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Abstract: A Taylor series approximation to multivariate integrals taken with respect to a multivariate probability distribution is 
proposed and applied to the computation of multivariate normal probabilities and conditional expectations. The approximation does 
not require that the multivariate distribution have a structured covariance matrix and, in its simplest form, can be written as the 
product of univariate integrals. The approximation is compared to that of Mendell and Elston (1974) for computing bivariate normal 

probabilities. 
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1. Introduction 

Computation of some multivariate probabilities and expectations, most notably the multivariate normal, 
require evaluation of multivariate integrals. For many applications, including simulation studies and 
iterative procedures, a computationally simple approximation is desired. Although a large number of 
approximations to multivariate integrals have been proposed, many are cumbersome or make assumptions 
which limit their application. (See, for example, Johnson and Kotz, 1972, for an summary of some of these 
methods.) The present work was motivated by the need to simplify computation of the multivariate 
integrals required to obtain expectations taken with respect to the multivariate normal distribution, as well 
as to obtain multivariate normal probabilities. However, the proposed method is general enough to be 
useful for other multivariate distributions and is therefore presented for the general case. 

We propose a Taylor series approximation which reduces the multivariate integral to functions of 
univariate integrals and show how the method can be used to approximate multivariate probabilities and 
integrals taken with respect to a multivariate density (Section 2). In Section 3, the method, which does not 
require a structured covariance matrix, is used to approximate multivariate normal probabilities. In its 
simplest form, the approximation is similar to the approximation of Mendell and Elston (1974) and the 
latter method is described. Also in Section 3, the accuracy of the approximation in evaluating multivariate 
normal tail probabilities is examined and, in the bivariate case, compared to that of the Mendell-Elston 
approximation. In Section 4, the approximation is applied to a censored data situation which requires 
evaluation of conditional bivariate normal expectations. 

2. Method 

The Taylor series expansion is a well-known too for approximating the expected value of a function g of a 
random variable. Let X be a random variable with mean 8. A convenient form for this expansion, after 
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taking expectations, is 

E[g(X)] =g(B)++g’*‘(8)E(X-e)2+~g’3’(8)E(X-e)3+ . ..) 0) 

where g(‘)( .) and gC3)( .) are the second and third derivatives of g(e), respectively, and E( .) is the 
expectation operator. The function g(x) is assumed to be continuous and to possess all derivatives at 
x = 6. It is further assumed that a valid (i.e., convergent) Taylor series can be obtained. 

We first demonstrate the principle of the method using an arbitrary trivariate distribution. Let 
y = ( y,, y,, y3)T be an observation from a trivariate distribution with joint density f( y). Suppose we wish 
to determine the value of an integral T[ h( y)] taken with respect to the distribution I( y) over a 
rectangular region R = R, X R, X R,: 

Tih( Y)] = SRh( df( y) dy. (2) 

Multiplying the numerator and denominator of equation (2) by jRJ(y3) dy,, this expression can be 
written as 

T[h(y)l= 

h(y,, y27 y,>_f(y,v y21y3) dye dy2 dy3 

I 
&f(Y3) dy3 

. R_f(~3) dy3 / 

(3) 

where f(y,, y2 1 Y,) is the density of (yt, y2)T conditional on Y,, and E,, denotes the expectation with 
respect to Y,. Using equation (1) we can now expand the conditional expectation in equation (3) in a 
Taylor series about 8 = Ey,( Y, 1 Y, E R3) = E,, say. For simplicity, only the first term g( E3) will be used 
for the approximation; here 

E, = /R3~3/(~3) dy3 

I 

jb;f(~3) dy3 

is the marginal expectation of Y,, given that Y, E R,, and 

g(E3)=JH;f(y21E3)~,h(y1' ~2, E,)~(YI lY2, E3) ~.J'I dy2. 

