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For some boundary or initial value problems, the presence of a Dirac distribution on the
boundary or in the field results in finite solutions at some points in the domain. However, its
presence leads to difficulties if the problem is solved analytically using a Fourier decomposi-
tion, since computation and presentation of the solution usually necessitate some sort of
truncation. To circumvent this problem, the Dirac distribution is often approximated by a
Gaussian distribution, which results in a very simple Fourier transform on an infinite domain.
On a finite domain the transform is not as simple, but may still be computed. However, the
derivative of the Gaussian is discontinuous on the finite domain, since the smooth function
has been truncated. Thus a different approximation, the f.-dstribution is proposed. This
function satisfies the same criteria which make the Gaussian applicable as an approximation
of the Dirac distribution on the infinite domain, but its derivative is continuous everywhere
on the finite domain. This article presents a procedure for computing the Fourier coefficients
of the f,-distribution. Since a large value of the order of the distribution is chosen to
approximate the singular behavior, the integral for the Fourier coefficients must be evaluated
using a Fourier-Bessel decomposition, which allows the computation to be carried out over
large values of the Fourier index. The technique is illustrated with application to a simple two-
dimensional boundary value problem containing a singularity in the boundary condition.
Convergence is significantly improved if the proposed distribution is used. Values of some
Fourier coefficients of the f,-distribution are provided in an appendix for several values of its
order. © 1991 Academic Press, Inc.

1. INTRODUCTION

Consider the problem of determining the temperature distribution in a solid unit
disk resulting from a flame supplying heat at the point (x, y)=(1,0) on the
boundary, which is otherwise maintained at temperature zero. This boundary value
problem can be stated:

Viw(r, 0)=0 (1)
w(l, 0)=3,(0) (2)
w(r, 8)=w(r, 6+ 2nn), (3)
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where # is a non-negative integer and 6,(6) is the Dirac distribution on domain £
with source point 8 =0. This generalized function has the properties:

5o(0)=0  VO£0 (43
|, /(0)3,(6)do=1(0) (53

for any function continuous and bounded on 6e[ —=, n].
As is well known, the Fourier series solution of a similar problem with general
boundary conditions is [13]

[

a o Y . = s
w(r,9)=70+ Y. [a,cos(nb)+ b, sin(n0)1r", {

n=1

where the Fourier coefficients, a, and b,, are

aﬂzlr F(8) cos(nb} db

b = —x

p =L j £(6) sin(n6) 6.
NYg= —xn

it has been verified, [9], that the Fourier series solution with the singular boundary
condition, Eq. {2}, has coefficients

(73

Lid
b,=0

and converges everywhere in the domain and on the boundary, except at the source
point. A similar problem can be posed on a domain which is of infinite extent in
one dimension, say xe(—wx, ), ye{ —1, 17]. In this case the solution involves a
Fourier transform in x.

The existence of analytic solutions of such singular probiems is well known.
However, actual computation of the solutions is problematic, since the series must
always be truncated. The resulting error is obviously infinite at the source point,
since any truncated series has a finite value at that point. While the error is finite
at all other points in the domain and on the boundary, it is not at all uniform
throughout, since it increases drastically near the source point. The resulting
approximation is unsatisfactory.

Similar probiems result when computing frequency information from a fime
history of finite duration using a Fourier transform. The analogous result is unac-
ceptable at high frequencies [8].

These problems can often be circumvented by using a smooth, finite approxima-
tion of the Dirac distribution, rather than attempting to solve the problem with the
actual boundary condition. Such approximations have an additional advantage.
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There exist very few natural systems for which the Dirac distribution is an exact
model. For example, the disk heated by a flame would be more accurately modeled
by imposing a smooth yet concentrated boundary condition. Thus approximating
the Dirac distribution by a smooth function may actually be a better representation
of the system under consideration, especially if the width of the approximating
function can be coupled to the physics of the problem.

A suitable approximating function which is convenient for computation should
satisfy the following properties everywhere on the domain under consideration:

1. Its limit with some defining parameter is the Dirac distribution;

2. It is positive, decreases monotonically from a finite maximum at the source
point, and tends to zero at the domain extremes;

3. Its derivative exists and is continuous;
4. It is symmetric about the source point;

5. Tt is representable by a reasonably simple Fourier integral (for infinite
domains) or Fourier series (for finite domains).

