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For some boundary or initial value problems, the presence of a Dirac distribution on the 
boundary or in the field results in finite solutions at some points in the domain. However, its 
presence leads to dificulties if the problem is solved analytically using a Fourier decomposi- 
tion, since computation and presentation of the solution usually necessitate some sort of 
truncation. To circumvent this problem, the Dirac distribution is often approximated by a 
Gaussian distribution, which results in a very simple Fourier transform on an infinite domain. 
On a finite domain the transform is not as simple, but may still be computed. However, the 
derivative of the Gaussian is discontinuous on the finite domain, since the smooth function 
has been truncated. Thus a different approximation, the fi,-dstribution is proposed. This 
function satisfies the same criteria which make the Gaussian applicable as an approximation 
of the Dirac distribution on the infinite domain, but its derivative is continuous everywhere 
on the finite domain. This article presents a procedure for computing the Fourier coefficients 
of the b,-distribution. Since a large value of the order of the distribution is chosen to 
approximate the singular behavior, the integral for the Fourier coefficients must be evaluated 
using a Fourier-Bessel decomposition, which allows the computation to be carried out over 
large values of the Fourier index. The technique is illustrated with application to a simple two- 
dimensional boundary value problem containing a singularity in the boundary condition. 
Convergence is significantly improved if the proposed distribution is used. Values of some 
Fourier coefficients of the p,-distribution are provided in an appendix for several values of its 
order. ‘0 1991 Academic Press. Inc. 

1. INTRODUCTION 

Consider the problem of determining the temperature distribution in a solid unit 
disk resulting from a flame supplying heat at the point (x, ~1) = (1,0) on the 
boundary, which is otherwise maintained at temperature zero. This boundary value 
problem can be stated: 

V’o(r, @) = 0 

w( 40) = 6,(O) 

w(r, 0) = w(I.; 8 + 27cm), 
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where n is a non-negative integer and s,(e) is the Dirac distribution on domain 6 
with source point B = 0. This generalized function has the properties: 

for any function continuous and bounded on 0 E [ - rc, R]. 
As is well known, the Fourier series solution of a similar problem with general 

boundary conditions is [ 13 ] 

co(r,8)=~+ f [ a, cos(n8) + bfz sin(&)] I.;‘, 
,*= ! 

where the Fourier coefficients, a, and b,,, are 

1 L 
a,=- 

s f(O) cos(nO) d9 
Tc t)=-n 

It has been verified, [9]? that the Fourier series solution with the singular boundary 
condition, Eq. (2), has coefficients 

and converges everywhere in the domain and on the boundary, except at the seurce 
point. A similar problem can be posed on a domain which is of infinite extent In 
one dimension, say x E ( -z, xj ), y E [ - 1, 11. IIn this case the solution involves a 
Fourier transform in x. 

The existence of analytic solutions of such singular roblems is well known. 
However, actual computation of the solutions is problematic, since the series must 
always be truncated. The resulting error is obviously infinite at the source point, 
since any truncated series has a finite value at that point. While the error is !“!nite 
at ah other points in the domain and on the boundary, it is not at all uniform 
throughout, since it increases drastically near the source point. The resulting 
approximation is unsatisfactory. 

Similar problems result when computing frequency information from a time 
history of finite duration using a Fourier transform. The analogous resulr is unac- 
ceptable at high frequencies [S]. 

These problems can often be circumvented by using a smooth, finite approxima- 
tion of the Dirac distribution, rather than attempting to solve the problem with the 
actual boundary condition. Such approximations have an additional advantage, 
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There exist very few natural systems for which the Dirac distribution is an exact 
model. For example, the disk heated by a flame would be more accurately modeled 
by imposing a smooth yet concentrated boundary condition. Thus approximating 
the Dirac distribution by a smooth function may actually* be a better representation 
of the system under consideration, especially if the width of the approximating 
function can be coupled to the physics of the problem. 

A suitable approximating function which is convenient for computation should 
satisfy the following properties everywhere on the domain under consideration: 

1. Its limit with some defining parameter is the Dirac distribution; 
2. It is positive, decreases monotonically from a finite maximum at the source 

point, and tends to zero at the domain extremes; 
3. Its derivative exists and is continuous; 
4. It is symmetric about the source point; 
5. It is representable by a reasonably simple Fourier integral (for infinite 

domains) or Fourier series (for finite domains). 