Repeating the above process yields the first-order approximation 

T[h(y)] =j--]h(yl, E2,3> E,)f(~,lE2,3, E3) dy4$y21E3) dy2*jR!(y3) dy3- (4) 

A similar sequence of steps can be used to approximate integrals of order higher than 3. Approximation 
(4) is easy to express and its computation requires the evaluation of only univariate integrals. The accuracy 
of the approximation can be improved by adding more terms to one or more of the Taylor series 
expansions; however, for higher dimensional integrals, the resulting expression may be unwieldy. 
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3. Approximation of multivariate normal probabilities 

3.1. Multivariate normal probabilities 

The first-order Taylor series (TS) approximation to trivariate normal probabilities can be expressed as a 
special case of (4) by taking h( y) = 1 and f( JJ) as the trivariate normal density function. Approximate 
upper tail probabilities were computed using (4) for a standard trivariate normal distribution and are 
presented in Table 1. The IMSL subroutine MDNORD was used to compute normal probabilities. In the 
case of equal correlations and equal lower bounds (i.e., plz = pi3 = pZ3 and y, = y, = J+), the TS values are 
compared to table values (Kres, 1983); in all other cases, the TS values are compared to values computed 
using the FORTRAN program MULNORS (Schervish, 1984). Computation of the TS values required 
about a of the CPU time required for MULNORS values. 

In most cases, the TS value reasonably approximates the trivariate normal probability. The approxima- 
tion is best when all of the correlations are 0.1; this is not surprising as the first order approximation (4) 
with h( y) = 1 reduces to the exact marginal probabilities when all correlations are equal to zero. The TS 
method performs reasonably well in most of the other situations examined. The poorest approximation is 
noted when all of the correlations equal 0.9 and the lower bounds are also equal. (A similar result was 
found for bivariate normal probabilities; data are not shown.) If greater accuracy is required, more terms 
can be added to the TS approximation. 

Upper tail probabilities were also computed using the first-order TS approximation for standard 
n-dimensional (n = 2,. . . ,20) normal distributions in the case with correlations all equal to 0.5 and lower 
bounds all equal to 0.0. The exact probability can be computed using the formula l/(n + 1). The results 
(Table 2) indicate that the TS approximation is better at lower dimensions, but may be useful even at 

Table 1 

Approximation of trivariate normal probabilities a 

Lower bounds PI2 = PI3 = P23 PI2 = P23 = 0.3 

K r, Y, 0.1 0.5 0.9 P 13 = -0.3 

- 2.0 - 2.0 - 2.0 0.93431 0.94253 0.96170 0.93586 

0.93553 0.96171 0.97725 0.95066 

-1.0 - 1.0 - 1.0 0.61064 0.67778 0.77317 0.61912 

0.61188 0.70843 0.83928 0.64584 

0.0 0.0 0.0 0.14891 0.25000 0.39233 0.14924 

0.14872 0.25420 0.46236 0.15316 

1.0 1.0 1.0 0.00736 0.03380 0.09734 0.00614 

0.00731 0.03248 0.11172 0.00588 

2.0 2.0 2.0 0.00005 0.00137 0.01013 0.00002 

0.00005 0.00126 0.01066 0.00002 

-1.0 0.0 1.0 0.07917 0.12551 0.15795 0.08545 

0.07922 0.12716 0.15853 0.08787 

0.0 1.0 2.0 0.00324 0.01261 0.02550 0.00314 

0.00323 0.01271 0.02265 0.00314 

0.0 1.0 1.0 0.01917 0.05622 0.11543 0.02273 

0.01912 0.05596 0.12750 0.02321 

-1.0 -1.0 0.0 0.37280 0.44377 0.49865 0.36407 

0.37337 0.45463 0.49998 0.37686 

- 2.0 0.0 2.0 0.01338 0.02072 0.02275 0.01652 

0.01338 0.02081 0.02275 0.01675 

a First entry is either table value (equal correlations and first five rows) or MULNORS value, second entry is Taylor series 

approximation. 
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Table 2 
Approximation of multivariate normal probabilities a 

Dimension Exact value Taylor series 
of integral approximation 

2 0.33333 0.33373 
3 0.25000 0.25420 
4 0.2OQOO 0.20088 
5 0.16667 0.16381 
7 0.12500 0.11545 

10 0.09091 0.07438 
15 0.06250 0.04030 
20 0.04962 0.02373 

a Standard multivariate normal with correlations all equal to 0.5 and lower bounds all equal to 0.0. 

dimensions as high as 20. For correlations smaller than 0.5, the approximation is expected to perform 
fairly well in this range of dimensions. 

