e), and 7j(e) are all small. By 
contrast,  the nonuni fo rm divergence of  nearby 
trajectories de te rmined  by the cont inuous  varia- 

tion in slope of  the logistic map requires the 

correct ion terms as well as v and K 2 for a 

complete  description. Thus, some of  these correc- 
tions have significant values. 

Fig. 3 illustrates more  explicitly how the 
nonuni fo rm slope changes  the condit ional  proba-  

bilities and hence  the 6j(e). For  example, there  is 
a large interval near  the peak  of  the logistic map 

on which its slope is less than one, and so trajec- 
tories genera ted  by the map which begin in this 
interval are initially converging. In this region 
P(tz l t  ~) = 1, which weights the condit ional  proba-  

#51t is likely that strictly speaking, the 6j(e) for j > 4 are 
also nonzero in the limit e ~ 0. Such behavior could probably 
be seen with better statistics. In any case it is important to 
recognize that the strength of dependence of the time series 
on these variables is quite small and would only be relevant if 
great precision were required. 
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Fig. 2. (a) 61(e) for the logistic map. (b) 62(e) for the logistic 
map. (c) 63(e) for the logistic map. 
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Fig. 3. Non-uniform divergence of the logistic map. Trajecto- 
ries a and b have an initial separation of 1/16 and are 
separated by 5 /32  after one iteration of the logistic map. 
Trajectories c and d lie inside the converging interval (~,~).3 5 
They also have an initial separation of 1/16 but they are 
separated by only 1/32 after one iteration of the map. After 
the first iteration they diverge. For two trajectories such as c 
and d which lie initially inside (3, ~_), p(t21Q ) = 1. 

bility averaged over the entire unit interval to- 
ward increased dependence. This effect becomes 
significant when e becomes smaller than the 
length of the converging interval. While the pres- 
ence of a large converging interval is the domi- 
nant cause of induced dependence in the logistic 
map, any variation in the slope of a map produces 
a similar effect. Thus, our test gives no indication 
of nontrivial induced dependence in the tent map, 
which is uniformly divergent. As discussed in 
section 1, any map exhibits certain kinds of in- 
duced dependencies,  but only those induced 
dependencies which change the conditional 
probabilities are indicated by our test. It is these 
conditional probabilities that are the important 
variables in trying to reconstruct the underlying 

map. 
It is also interesting to examine the effect of 

noise on the 6/(e). Figs. 4a-4c  show the 6/(e), 
j = 1, 2, 3 for the logistic map plus uniform noise 
between - 0 . 5  and 0.5 of strength tr = 0.1. Note 
that in all three cases the effect of the noise is to 
lower the limit approached as e ~ 0. (In fact, for 
j = 2 and 3 the value of ~/(e) for small e is 
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Fig. 4. (a) 61(e) for the logistic map plus uniform noise be- 
tween -0 .5  and 0.5 of strength o-=0.1, (b) 52(e) for the 
logistic map plus uniform noise between - 0 . 5  and 0.5 of 
strength o '=  0.1. (c) 83(e) for the logistic map plus uniform 
noise between - 0 . 5  and 0.5 of strength tr = 0.1. 



112 R, Sauit and M. Green / Time series and dependent cariables 

cons is ten t  with zero . )  This  effect and  the pres-  

ence  of  d e p e n d e n c i e s  i nduced  by the nonun i fo rm 

s lope  of  the  quad ra t i c  m a p  have impor t an t  conse-  

quences  for the  i n t e r p r e t a t i o n  of  our  results .  I t  is 

c lear  tha t  the  6j(e)  reveal  not  only in fo rmat ion  

abou t  the  explici t  d e p e n d e n c i e s  in the  under ly ing  

de te rmin i s t i c  m a p  but  also in fo rmat ion  about  

those  i nduced  d e p e n d e n c i e s  which lead  to g rea t e r  

r eproduc ib i l i ty  of  subsequences  of  the  t ime se- 

ries. In  addi t ion ,  d i f ferent  d e p e n d e n c i e s  a re  indi-  

ca t ed  at d i f ferent  va lues  of  e, so we conc lude  tha t  

the  8~(e) p rov ide  in fo rmat ion  about  the  r ep ro -  

ducibi l i ty  of  a subsequence  b a s e d  on d e p e n d e n t  

var iab les  relative to the tolerance with which one 

examines the data. 