2. THE GAUSSIAN AS AN APPROXIMATION OF THE DIRAC DISTRIBUTION 

The Gaussian distribution with zero mean and standard deviation 0 is given by: 

(8) 

This distribution, when normalized, can be used to approximate the Dirac 
distribution by requiring that the amplitude becomes large at the same rate at 
which the standard deviation becomes small: 

(j(Q) = + e -wy (9) 
Y/n 

To see this, first note that for 8 = 0 the value of the Gaussian is 

d(O) = &h (10) 

which approaches infinity with E. For 8 # 0 the limit becomes (using l’H6pital’s 
rule): 
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It can be shown that, since the distribution has been normalized, Eq. (5,) is 
satisfied, and thus the Gaussian is equivalent to the Dirac distribution in the !in+t 
; -+ rs. , - 

3. THE FOURIER TRANSFORM OF THE GAUSSIAK ON AN INFINITE ITOMAIN 

With the Fourier transform pair defined as 

the Fourier transform of the Dirac distribution is [7] 

Bi can be seen that, for acceptable results at high frequencies, an extensive 
time-history of the solution must be provided, since the Fourier transform of the 
Dirac distribution contains all frequencies with equal amplitude [g]. If frequency 
information is to be recovered from a time simulation, it may be impractica: to 
compute the solution for a sufficient number of time steps, and the resulting 
spectrum will be meaningless at high frequencies. 

Since the Gaussian, d(t), is smooth, it is not as subject to the high-frcq~e~~y 
degradation. Its transform is [S] 

Note that, as required, the integral of this quantity over the o-domain is unity. 

4. THE FOURIER TRANSFORM OF THE /3,-DISTRIEIJTION 
ON A FINITE DOMAIK 

The Gaussian has an important shortcoming for the current application as an 
approximation of the Dirac distribution on a finite domain, namely that the first 
derivative of the resulting approximation is discontinuous at 8 = +x. Another 
approximation is desired. 

An approximating function satisfying all of the properties I through 5 In 
Section 1 above is provided by the P-distribution of probability theory [12]. This 
distribution is normally defined on the interval x E CO? I]. To accommodate the 
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domain under consideration, x E [ - TI, ~1, shift the coordinate axis and renormalize 
by dividing by 271, so that the area under the distribution is unity. This new 
distribution, denoted as /3,(e), is given by 

(?r+e)- (7r-ep1 
VdE[-7T,TT] 

k(e) 2 
(27C)‘“- ’ B(a, b) 

0 otherwise. 

&a, b) is the well-known B-function [l, formula (6.2.2)], 

where I’(x) is the 
For the current 

or 

(15) 

= I’(a+b) 

familiar Gamma function, discussed in [l]. 
application, the distribution should be symmetrical, so that b = a, 

p (e)=(2n)l-2”(n*-e2)12~l 
K 

B(a, a) 
(16) 

Additionally, to avoid integration problems in the following development, it is 
required that a > 2, which is not a serious restriction, since a should be large if an 
approximation of the Dirac distribution is required. Because of the normalization, 
the integral of the distribution over the domain is unity. The following limiting 
values are easily verified: 

lim fin = [2’ ‘“/(&(a, a))] - 
9-O 

d&/dQ=O’. 

Since the derivatives approach zero as 8 + +X from the domain interior, they are 
continuous there. The /I.-distribution approaches the Dirac distribution when 
a + co in Eq. (16), as will be shown. 

The Fourier coefficients can now be determined. Again, the odd coefficients, b,, 
are all zero while the even coefticients are evaluated as 

1 R 
a,, = - s 

fin cos(ne) de. 
71 lj-n 
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While it is mathematically possible to determine the Fourier coefficients for the 
)Y,-distribution using a Taylor series, such a series is not com~utat~o~a~~y usefu! for 
large 1, since the number of required Fourier terms increases with ~a for resoiutioe 
of the peak. it is apparent that the Taylor series cannot be truncated until the 
Taylor index, ITI, is much greater than the Fourier index, n, requiring computation 
of large exponentials. It is thus fortuitous that the integral appearing in Eq. (17) 
can be evaluated directly using 16, integral 3.77168 )j: 

where J,,(s) is the Bessel function of the first kind of order Y. Thus the nth Fourier 
coefficient of the symmetric p,-distribution is given by 