3.2. The Mendell-Elston approximation to the multivariate normal 

The first-order TS approximation (4) is similar to the Mendell-Elston (1974) approximation to multi- 
variate normal probabilities (see also Rice et al., 1979). In the bivariate case, the Mendell-Elston (ME) 
approximation can be derived as follows. Let Y = (Y,, Y,)T be a bivariate normal random variable with 
joint density 

+( JJ) = (2T)-‘(det Z)-1’2 exp[-f(y-ll)T~-l(y-IL)], 

where p = (p,, /.L~)~ is the mean vector and 

is the covariance matrix. Also let R, x R, = (h,, CO) x (h,, CO) be the region of integration and denote 

P(Y, 2 h2) by S(h2) and +(h,)/S(h,) by a2. Then the following standard results can be obtained: 

m2=E[Y21Y2>hh,]=p2+a,a2, 

and 

where z2 = (h, - p2)/u2. 
Thus the mean and variance of Y,, given Y, 2 h 2, are obtained. The distribution of Y,, given Y, >, h,, is 

not in general normal, but is assumed to be approximately normal so that P(Y, >, h,, Y, > h,) can be 
approximated by S(h,)S(z,), where z1 = (h, - rnI12 )/s,,~_ The approximation has been found to work 
well, especially for small p. 

Both the ME and first-order TS approximations can be written as the product of a marginal probability 
and a conditional probability. In both cases, the mean of the conditional density is m, , 2, the mean of Y,, 
conditional on Y, > h,. The ME approximation differs from the first-order TS approximation in the 
variance used in the conditional distribution of Y, given Y2. The ME approximation uses the variance sf12 
computed assuming truncation of Y,, while the TS approximation uses the untruncated conditional 
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variance u: - p2a,/u,, which does not depend on the value of h,. Like the TS approximation, the ME 
approximation does not require a structured covariance matrix, reduces to the exact marginal probabilities 
when all of the correlations are equal to zero, and has a simple form. Unlike the TS approximation, it does 
not provide a means for improving accuracy. 

3.3. Bivariate normal probabilities using the Taylor series 

Bivariate normal probabilities can be approximated using the TS method by taking h(y) = 1 and f( y) 
equal to the bivariate normal density C#J( y) as defined in Section 3.2. In addition, let E2 denote the 
marginal expected value of Y,, conditional on Y, E R,, and let V, denote the second central (around E,) 
moment of the marginal distribution of Y,, conditional on Y, E R,. E, and V, take the form of a ratio of 
univariate integrals; for example, 

v, =4,zC~2-E2)z+(1?2) dy2 

i 
j”z~(~2) dy2. 

Putting h( y) = 1, the terms of the Taylor series expansion up to and including the second moment can be 
written 

This expression is written in a form which groups the univariate integrals. Note that if the correlation is 0, 
p = 0 and the expression reduces to the exact marginal expectation. The approximation requires the 
evaluation of the univariate integrals in expression (5), the univariate integrals which represent E,, V,, and 
the marginal probability P( Y, > yZ). 

3.4. Comparison of Taylor series and Mendell-Elston methods 

If h( y) = 1, expression (5), when multiplied by /,,+( y2) dy,, approximates bivariate normal probabilities. 
The adequacy of the TS and ME approximations for computing bivariate normal upper tail probabilities 
was examined by computing approximate values of the probability for values of the lower bounds ranging 
from -2.0 to 2.0 for a bivariate normal distribution with means of 0, variances of 1, and a correlation 
coefficient ranging from -0.5 to 0.5. A subset of the results are shown in Table 3, along with the exact 
values (U.S. National Bureau of Standards, 1959). The TS values were computed using terms up to and 
including the second moment of the Taylor series expansion (i.e., the first two terms of equation (5) with 
h( y) = 1). The univariate integrals required for the approximation were computed by quadrature using the 
IMSL subroutine DMLIN. 