2. THE GAUSSIAN AS AN APPROXIMATION OF THE DIRAC DISTRIBUTION

The Gaussian distribution with zero mean and standard deviation ¢ is given by:

D) = —= 10", (8)
VT

This distribution, when normalized, can be used to approximate the Dirac
distribution by requiring that the amplitude becomes large at the same rate at
which the standard deviation becomes small:

HO)=—e ©)
VT
To see this, first note that for 8 =0 the value of the Gaussian is
$0)=¢/\/n (10)

which approaches infinity with &. For 8#0 the limit becomes (using I'HOpital’s
rule):

lim ¢(0)19¢0=L_ lim

£ — o0 \/7‘[8*)006
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satisfied, and thus the Gaussian is equivalent to the Dirac distribution in the lim?

2 o
L AL

It can be shown that, since the distribution has been normalized, Eq. {3} is
t

3. THe FOURIER TRANSFORM OF THE (GAUSSIAN ON AN INFINITE DOMAIN
With the Fourier transform pair defined as

}‘(w)éj  fe (i1

~ C

1
(1) £ o J o) e do (12}

@ = —0oC

]33

the Fourier transform of the Dirac distribution is [7]

S(w)=r Solt) e~ dr=1. (13)

- %

it can be seen that, for acceptable results at high frequencies, an extensive
time-history of the solution must be provided, since the Fourier transform of the
Dirac distribution contains all frequencies with equal amplitude [8]. If frequency
information is to be recovered from a time simulation, it may be impractica} tc
compute the solution for a sufficient number of time steps, and the resulting
spectrum will be meaningless at high frequencies.

Since the Gaussian, ¢(z), is smooth, it is not as subject to the high-frequency
degradation. Its transform is [8]

2.2 N
~OC gef(s-t‘-rtu)!) ) oa .
flo)=| e dr=e N, g
A NE

N

Note that, as required, the integral of this quantity over the w-domain is unity.

4. THE FOURIER TRANSFORM OF THE j,-DISTRIBUTION
ON A FINITE DOMAIN

The Gaussian has an important shortcoming for the current application as an
approximation of the Dirac distribution on a finite domain, namely that the first
derivative of the resulting approximation is discontinuous at §= +7n. Another
approximation is desired.

An approximating function satisfying all of the properties I through 5 in
Section 1 above is provided by the f-distribution of probability theory [127. This
distribution is normally defined on the interval xe [0, 1]. To accommodate the
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domain under consideration, x € [ —n, n ], shift the coordinate axis and renormalize
by dividing by 2z, so that the area under the distribution is unity. This new
distribution, denoted as f,(6), is given by

(m+8)y" ' (n—0)!
(27)** ! B(a, b)

Voel —n, 7]
0 otherwise.

B(a, b) is the well-known B-function [1, formula (6.2.2)].

B(a,b)éj'" (n+0)" ' (x—0)" ' db
o= (15)
_ I(a) I(b)

T I(a+b)

where I'(x) is the familiar Gamma function, discussed in [1].
For the current application, the distribution should be symmetrical, so that b =g,
or

3 (Zn)l~2a (nz _92)4171

pull) == (16)

Additionally, to avoid integration problems in the following development, it is
required that a> 2, which is not a serious restriction, since a should be large if an
approximation of the Dirac distribution is required. Because of the normalization,
the integral of the distribution over the domain is unity. The following limiting
values are easily verified:

lim g, = [2'"*/(nB(a, a))]~

dp. /do = 0F

lim B,=0"
80— +nt

dp./do =0,

Since the derivatives approach zero as 8§ — +x from the domain interior, they are
continuous there. The f,-distribution approaches the Dirac distribution when
a— oo in Eq. (16), as will be shown.