Computing the b--distribution or its Fourier coefficients for large order c 
necessitates computing T(a) and J,,(X) over large ranges of both Y = G- 4 and 
x = T-W. An excellent technical discussion and FORTRAN code for com~~t~~g J,;(x) 
and r(a) for all ranges of integer n and x are provided by [? 11. 
moderate values of a, these programs result in underflow or ove 
slight modifications they were used to directly compute In 5,J.u) a 
For successful computation, the form of Eq. (19) is crucial. In particular, EC, must 
be computed in its entirety before substitution into (19) to avoid underflow or over- 
flow errors on even the largest computers. Similarly, Eq. (16) is evaluated using 

p,(s) = (2?7)’ -2a eEd3 :2lj 

-where 

E,& (a- 1) in(n’-0’) +in T(Zaj-2 In ~~(a). (22) 

Tables I and II in the appendix present the first several Fourier coefficients of the 
ijn-distribution for various values of a. 
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4.2. Asymptotic Limit 

J,,(x) is given asymptotically with large v as [l, Eq. (9.3.1)] 

or 

1 

( > 

a ~~ 1:2 
Jo- 1,2w4 - 

em 

Jn(2a- 1) h-1 . 

Substituting (24) in (19) via (20) and cancelling terms yields 

a, = 
e”r(2nz + 1) 

7~2~~ + 1i2mm + “‘r(in + l/2) 

(24) 

(25) 

where 

mAa-;, for large values of a (26) 

which is independent of n. This shows that the /?,-distribution approaches the Dirac 
distribution as the order a approaches co. Indeed, substituting the duplication 
formula Cl, Eq. (6.1.18)], 

I(2W.I) = (27c-r~22z~-1V(Wz) T(m + +,, 

the recurrence relation [lo], 

qm + 1) = mT(nz), 

and Stirling’s formula [lo], 

(27) 

(28) 

T(X) = 
277 

i- 
- xreeX[ 1 + t+j], 
x 

gives 

2m+l 1 
lim a,, = lim - - 

,,I + iz m-x 27tm -7c 
(30) 

or 

lim P,(e) = L?,(e). (31) 0 * P 

Of course, this asymptotic form is not helpful for the computation, since it returns 
the Fourier coefficients of the Dirac distribution. 
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5. SOME COMPARISONS 

Figure I presents a comparison of the truncated Fourier representations of the 
rat and j3r:-distributions on the interval BE [-r-t, ~1. The order of the 
-distribution, a, has been taken as 100.5 and the Fourier series has been 

truncated at five terms. The Fourier representation of the /In-distribution for this 
figure was generated using Eq. (19). It can be seen from this figure that, while the 
truncated Fourier representation of the Dirac distribution is associated with an 
increasing amplitude of high-frequency oscillations (a Gibbs phenomenon) near 
the source point, the p.-distribution is very smooth. Since the /In-distribution is 
continuous on the closed domain, its Fourier series is uniformly convergent there. 

Figure 2 shows the values of some of the Fourier coefficients, a,,. ai 1: 
b,-distribution (as computed using Eq. (19)) for various values of the order a. 
(Those of the Dirac distribution, which are all a,, = l/nz are not shown j It can be 
seen that, as a is increased, the coefficients he on curves which are increasingly slat 
near the origin and tail off more and more gently. The value of a, is I/TC for ail 
values of the order, a. 

The coefficients used to produce Fig. 2 are listed in the tables included in the 
Appendix. For large values of a these are slowly decreasing with Fourier index, K 
This does not pose any computational diffrcuities since the truncation error in 
summing the series is less than the magnitude of the last coefhcient included. ‘Thus, 
for G taking values of 100.5, 1000.5, and 10,000 5, the truncation error will be less 
than 2 x IO.-‘, provided the respective series include at least 20. 63, amd 199 corn- 
ponents. Summing such a large series is not difficult with even a desktop computer. 
En any case, the slow convergence of the proposed fi,-distribution is to be 
since it is approximating a series with non-uniform convergence which 

F r, _r 1 

I i c T il I’ c 0 i 1: ‘1 ( I 

FIG. 1. Truncated Fourier representations of the Dirac and /3,-distrtbmtions. 
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FIG. 2. Some Fourier coefficients of the /?,-distribution. All Fourier coefficients of the Dirac 
distribution are l/x. 

converge at all at the singular point. Figures 3 and 5 illustrate that useful results 
reflecting negligible truncation error can be easily generated using the 
P,-distribution. 