The results in Table 3 suggest that both approximations are quite good when 1 p 1 = 0.1. Both 
approximations are poorer but still adequate when 1 p I = 0.5. The TS method generally provides better 
approximations than the ME method when p = 0.5 and the joint tail probability is large; the ME method 
generally performs better than the TS method when p = -0.5 and the joint probability is large. When 
p = -0.9 (data not shown), the TS method is more accurate than the ME method when the joint tail 
probability is small and less accurate when the joint tail probability is large. When p = 0.9 (data not 
shown), both methods are equally accurate on average, although both are less accurate than for small I p I. 

For the TS approximation, a natural question arises regarding the ordering of the variables, i.e., the 
choice of variable on which to condition. If the marginal tail probability of Y,, say, is small, V, and the 
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Table 3 

Approximation of bivariate normal probabilities a 

Lower bounds P 

Yl YZ 
- 2.0 

- 1.0 

0.0 

1.0 

2.0 

- 2.0 

- 2.0 

- 2.0 

-1.0 

0.0 

1.0 

- 2.0 

-1.0 

0.0 

1.0 

2.0 

-1.0 

0.0 

1.0 

1.0 

1.0 

2.0 

-0.5 -0.1 0.1 0.5 

0.954503 0.954780 0.955372 0.958553 

0.956324 0.954786 0.955367 0.959154 

0.955069 0.954785 0.955367 0.957860 

0.686472 0.702300 0.714009 0.745203 

0.684176 0.702297 0.714007 0.743404 

0.686222 0.702299 0.714009 0.744651 

0.166667 0.234058 0.265942 0.333333 

0.166266 0.234050 0.265950 0.333734 

0.165880 0.234050 0.265950 0.334120 

0.003782 0.019610 0.031320 0.062514 

0.003857 0.019611 0.031320 0.062744 

0.003866 0.019610 0.031320 0.062719 

0.000003 0.000280 0.000872 0.004053 

0.000003 0.000280 0.000872 0.004059 

0.000004 0.000280 0.000872 0.004057 

0.818715 0.821028 0.823641 0.831861 

0.820255 0.821035 0.823635 0.831674 

0.819746 0.821035 0.823634 0.831073 

0.479276 0.486482 0.490769 0.497974 

0.479832 0.486485 0.490766 0.497877 

0.479798 0.486485 0.490766 0.497777 

0.145389 0.153609 0.156222 0.158508 

0.145433 0.153610 0.156221 0.158501 

0.145451 0.153610 0.156221 0.158496 

0.096141 0.127335 0.139045 0.154873 

0.095911 0.127335 0.139045 0.154798 

0.095936 0.127335 0.139045 0.154789 

0.031257 0.069674 0.088981 0.127398 

0.031286 0.069674 0.088982 0.127369 

0.031241 0.069673 0.088982 0.127414 

0.000147 0.002433 0.005046 0.013266 

0.000150 0.002433 0.005046 0.013279 

0.000150 0.002433 0.005046 0.013280 

a First entry is table value, second entry is Taylor series approximation and third entry is Mendell-Elston approximation. 

higher moments are small and thus the terms in the Taylor expansion corresponding to the second and 
higher moments are small and the series converges rapidly, assuming that the series does in fact converge. 
Thus, a better approximation should be achieved by conditioning on the variable with the smaller marginal 
tail probability. In fact, if the marginal tail probability of Y, is very small, an excellent approximation can 
be achieved by using only g( E2) = JR,+( y, 1 E,) dy,. The results in Table 3 were obtained by conditioning 
on Y,, because the marginal tail probability for Y, was always at least as great as that for Y,. Results 
obtained by conditioning on Y, (not shown) were poorer than those shown in Table 3. 