The Fourier coefficients can now be determined. Again, the odd coefficients, b,
are all zero while the even coefficients are evaluated as

= —n

a,,:lf” B cos(nf) db. (17)
Y
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4.1. Fourier—Bessel Series

While it is mathematically possible to determine the Fourier coefficients for the
j .-distribution using a Taylor series, such a series is not computationally usefu!l for
large n, since the number of required Fourier terms increases with a for resoiution
of the peak. it is apparent that the Taylor series cannot be truncated until the
Taylor index, m, is much greater than the Fourier index, », reguiring computation
of large exponentials. It is thus fortuitous that the integral appearing in Eg. {17)
can be cvaluated directly using [6, integral 3.771(8}1:

A / 2 a—-17
6 (nz-(?z)“”lcos(n@)d@:x—/—n\ Na)J,_ »(mn), (%)
2 Kn Y,

where J,(x) is the Bessel function of the first kind of order v. Thus the nth Fourzer
coefficient of the symmetric f§,-distribution is given by

where

I

Ec(l—a)lnn+(3—a)lnln
+1In I'2a)y—1n I'{a)

—InJ,_s(nn) {203

Computing the f,-distribution or its Fourier coefiicients for large order o
necessitates computing (¢) and J,(x) over large ranges of both v=a¢—1 and
x =r7n. An excellent technical discussion and FORTRAN code for computing J_{x}
and [{a) for all ranges of integer » and x are provided by [11]. However, for even
moderate values of a, these programs result in underflow or overflow errors. With
siight modifications they were used to directly compute In J,(x) and In {2) instead.
For successful computation, the form of Eq. (19) is crucial. In particular, £, must
be computed in its entirety before substitution into {(19) tc avoid underflow cr over-

flow errors on even the largest computers. Similarly, Eg. {16} is evaluated using

Bo(0)=(2Zm)' 27 e, :21)

N
b

S

Eq2{a—DIn(rn? -0 +In T(2a)—21n I{a) {

Tables I and II in the appendix present the first several Fourier coefficients of the
4 ,.-distribution for various values of a.
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4.2. Asymptotic Limit

J.(x) is given asymptotically with large v as [1, Eq. (9.3.1)]

1 fex\'
J(x)~ (—)
/2y 2v

or

S () 1 < enn >“ 12
a—1,2\Tth) ~ : -
Y Jr2a—1)\2a—1

Substituting (24) in (19) via (20) and cancelling terms yields

_ em"I(2m+1)
n 22+ 12 m o+ 1,v21—~(m + 1/2)

a

where

m&a—3,  for large values of a

(23)

(25)

(26)

which is independent of n. This shows that the f,_-distribution approaches the Dirac
distribution as the order a approaches co. Indeed, substituting the duplication

formula [1, Eq. (6.1.18)7,
I2m)=(2r)~ "2 22" 12 (m) [(m + 1),
the recurrence relation [10],
I'(m+ 1)=ml(m),

and Stirling’s formula [10],

rm:ﬁx*e**[l +r(x)],

gives

. . 2m+1 1
lim a,= lim -
" oc m— o 2TM T

or

lim f,(0) = d¢(0).

a— ¢

27)

(28)

(29)

(30)

(31)

Of course, this asymptotic form is not helpful for the computation, since it returns

the Fourier coefficients of the Dirac distribution.



APPROXIMATING THE DIRAC DISTRIBUTION

L)
pt
N

5. SOME COMPARISONS

Figure 1 presents a comparison of the truncated Fourier representations of the
Dirac and fJ_-distributions on the interval f#e[—n n]. The order of the
£ .-distribution, @, has been taken as 100.5 and the Fourier series has been
truncated at five terms. The Fourier representation of the §,-distribution for this
figure was generated using Eq. (19). It can be seen from this figure that, whiie the
truncated Fourier representation of the Dirac distribution is associated with an
increasing amplitude of high-frequency oscillations (a Gibbs phenomenon} near
the source point, the §,-distribution is very smooth. Since the f,-distribution is
continuous on the closed domain, its Fourier series is uniformly convergent there.

Figure 2 shows the values of some of the Fourier coefficients, a,, of the
B -distribution (as computed using Eq. (19)) for various values of the order a.
(Those of the Dirac distribution, which are all a,= 1/m, are not shown.} It can be
seen that, as « is increased, the coefficients lie on curves which are increasingly flat
near the origin and tail off more and more gently. The value of a4 15 U/n for all
values of the order, a