5.3. The Hdnon map  

Figs. 5 a - 5 d  show the  6~(e), j = 1 . . . . .  4 for  the  

H 6 n o n  map .  Note  tha t  as e ~ 0, •l(e) a p p r o a c h e s  

one,  32(e) a ppe a r s  to a p p r o a c h  one  or  a va lue  

nea r  one,  and  33(e) and  64(e) are  bo th  sensibly 

zero.  F o r  the  H 6 n o n  m a p  u = 1.22 so a 0 = - 1.22 

(see foo tno te  4). The  H 6 n o n  map  has a cont inu-  

ous  na tu ra l  m e a s u r e  so a 1 + u = 1 as before ,  but  

now a 1 = - 0 . 2 2 .  A t  the  level of  our  stat ist ics a d 
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Fig. 5. (a) 6t(s) fo the H6non map. (b) 62(s) for the H~non map. (c) 63(s) for the H~non map. (d) 64(e) for the H~non map. 
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is sensibly zero for all d > 2, and so from (45) 

J0 = 3. One can therefore see that D2(a 1) = - 0 . 7 8  
< 0, so from (42) l im,_~061(e)= 1. In addition, 
(46) implies that lim~_~062(e)= 1, and 6j(e) 
< 1 when e < 1 for j > 3. The H6non map does 
have nonuniform slope, but its effect is evidently 
not as pronounced as in the logistic map. Hence 

D2(Tj(e)) rapidly approaches zero and 83(e) and 
64(e) are both small. 

The fact that 6~(e) approaches 1 for the tent 
and logistic maps and ~l(e) and ~2(e) both ap- 
pear  to approach 1 for the H6non map as e ~ 0 
raises the conjecture that this approach to 1 is an 
indicator of explicit dependence in noiseless de- 
terministic maps. So far we have found no proof  
of this conjecture. In any case, it is primarily of 
only theoretical interest since noiseless determin- 
istic maps are unlikely to be encountered in an 
experimental situation, and one rarely has the 
opportunity to observe phenomena with infinite 
precision. 

6. Summary and discussion 

In this paper  we have presented a new ap- 
proach to the study of time series, and in particu- 
lar to the study of time series with broad-band 
spectra. In an effort to determine its efficacy, we 
have analyzed several one- and two-dimensional 
maps using our method. We have shown that the 
method is easily capable of identifying the non- 
trivial dependencies in chaotic time series gener- 
ated by such maps, even in the presence of 
substantial l iD noise. We also introduced a 
predictability index which measures the extent to 
which one can predict subsequent values of a 
time series given the history of the series. Finally, 
we studied the e-dependence of our methods, 
especially the theoretically interesting case in 
which e goes to zero. Based on these results, we 
believe that the approach described in this paper  
will prove to be very useful in analyzing series in 
which one expects to find some underlying intrin- 
sic deterministic process. 

We have used relatively simple low-dimen- 
sional systems to introduce our methods. One 
very useful aspect of these techniques is that they 
are also applicable to time series generated by 
higher dimensional systems. So long as new struc- 
ture (in the sense of conditional probabilities) 
emerges in higher dimensions the deltas will con- 
tinue to be statistically nonzero. As a result, these 
methods are more systematic, robust and trans- 
parently applicable than some other approaches 
such as the construction of phase portraits. This 
statement is also supported by our work on 
higher-dimensional continuous time series re- 
ported in ref. [8]. 

The techniques presented in this paper  repre- 
sent a significant departure from usual methods 
of time series analysis based on linear transforms. 
Such linear methods are next to useless for series 
with broad-band spectra. One way of viewing our 
techniques, is that the values of the deltas can be 
considered tests against a null-hypothesis of l iD 
with high power for other alternative explana- 
tions based on the existence of conditional proba- 
balistic dependence. Following this approach, one 
should, in practice, compare the values of the 
deltas obtained from an analysis of some time 
series with values obtained from a good quasi- 
random sequence of the same length and with a 
similar probability distribution. For asymptoti- 
cally long time series, it turns out that such com- 
parisons can be put on a statistically more precise 
mathematical  footing. This work is in progress [9]. 

From another  point of view, our work provides 
an alternate method for capturing the structure 
of an attractor given the tolerance, e, with which 
one examines the data. Given an e, one can 
determine which deltas are statistically nonzero, 
and use the number  of such deltas as an estimate 
of an appropriate  embedding dimension. How- 
ever, this estimate may be larger or smaller than 
the true asymptotic embedding dimension. In the 
case of the logistic map, for example, 82 is 
nonzero when e is one-half  the standard devia- 
tion, even though it approaches zero in the small 
e limit. But from an empirical point of view, 
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determining which deltas are statistically nonzero 
may be more useful than trying to determine the 
minimum embedding dimension of the attractor. 
It is also less computationally intensive: Using the 
methods of Grassberger  and Procaccia [1], the 
calculation of the correlation dimension from time 
series data requires the calculation of the correla- 

tion integrals for a range of ~ as e approaches 
zero in order to elucidate a scaling region. The 
necessity of calculating the correlation integrals 
for small e greatly increases the number  of data 
points required to achieve accurate results and 
the calculation of correlation integrals for a range 
of e in the scaling region is more time consuming 
than the calculation of results at a single value of 
e. In addition, the dimension of the attractor is 
related to the underlying dynamics through the 
theorem of Takens, which states that a sufficient 
number  of embedding dimensions to reconstruct 
a strange attractor is less than or equal to twice 
its Haussdorf  dimension plus one. In many cases, 
this inequality is not saturated. One may well be 
interested only in an understanding (or empirical 
reconstruction) of the dynamics for a certain value 
of the tolerance. In such a case, knowing which 
deltas are nonzero for a specific value of e, may 
provide more directly usable empirical informa- 
tion, and provide it more  economically than at- 
tempting to determine the theoretical embedding 
dimension and reconstruct the attractor in detail. 
Of  course, we do not mean to imply that the 
embedding dimension and detailed structure of 
an attractor is uninteresting, but our approach 
provides complementary,  albeit related informa- 
tion. 