4. Approximation of conditional expectations for censored data 

Consider the problem of parameter estimation for the bivariate normal distribution when some observa- 
tions are censored. Censoring occurs in failure time data when only a lower bound on the failure time for 
an individual is available. For example, it may be known that an individual was still alive at the last 
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observation time y, so that the outcome variable, time of death T, is known only to be greater than y. 
Because censored data is a special form of missing data, one approach (Pettitt, 1986; Olson and Weissfeld, 
1990) to parameter estimation is to use the EM algorithm (Dempster, Laird and Rubin, 1977). This 
algorithm requires computation of the expected values of the sufficient statistics of the complete data 
likelihood, conditional on the data and the current parameter estimates. Specifically, the conditional 
expectations of T,, T2, T,*, T2* and TIT, are required for each observation. When only one observation in 
a pair is censored, these conditional expectations are ratios of univariate integrals which can be evaluated 
easily. When both observations in a pair are censored, the conditional expectations are ratios of bivariate 
integrals which can be approximated using the TS approach. 

Let (T,, T2)T be an observation from a bivariate normal distribution with joint density +(t,, t2) and let 
(C,, C2)T be a vector of censoring times with C, independent of T,, i = 1, 2. Then K = min(T, C,) and 
ai = I(T, < C,), i = 1, 2, represent the observed pair of data. If S = (ai, 8,) = (0, 0), then both observations 
in the pair are censored and we know only that each failure time 7; exceeds its observed (censoring) time 
y. In this case, the required conditional expectations take the form 

m c.3 

// h(t,t t2)+(4r t2) dr, dt, 

@(T,, T,) IT,'y,, T,=-~2, P, Z:] = Y* 'lrn 

jj 
m4+~, t2) dt, dt, 

Yz Yl 

Dividing the numerator and denominator of this equation by /Yy$(t2) dt, and rewriting as before, we get 

jm&2)jOCWp f,M,It2) dt, dt2 jm+02)d*2 

YZ Yl Y2 

j%~2)jm&If2) dt, dt2 

YZ Yl i 

jmG(~2) dt2 
YZ 

_ i E m 
T2 J 

Yl 

-% 

(6) 

The numerator and the denominator can now be separately expanded about ET2(T, I T, > y2), the 
marginal expectation of T,, conditional on the censored value y,. The denominator is the same bivariate 
tail probability examined in Section 3 and can be approximated in the same manner. The numerator can 
be approximated by setting h(t,, t2) equal to t,, t,, tf, tf or lit, and performing the appropriate 
expansion. The choice of order (i.e., variable to be conditioned upon) affects the actual form of the 
expansion; as noted in Section 3, a better approximation is achieved by conditioning on the variable with 
the smallest marginal tail probability. 

The adequacy of the TS approximation was examined using a standard biv&iate normal distribution 
with p = 0.5. The approximation was based on terms up to and including the third moment for both the 
numerator and denominator and computed for values of yi G y2 of - 2.0, - 1.5, - 1.0, - 0.5, 0.0, 0.5, 1.0, 
1.5 and 2.0. In all instances, approximate values were obtained by conditioning on T,, the variable with the 
smallest marginal tail probability. The univariate integrals were again computed by quadrature using 
DMLIN. Comparison values were computed by bivariate quadrature also using DMLIN. A subset of the 
results are given in Table 4. 

In general, the approximation is very accurate provided that censoring does not occur in the lower tails 
of the marginal distributions. Accuracy of the approximation of the second moments, particularly E( TIT,), 
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Table 4 

Approximation of conditional expectations for censored bivariate normal data a 

Lower bounds Conditional expectations 

r, Tz E(T,) E(G) E(T:) 

- 2.0 - 2.0 0.07400 0.07400 0.88166 

0.07033 0.07033 0.89035 

- 1.0 -1.0 0.34978 0.34978 0.75600 

0.35049 0.35049 0.75906 

0.0 0.0 0.89762 0.89762 1.20676 

0.89979 0.89979 1.20993 

1.0 1.0 1.63643 1.63643 2.92970 

1.63699 1.63699 2.93047 

2.0 2.0 2.47991 2.47991 6.31470 

2.47958 2.47958 6.31225 

- 2.0 -1.0 0.17184 0.29500 0.87662 

0.16996 0.29269 0.88057 

- 2.0 0.0 0.40984 0.79948 0.98271 

0.40924 0.79889 0.98374 

- 2.0 1.0 0.76536 1.52536 1.37787 

0.76524 1.52524 1.37802 

- 1.0 1.0 0.81372 1.52986 1.36953 

0.81372 1.52865 1.36980 

0.0 1.0 1.07064 1.55832 1.61875 

1.07117 1.55711 1.61997 

- 2.0 2.0 1.18710 2.37324 2.18624 

1.18708 2.37322 2.18624 

1.0 2.0 1.77681 2.41459 3.47988 

1.77716 2.41525 3.48089 

a First entry is DMLIN value, second entry is Taylor series approximation. 