Figure 3 shows Fourier representations of the /?,-distribution with the order a 
chosen as 10.5, 100.5, 1000.5, and 10,000.5. Notice that each curve is smooth. The 
truncation indices of the Fourier coeffkients retained in generating each of these 
curves were, respectively, 4, 12, 42, and 130. 

-P I 0 +F I 

THETG (riid, ens j 

FIG. 3. Fourier representations of the BE-distribution with four values of the order a 
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FIG. 3. Soiution OF the steady heat equation in a disk aitb a singularity on the boundary, 
represented by rhe Fourier series of the Dirac-distribution truncate6 at index N= j0. 

FIG. 5. Solution of the steady heat equation in a disk with a singularity on the boundary, 
represented by the Fourier series of the fi,-distribution of order c? = 1000.5 truncated at index TV’= 50. 



322 COHEN AND KIRSCHNER 

Figures 4 and 5 show the results of the problem outlined in the Introduction: the 
solution of the steady heat equation in a disk with a singularity in the boundary 
condition. Figure 4 represents the solution computed using the truncated Fourier 
representation of the Dirac distribution. Notice that the Gibbs phenomenon in the 
boundary condition contaminates the solution, causing unrealistic jaggedness near 
the boundary, especially in the neighborhood of the source point. This is an artifact 
of the non-uniform convergence of the series representing the boundary condition. 
The equivalent results computed using the B,-distribution are well behaved, as is 
evident from Fig. 5, which was computed using a = 1000.5. While the error is (of 
course) still infinite at the source point, the solutions are uniformly convergent 
everywhere else in the domain and on the boundary. The index of the highest 
Fourier coefficient retained in generating each of these figures was 50. 

6. CONCLUSION 

It has been suggested that the troublesome convergence associated with the 
Fourier representation of the Dirac distribution can be avoided by replacing 
the singular distribution with a smooth approximation. A previously known 
approximation for the infinite domain, the Gaussian, has been presented. A new 
approximation, the /IX-distribution, has herein been developed for the finite 
domain, and procedures have been given for computing its Fourier coefficients. The 
great advantage of the p,-distribution is that it provides continuity of all 
derivatives everywhere in the finite domain, including the endpoints. 

The procedure for computing the Fourier coefficients of the fl,-distribution 
involves the Fourier--Bessel decomposition of a known integral. It has been 
demonstrated that existing numerical techniques are capable of evaluating the trun- 
cated Fourier representation of the fin-distribution for very large values of both the 
order, a, and the truncation index, N. Tables of coefficients of the distribution for 
various values of the order are presented in the Appendix. 

The truncated Fourier representations of the /I,- and the Dirac distributions have 
been compared for various values of the order and truncation index. Finally, the 
results have been employed in comparing the solution of the steady heat equation 
in a disk as computed using each of the representations. It is shown that the Gibbs 
phenomenon associated with the Dirac representation is avoided by using the 
proposed approximation. 

It has been pointed out that singular distributions are often idealizations of 
smooth (albeit very peaked) functions and that using a smooth approximation may 
be more representative of the physics under analysis. Guidelines for choosing the 
peakedness of the approximating distribution could be derived from analysis of the 
physics underlying the problem being studied. If such an analysis indicated that the 
physical distribution was non-symmetric, techniques similar to those proposed 
herein could be applied, since the /?,-distribution need not be symmetric. 
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APPENDIX: TABULATED FOURIER COEFFICIENTS 8~ THE ,iSn- 
FOR VARIOUS VALUES OF THE ORDER u 

The Following tables were generated using Eq. (18) through (20). With these coef- 
ficients, the ,Bn-distribution is represented by its truncated Fourier series using rhe 
formula: 