The coefficients used to produce Fig. 2 are listed in the tables inciuded in the
Appendix. For large values of a these are slowly decreasing with Fourier index, »
This does not pose any computational difficulties since the truncation error in
sumnming the series is less than the magnitude of the last coefficient included. Thus,
for a taking values of 100.5, 1000.5, and 10,000.5, the truncation error will be iess
than 2x 1077, provided the respective series include at least 20, 63, and 199 com-
ponents. Summing such a large series is not difficult with even a desktop computer
In any case, the slow convergence of the proposed §,-distribution is to be expected,
since it is approximating a series with non-uniform cenvergence which does not

Lrl Etu*D\ 1
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Fic. 1. Truncated Fourier representations of the Dirac and £ -distributions.
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FiGc. 2. Some Fourier coefficients of the f,-distribution. All Fourier coefficients of the Dirac
distribution are /7.

converge at all at the singular point. Figures 3 and 5 illustrate that useful results
reflecting negligible truncation error can be easily gencrated using the
B, ~distribution.

Figure 3 shows Fourier representations of the §,-distribution with the order a
chosen as 10.5, 100.5, 1000.5, and 10,000.5. Notice that each curve is smooth. The
truncation indices of the Fourier coefficients retained in generating each of these
curves were, respectively, 4, 12, 42, and 130.
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Fi16. 3. Fourier representations of the f§.-distribution with four values of the order a.
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FiG. 4. Soiution of the steady heat equation in a disk with a singularity on the boundary,
represented by the Fourier series of the Dirac-distribution ¢runcated at index N = 50.

Fig. 5. Solution of the steady heat equation in a disk with a singularity on the boundary,
represented by the Fourier series of the 8, -distribution of order o = 1000.5 truncated at index N = 50.
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Figures 4 and S show the results of the problem outlined in the Introduction: the
solution of the steady heat equation in a disk with a singularity in the boundary
condition. Figure 4 represents the solution computed using the truncated Fourier
representation of the Dirac distribution. Notice that the Gibbs phenomenon in the
boundary condition contaminates the solution, causing unrealistic jaggedness near
the boundary, especially in the neighborhood of the source point. This is an artifact
of the non-uniform convergence of the series representing the boundary condition.
The equivalent results computed using the f,-distribution are well behaved, as is
evident from Fig. 5, which was computed using a= 1000.5. While the error is (of
course) still infinite at the source point, the solutions are uniformly convergent
everywhere else in the domain and on the boundary. The index of the highest
Fourier coefficient retained in generating each of these figures was 50.

6. CONCLUSION

It has been suggested that the troublesome convergence associated with the
Fourier representation of the Dirac distribution can be avoided by replacing
the singular distribution with a smooth approximation. A previously known
approximation for the infinite domain, the Gaussian, has been presented. A new
approximation, the pf,-distribution, has herein been developed for the finite
domain, and procedures have been given for computing its Fourier coefficients. The
great advantage of the pf,-distribution is that it provides continuity of all
derivatives everywhere in the finite domain, including the endpoints.

The procedure for computing the Fourier coefficients of the f_-distribution
involves the Fourier-Bessel decomposition of a known integral. It has been
demonstrated that existing numerical techniques are capable of evaluating the trun-
cated Fourier representation of the 8 -distribution for very large values of both the
order, a, and the truncation index, N. Tables of coefficients of the distribution for
various values of the order are presented in the Appendix.

The truncated Fourier representations of the f- and the Dirac distributions have
been compared for various values of the order and truncation index. Finally, the
results have been employed in comparing the solution of the steady heat equation
in a disk as computed using each of the representations. It is shown that the Gibbs
phenomenon associated with the Dirac representation is avoided by using the
proposed approximation.

It has been pointed out that singular distributions are often idealizations of
smooth (albeit very peaked) functions and that using a smooth approximation may
be more representative of the physics under analysis. Guidelines for choosing the
peakedness of the approximating distribution could be derived from analysis of the
physics underlying the problem being studied. If such an analysis indicated that the
physical distribution was non-symmetric, techniques similar to those proposed
herein could be applied, since the g -distribution need not be symmetric.
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APPENDIX: TABULATED FOURIER COEFFICIENTS OF THE [3,-DISTRIBUTION

FOR VARIOUS VALUES OF THE ORDER ¢

Lad
e
L

The following tables were generated using Eq. (18) through (20). With these coei-
ficients, the f_-distribution is represented by its truncated Fourier series using the

formula:

N
BAO~L 4 Y [a,cos(nd)+ b, sin(#0)].
o)