Our  work raises a number  of other interesting 
questions. One obvious one concerns generaliza- 
tions of this study to continuous time series. The 
methods presented here seem well suited to sys- 
tems in which there may be an underlying dis- 
crete deterministic process, but their application 
to continuous time series requires significant gen- 
eralization. In another  paper  [8], we report  on the 
development of a generalized method applicable 
to continuous time series and illustrate its use in 

a wide variety of numerical examples, including 
the Lorentz model, the H6non-He i l e s  equations, 
the forced Brussels oscillator, and the Mackey-  
Glass equation. Our generalized methods work 
well at picking out empirical dependencies in 
these more complicated and higher dimensional 
examples. The application of these statistics to 
the analysis of experimental data including data 
from chaotic chemical reactions, turbulent fluid 
flow, and radioactive decay is in progress. 

Note added 

After this work was completed, we became 
aware of the paper  by Cenys and Pyragas [10], in 
which some of the ideas contained in the present  
work appear  in a somewhat different form. 
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Appendix 

We elaborate here our choice of the form (35) 
to express the corrections to the leading behavior 
of Ca(e )  in the limits e ~ 0 and d ~ ~. First we 
define a general correction term ~a(e)  such that 

C d( e ) =-- 6 ~" e-dK2 e~(~). (A.1) 

We will apply, in proper  order, the four limits in 
(33) and (34) to (A.1) and we will show that the 
existence of these limits #6 restricts the asymptotic 
behavior of ~a(e).  For future convenience, we 

#6See ref. [9] for a more detailed discussion of the condi- 
tions required for the existence of these limits. Also see the 
discussion of the Zaslaskii map in ref. [1]. 
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will also separate ¢a(e) into two first-order cor- 

rection terms and a third term containing all 

h igher-order  corrections. 
Applying the first limit in (33) to (A.1) we see 

that 

In Cd(e  ) ~a(e)  (A.2)  
lim = v +  lira ]-~e ' 
~--*0 l n e  e--,0 

and so we identify the first-order correct ion 

 a(e) 
a a =- lim (A.3)  

e-~0 In e 

Applying the second limit in (33) we derive a 

restriction to the asymptotic behavior  of  a a be- 

cause 

d-~oo e o In e 

= v + l i m a  d ~ lim a d = 0. (A.4)  
d-~oo d-,oo 

Now we define a new correct ion t e r m  r i d ( e )  such 

that  ~d(e)  -~ te d In e + rid(e). Then  (A.3) implies 
that 

lim r i ~ e )  = 0 .  ( A . 5 )  
e--~0 

Consider  now the limits in (34). F rom (A.1) we 

see that  

In Cd(e  ) ~d(e)  
lim = K 2 + lira - -  (A.6)  

d-~o - d  d--,~ - d  ' 

and we identify a new first-order correct ion 

 a(e) 
/3(e) = lira lim 

d__. oo - - ' ~  d._, oo 

= lim rid(e) 
d--,o~ - d  ' 

a a In e + "Od(e) 
- d  

(A.7)  

where  the last equality follows f rom (A.4). Apply-  
ing the second limit in (34) we derive a restriction 

to the limiting behavior  o f / 3 ( e )  because 

( I n C a ( e ) )  
K e = lim c lim - -  

e 0 d ~  - d  

= K 2 +  l i m f l ( e ) = ~  limf f l ( e ) = 0 .  (A.8)  
e--,0 e 0 

Finally, we define a correct ion 7d(e) such that  

rid(e) = - d f l ( e )  + Yd(e), which means that 

~d(e)  = a d In e : -  d[3(e) + Yd(e) .  (A.9)  

Using (A.3), (A.5) and (A.8), we find 

yd (e )  (A.10)  lim ~ = 0, 
e---~ 0 

and fur ther  (A.7) implies that  

lim "Yd( e ) d- ,~  ---d 0. (A.11)  

The results (A.8)-(A.11),  and (A.4) establish 
that  a n y  Cd(e)  satisfying (33) and (34) can be 
written as 

C a ( e )  = e v +,a e-a(K2 +8(,)) er~(~), (35) 

with 

l i m a  d = lim r ~ ( e )  = 0 
d~oo e 0 

and 

lim "Yd(e) "Ya(e) 
d-,oo ~ = lim ]-fie = 0  e ---* 0 

and without  loss of  generality. 
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