TABLE i 

Fourier Coeffkients for the p,-Distribution for Three Values oE tke Order o 

a. 
0 = 100.5 a = 1000.5 a = 10000.5 
3.1d3lOEOl 3.18310EOl 3.1d310E01 
3.10629E01 3.17530EOl 3.20216EOl 
2.686E5EOl 3.15175EOl 3.194353-01 
2.55423BOl 3.11275501 3.211563-01 
2.15167EOl 3.0603SEOl 3.19904EOl 
1.72509EOl 2.992773-01 3.19279%01 
131595EOl 2.91275EOl 3.17724EOl 
9.54739E02 2.82073EOl 3.16485EOl 
65M54E02 2.71863E01 3.16485EOl 
4.314X3-02 2.607473-01 3.146373-01 
2.6a392E02 2.4aaO7EOl 3.134103-01 
1.56393E02 2.36257EOl 3.121&3&01 
8.860023-03 2.23192E01 3.0975915-01 
4.692763-03 2.09875EOl 3.07949EOl 
2.35093503 1.96342E01 3.06150EOl 
1.11241EG3 1.a27a8l?-01 3043613-01 
4.96467E04 1.693a2EOl 3.01403EOl 
2 5a631B04 1.560aOEOl 2.98474E01 
a23959E05 1.43192B01 2.96151EOl 
3.05162EO5 1.3066-I&01 2.93273EkOl 
1.057283-05 1.1a7lOEOl 2.91560EOl 
3.41677%06 1.0729&E01 2.88163EOl 
1.026563-06 9.64874502 
2.85613B07 8.63641E02 

76B89E02 
6.8119dEOZ 
6.0056dEO2 
5.27032E02 
4.60022E02 
3.99674Eo2 

2.a5921Eol 
2.8203aEOl 
2.78752EOl 
2.75505EGl 
2.71764B01 
2.6859BEOl 
2.64433EOl 
2.603343-01 

3.45383E02 2.573013-01 
2.97121E02 2.533123-01 
2.5432mo2 2.50361EOl 
2.16557EGZ 2.455laEoi 
l.a3453E-02 2.40769EOl 
1.54729E02 2.37037EkOl 
1.29d02E02 2.33362E.01 
1 Oa361E02 2.2M48EOl 
8.99996503 2.25300E01 
7.44031E03 2.200alEOl 
6.12023CO3 2.16669EOl 
5.00678EO3 2.1165OEOl 
4.07795EO3 2.07556601 
3.30363E03 2.03542EOl 
2.66363EO3 1.99605E01 
2.1363%03 1.94221EGl 
1.70534Jc03 1.904643-01 
1.35415E03 1.86052EOl 
1.07017Eo3 1.81742EOl 
8412243-04 1.77532EOl 
6.5dlllE04 1.73420EOl 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

dl 
62 
83 
a4 
t35 
86 
87 
88 
69 
90 

91 
92 
93 
94 
95 
96 
97 
9a 
99 

100 - 

3% 
Li = 1000.5 (I = ?0000.5 

5.12350B04 1.69402EOl 
3.96736504 164190E-01 
3.057513-04 
2.34428EO+ 
1.78866E04 
1357423-04 
1.02489E04 
7.70235E55 
5.759653-05 
4.283d6E05 
3.17070E05 
2.334223-05 
1.709A3EG5 
1.24667E-05 
903&36EOS 
6.524763-06 
4.68243E-06 
3.34311E06 
2.37700E06 
1.67979E06 
i.ld159E06 
8.27104EG7 
5.75722E07 
3.9a645EOl 
2.74755E07 
1.M260507 
i.ZJ129E07 

1.603mE-01 
1.56061E-01 
1.52445EOl 
2.48334E-01 
1437703-01 
1.39a92E-01 
1.3611dE-01 
1.324473-01 
1.27871E-01 
1.23937%-01 
120594E-01 
1 16~%34P,-01 
1.132&E-01 
:.09802E-0: 
106424E-01 
1.023473-01 
9.9:9a4E-02 
9 614643-02 
9.24631E-02 
8.96i&3E-02 
3.65224FLO2 
8320733-02 
mJ3333B02 
7.725583-02 
7.42962E02 
717296E02 
6.8981mo2 
6.6339OE02 
6.37976EO2 
6.lI144Ek02 
5.67731ECa 
5.63GlZEW 
5.41443EO2 
5.i6649EO2 
4.949193-02 
4.75959EO2 
4559413-02 
4.359123-02 
4.159503-02 
3.98456E02 
3 767273-02 
363508E02 
3.45509E-02 
3.3162~02 
31459OE02 
3.0077OE02 
2.864313-02 
2 72787E.02 
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TABLE II 

Fourier Coehicients for the P,-Distribution for Order, LI = 10.000.5 starting with Index n = 101 