“~ n=0

TABLE I

Fourier Coefficients for the f,-Distribution for Three Values of the Order a

| nt G n | ay 1
I [ a=1005 a =1000.5 a = 10000.5 [f | a = 10005 @ = 10000.5 |
0 | 3.18310E-01 _ 3.18310E-01 _ 3.183108-01
T | 3.10629E-01  3.17530E-01  3.202165-01 51 [ 5.12350B-04 1.65402E-01
2 | 2.88665E-01 3.15175E-01  3.19435E.01 52 | 3.96736E-04 1 64190E-01
3§ 2.55423E-01 3.11275E-01 3.21156E-01 53 | 3.05751E-04  1.60387E-01
4 | 2.1516VE-C1  3.06038E-01  3.19904E-01 54 | 2.34428E-02 1.56061E-01
5 | 1.72509E-01 2.99277E-01  3.1927SE.01 55 | 1.78866E-04 1.52445E-01
6 | 1.31595E-01  2.91275E-01  3.17724E-01 56 | 135742E-04 1.48334E-01
7 | 9.54739E-62 2.82073E-01  3.16485E-01 57 | 1.02489E-04 1 43770E-01
8 | 658454E-02 2.71863E-01  3.16485E-01 58 | 7.70235E-05  1.39892E-01
9 | 4.31436E-02 2.60747E-01  3.14637E-01 59 | 5.75965E-05 1.36118E-C1
10 | 2.68392E-02  2.48307E-01  3.13410E-01 60 | 4.28386E-05  1.32447E-01
11 | 158303E-02 2.36257E-01  3.12188E-01 61 | 3.17070E-05  1.27871E-01
12 | 8.86002E-03  2.23192E-01  3.09759E.01 62 | 2.33422E-05  1.23937E-01
13 | 4.69276E-03 2.09875E-C1  3.0794SE-01 62 | 1.70933E-G5 1 20594E-01
14 | 2.35093E-03 1.96342E-01  3.06150E-01 64 | 1.24667E-05 1 16334E-01
15 | 1.11241E-03 1.82783E-01 3 04361E-01 65 | 9 03386E-06  1.13288E-01
16 | 4.96467E-04 1.69382E-01  3.01403E-01 66 | 6.52476E-06  1.09802E-0!
17 | 208631E-04 1.56080E-01  2.98474E-01 67 | 4.68243E-06 1 06424F-01
18 § B23959E-05 1.43192E-01  2.96151E-01 68 | 2.34311E-06 1.02347E-C1
19 | 3.05162E-05  1.30664E-01  2.93273E-01 69 | 2.87T00E-06  9.91984E-02
20 | 1.05728E-05  1.18710E-01  2.91560E-01 70 { 1.67979E-06  § 61464E-02
21 | 3.41677E-06 1.07298E-01  2.88163E-01 71 ) 1.18159E-06 5.24631E-02
22 | 1.02656E-06 9.64874E-02  2.85921E-01 2 | 8.27104E-67  8.96183E-02
23 | 2.85613E-07 B.63641E-02  2.32038E-01 73 | 5.75722E-07  8.65224E-02
24 7 68389E-02  2.78752E-01 74 | 3.98645E-07 8 32078E-02
25 6.81198E-02  2.75505E-01 75 | 2.74755E-07  B.03333E-02
26 6.00568E-02  2.71764E-01 76 { 1.88260E-07  7.72558E-02
2 5.27032E-02  2.68593E-01 77 | 1.28429E-07  7.42962E-02
28 4.60022E-02  2.64433E-01 78 7 17296E-02
29 3.99674E-02  2.60334E-01 79 $.89817E-02
30 3.45383E-02  2.57301E-01 80 §.63390E-02
31 2.97121E-02  2.53312FE-01 81 € 37976E~02
32 2.54327E-02  2.50361E-0! 82 6.11144E-02
33 2.16557E-02  2.45518E-01 82 5.87731E-C2
34 1.83453E-02  2.40769E-01 84 5.63012E-02
35 1.54729E-02  2.37037E-01 85 5.41443E-02
36 1.29802E-02  2.33362E-01 86 5.16649E-02
37 1 08361E-02  2.28848E-01 87 4.94919E-02
38 8.99996E-03  2.25300E-01 EX] 4.75959E.02
39 7.44031E-03  2.20081E-01 89 4 55941E-02
40 6.12023E-03  2.16669E-01 50 4.35912E-02
41 5.00678E-03 ~ 2.11650E-01 91 4.15850E-02
42 4.07795E-03  2.07556E-01 92 3.98456E-02
43 3.30363E-03  2.03542E-01 93 3 78727E-02
44 2.66363E-03  1.99605E-01 94 3 63508E-02
45 2.13637E-03  1.94221E-G1 95 3.45509E-02
46 1.70534E-03  1.90464E-01 95 3.31624E-02
47 1.35415E-03  1.86052E-01 $7 3 14590E-02
48 1.07017E-03  1.81742E-01 98 3.0077CE-02
49 8 41224E-04  1.77532E-01 99 2.86437E-02
50 6.58111E-04  1.73420E-01 J| 100 2 72737E-02