E(T;) E(T,T,) 

0.88166 0.41133 

0.89035 0.42706 

0.75600 0.36178 

0.75906 0.37042 

1.20676 0.91351 

1.20993 0.91872 

2.92970 2.72296 

2.93047 2.73315 

6.31470 6.16955 

6.31225 6.18713 

0.71622 0.35059 

0.72074 0.33540 

1.00290 0.50578 

1.00297 0.50666 

2.52589 1.26642 

2.52573 1.26650 

2.54131 1.33660 

2.54104 1.33785 

2.64174 1.73748 

2.65005 1.74093 

5.74656 2.87435 

5.74651 2.87433 

5.96271 4.32070 

5.97241 4.32533 

is poorer than the approximation of the first moments. These conditional expectations were also 
approximated using a modification of the ME approximation (substitution of $,i into the first-order TS 
approximation); the results (not shown), although quite good, were generally poorer than the results shown 
in Table 4. 

5. Discussion 

A Taylor series approximation to multivariate integrals taken with respect to multivariate probability 
distributions has been proposed. These multivariate integrals may be multivariate probabilities or compo- 
nents of expectations taken with respect to the multivariate distribution. In the case of the normal 
distribution, the method provides good approximations, particularly when the correlation coefficient is 
small in absolute value, compares well with the Mendell-Elston approximation and provides a means of 
improving accuracy by the addition of terms. For some applications, however, the number of terms 
required for an adequate approximation may be cumbersome. 

The approximation requires the evaluation of univariate integrals, which may themselves be approxi- 
mated if further ease of computation is required. The general methodology developed in Section 2 can 
easily be applied to other multivariate distributions requiring numerical integration. Extension to higher 
dimensional integrals is straightforward using repeated application of the principle demonstrated in 
equation (4). However, much preparatory analytic work may be required if improvement of the first-order 
approximation is desired. Further work is required to examine the usefulness of the approximation for 
higher order integrals involving multivariate distributions. 

316 



Volume 11, Number 4 STATISTICS & PROBABILITY LETTERS April 1991 

Acknowledgements 

We thank the anonymous referee for helpful comments. 

References 

Dempster, A.P., N.M. Laird and D.B. Rubin (1977), Maximum 
Iikelihood from incomplete data via the EM algorithm 
(with discussion), J. Roy. Statis. Sot. Ser. A 148, 82-117. 

Johnson, N.L. and S. Kotz (1972). Distributions in Statistics: 
Continuous Multivariate Distributions (Wiley, New York) 
43-53,93-103. 

Kres, H. (1983) Statistical Tables for Multivariate Analysis 
(Springer, New York). 

Mendell, N.R. and R.C. Elston (1974), Multifactorial quahta- 
tive traits: genetic analysis and prediction of recurrence 
risks, Biometrics 30, 41-47. 

Olson, J.M. and L.A. Weissfeld (1990) Parameter estimation 
from multivariate distributions in the presence of censor- 
ing, in preparation. 

Pettitt, A.N. (1986) Censored observations, repeated measures 
and mixed effects models: an approach using the EM 
algorithm and normal errors, Biometrika 73, 635-643. 

Rice, J., T. Reich and C.R. Cloninger (1979) An approxima- 
tion to the multivariate normal integral: its application to 
multifactorial qualitative traits, Biomefrics 35, 451-459. 

Schervish, M.J. (1984) Multivariate normal probabilities with 
error bound, Appl. Statist. 33, 81-94. 

U.S. National Bureau of Standards (1959) Tables of the Bi- 
variate Normal Distribution Function and Related Functions, 

Applied Mathematics Series, 50. 

317 