104 I I 2.230773-02 
105 2.11613EO2 
106 2.01140E02 

142 2.213033-03 
143 2.06282E03 
144 1.92652E03 
145 1.79221E03 
146 1.67052E03 
147 1.551033-03 
148 1.44289E03 

7.19996E03 
6.6167dEO3 
6.39128E03 
6.01579EO3 
5.65131EO3 

149 1.33446E03 
150 1.24d72E03 
151 I 1.154.6aE03 

4.366993-03 1.07017E03 
1.37702E02 133 4.086423-03 9.975163-04 

3.83134Eo3 9.225513-04 
3.59219E03 
3.34d29E03 
3.13316E03 7.32654E04 

1.03538E02 136 2.93136E-03 6.775953-04 
6.27d98E04 

7; 
161 
162 
163 
164 
165 
166 
167 
16d 
169 
170 
171 
172 
173 
174 
175 
176 
177 
173 
179 
160 - 

a. 
533932E04 
4.9477lE-04 
4.558053-04 
4.199073-04 
3.69110E04 
3.577653-04 
3.302333-04 
3.036313-04 
2.791723-04 
2.566843-04 
2.35067E-04 
2.169953-04 
l-991263-04 
1.827283-04 
1.673543-M 
1.54173E-04 
1.41201E04 
1.290683-04 
1.182093-04 
l.O6052E-04 

7-r 
isi- 
132 
163 
164 
It35 
186 
167 
ldd 
189 
190 

isi- 
192 
193 
194 
195 
196 
197 
198 
199 
200 - 

Sn:7674EO5 
9.02807E05 
8.26846EO5 
7.57276B05 
6.89508E05 
6.27804E05 
5.74981E05 
5.22505E05 
4.75746E05 
4.32326E05 
3.95173EOS 
3.59814E05 
3.25700E05 
2.95975E05 
2.70015E05 
2.44893E05 
2.22108E05 
2.01443E05 
I .63058EO§ 
1.6E02iE05 

The tables list the coefficients a,,, IZ > 0 used to generate Fig. 3. Tables I and II list 
coefficients for a= 100.5, 1000.5, and 10,000.5. Table I provides coefficients to 
precision of the order 10P7 for a = 100.5 and 1000.5, and the first 100 coefficients 
for a = 10,000.5. Table II continues the coefficients for a = 10,000.5 through index 
IZ = 200, for which the precision is of the order lo-‘. The zeroeth coefficients all 
take the value l/n, which is the value of all of the Fourier coefficients of the Dirac 
distribution. 

REFERENCES 

1. M. ABRAMOWITZ AND I. A. SIEGUN, Handbook of Mathematiral Functions, 9th ed. (Dover, 
New York, 1972). 

2. WI. H. BEYER AND S. M. SELBY, Standard Mathematical Tables, 24th ed. (CRC Press, Cleveland, 
1976). 

3. N. G. DE BRUIJN, .dsymptotic Methods in rlna/ysis (Dover, New York, 1981). 
4. A. ERD~LYI, Asymptotic Expansions (Dover, New York, 1956). 
5. J. E. FREUND, Mathematical Statistics, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 1971). 
6. I. S. GRADSHTEI~ AND I. M. RI’SHIK, Table qf Integrals, Series, and Products, corrected and enlarged 

edition (Academic Press, New York, 1980). 
7. W. ~PLAN, Advanced Calc~~lns, 3rd ed. (Addison-Wesley, Reading, MA, 1984). 
8. B. K. KING, Time-Domain Analysis of Wave Exciting Forces on Ships and Bodies, Department of 

Naval Architecture and Marine Engineering Report, No. 306, University of Michigan, Ann Arbor, 
1987. 

9. I. N. KIRSCHNER, Seminar in Marine Hydrodynamics, Department of Naval Architecture and Marine 
Engineering, University of Michigan, Ann Arbor, 1988 (unpublished). 

10. N. N. LEBEDEV, Special Functiom and Their .4pp/ications. translated from the Russian by Richard A. 
Silverman (Dover, New York, 1972). 

11. W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLXY, .~ND W. T. VETTERLING, Numerical Recipes 
(Cambridge Univ. Press, New York, 1987). 

12. S. Ross. A First Course in Probability, 2nd rd. (Macmillan Co., New York, 1984). 
13. G. P. TOLSTOV, Fourier Series, translated from the Russian by Richard A. Silverman (Dover, 

New York, 1962). 