w
[
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TABLE II

Fourier Coefficients for the f,-Distribution for Order, a = 10,000.5 starting with Index » =101

n | ax n | an n| an n | an n | an
101 2.59280E-02 121 8.66786E-03 141 2.38358E-03 161 5.33932E-04 181 9.87674E-05
102 2.47407E-02 122 8.17457E-03 142 2.21308E-03 162 4.94771E-04 182 9.02807E-05
103 2.34240E-02 123 7.66431E-03 143 2.062382E-03 163 4.55305E-04 183 8.26846E-05
104 2.23077E-02 124 7.19996E-03 144 1.92652E-03 164 4.19907E-04 134 7.57276E-05
105 2.11618E-02 125 6.81678E-03 145 1.79221E-03 165 3.89110E-04 185 6.89508E-05
106 2.01140E-02 126 6.39128E-03 146 1.67052E-03 166 3.57765E-04 186 6.27304E-05
107 1.90808E-02 127 | 6.01579E-03 147 1.55103E-03 167 | 3.30233E-04 187 5.74981E-05
108 1.81007E-02 128 5.65131E-03 148 1.44289E-03 168 3.03631E-04 188 5.22505E-05
109 1.71039E-02 129 5.29856E-03 149 1.33446E-03 169 2.79172E-04 189 4.75746E-05
110 1.62253E-02 130 4.97753E-03 150 1.24872E-03 170 2.56684E-04 190 4.32326E-05
111 1.54219E-02 131 4.66683E-03 151 1.15488E-03 171 2.35087E-04 191 3.95178E-05
112 1.45159E-02 132 4.36699E-03 152 1.07017E-03 172 2.16995E-04 192 3.59814E-05
113 1.37702E-02 133 | 4.08642E-03 153 9.97516E-04 173 1.99126E-04 193 3.25700E-05
114 | 1.29866E-02 134 | 3.33134E-03 154  9.22551E-04 174 { 1.82728E-04 194 { 2.9557SE-05
115 | 1.23195E-02 135 | 3.59219E-03 155 | 8.53220E-04 175 | 1.67354E-04 195 [ 2.70015E-05
116 | 1.15731E-02 136 | 3.34829E-03 156 | 7.90643E-04 176 | 1.54173E-04 196 | 2.44893E-05
117 | 1.09572E-02 137 | 3.13316E-03 157 | 7.32654E-04 177 | 1.41201E-04 197 | 2.22108E-05
1138 1.035338E-02 1338 2.93186E-03 158 6.77595E-04 178 1.29068E-04 198 2.01443E-05
119 9.74554E-03 139 2.73814E-03 159 6.27898E-04 179 1.18209E-04 199 1.83058E-05
120 9.20889E-03 140 2.54724E-03 160 5.80710E-04 130 1.08052E-04 200 1.66027E-05

The tables list the coefficients a,, # > 0 used to generate Fig. 3. Tables I and IT list
coefficients for a=100.5, 1000.5, and 10,000.5. Table I provides coefficients to
precision of the order 10~ for a=100.5 and 1000.5, and the first 100 coefficients
for a=10,000.5. Table II continues the coefficients for g = 10,000.5 through index
n =200, for which the precision is of the order 10~°. The zeroeth coefficients all
take the value 1/z, which is the value of all of the Fourier coefficients of the Dirac
distribution.
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