
CVGIP: GRAPHICAL MODELS AND IMAGE PROCESSING 

Vol. 53, No. 2, March, pp. 157-185, 1991 

Computing Oriented Texture Fields 

A. RAVISHANKAR RAO* 

I.B.M., T. J. Watson Research Center, Yorktown Heights, New York 10598 

AND 

BRIAN G. SCHUNCK 

Artificial Intelligence Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2110 

Received June 12, 1989; accepted June 20, 1990 

The first step is the analysis of oriented texture consists of the 
extraction of an orientation field. The orientation field is com- 
prised of the angle and coherence images, which describe at each 
point the dominant local orientation and degree of anisotropy, 
respectively. A new algorithm for computing the orientation field 
for a flow-like texture is presented. The basic idea behind the 
algorithm is to use an oriented filter, namely the gradient of Gaus- 
sian, and perform manipulations on the resulting gradient vector 
field. The most important aspect of the new algorithm is that it is 
provably optimal in estimating the local orientation of an oriented 
texture. An added strength of the algorithm is that it is simpler 
and has a better signal-to-noise ratio than previous approaches, 
because it employs fewer derivative operations. We also propose a 
new measure of coherence, which works better than previous mea- 
sures. The estimates for orientation and coherence are related to 
measures in the statistical theory of directional data. We advocate 
the use of the angle and coherence images as intrinsic images. An 
analysis of oriented textures will require the computation of these 
intrinsic images as a first step. In this sense, the computation of 
the orientation field, resulting in the intrinsic images, is mdispen- 
sible in the analysis of oriented textures. We provide results from 
several experiments to indicate the usefulness of the angle and 
coherence intrinsic images. These results show that the notion of 
scale plays an important role in the interpretation of textures. 
Further, measures defined on these intrinsic images are useful for 
the inspection of surfaces. 8 1991 Academic pless, b. 

1. INTRODUCTION 

Texture had been an active area for research for over 2 
decades [ 1, 21. There are several areas like petrography 
[31, metallography [4], and lumber processing [5] that 
make extensive use of textural features such as grain 

* Support provided by the Semiconductor Research Corporation un- 
der Contract 86-07-085. 

shapes, sizes, and distributions for recognizing and ana- 
lyzing specimens. Texture is very important in quality 
control since many inspection decisions are based on the 
appearance of the texture of some material. There are 
many different kinds of texture, and these have been 
classified in the form of a taxonomy in [6]. 

This paper deals with visual textures that are com- 
prised of flow-like patterns such as wood grain. These 
textures are characterized by local selectivity of orienta- 
tion, which can vary arbitrarily over the entire image. In 
other words, the texture is anisotropic. Every point in the 
image is associated with a dominant local orientation, 
and a local measure of the coherence or degree of anisot- 
ropy of the flow pattern. One way of visualizing oriented 
textures is to think about the image intensity surface as 
being comprised of ridges, whose direction and height 
can vary continuously. More formally, we define the ori- 
entationJield of a texture image to be comprised of two 
images, called angle image and coherence image. The 
angle image captures the dominant local orientation at 
each point in the texture in terms of an angle, and the 
coherence image represents the degree of anisotropy at 
each point in the texture. The term orientation field is 
used because it is closely related to a velocity flow field, 
where at each point in space, a fluid element can have 
some velocity, which is composed of a magnitude and 
direction. However, the analogy is not complete, as we 
shall show later. The major contributions of this paper 
are to present optimum methods for the computation of 
the angle and coherence images, and to present the 
results of several experiments that illustrate the impor- 
tance of these images in different contexts. 

Kass and Witkin [7] have developed an algorithm for 
estimating the orientation of texture patterns. Their 
method can be used to decompose the oriented pattern 
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FIG. 1. Different approaches to texture description. 

into a flow field, describing the direction of anisotropy, 
and describing the pattern independent of changing flow 
direction. This can be used to classify directional tex- 
tures into classes such as lamellar structure. The algo- 
rithm developed by Kass and Witkin [7] for estimating 
the texture orientation was based on Laplacian-of-Gaus- 
Sian filters. This paper presents another algorithm based 
on the gradient of the Gaussian. The most important as- 
pect of the new algorithm is that it relates directly to 
results concerning the mean direction and dispersion’ in 
statistics of directional data [8]. This result is an improve- 
ment over Kass and Witkin’s scheme [7] as it makes no 
assumptions about the nature of the oriented texture 
(such as producing a zero mean filter output after con- 
volving with the Laplacian-of-Gaussian). The new algo- 
rithm incorporates a better scheme for computing the 
coherence of the dew field. Furthermore, some attractive 
features of the new algorithm are that it requires less 
computation and has better signal-to-noise characteris- 
tics since it incorporates fewer derivative operations. 

I Section 4.5 defines these terms. 

2. BACKGROUND 

There are three broad categories of texture problems 
[9, p. 4241. The first involves the identification and de- 
scription of two-dimensional patterns, and has been 
widely addressed [ 1, 21. Figure 1 summarizes the differ- 
ent approaches to texture description, as reviewed in [ 11. 
The second is concerned with using texture as a means to 
perform segmentation of an image [lo-121. The third 
problem is to use texture as a cue to retrieve information 
about surface orientation and depth [ 131. The problem we 
address in this paper falls in the first category, since our 
primary objective is to obtain the orientation field from 
the texture. Based on the philosophy of Barrow and 
Tenenbaum [ 141, the orientation field may be viewed as 
an intrinsic image, and represents the first computational 
stage in analyzing oriented textures. The orientation field 
is computed using domain-independent processing, and 
constitutes a more abstract description of the image than 
raw intensity values. In the final section, we show how 
predicates defined on the intrinsic image give rise to 
meaningful results in appropriate domains. 
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Many of the classic approaches to texture identifica- 
tion and description are based on cooccurrence matrices 
[ 11. The cooccurrence matrix is defined as follows. Con- 
sider the second-order joint conditional probability den- 
sity function, f(i, j] d, 19). For a given 8 and d, f(i, jl d, 6) 
represents the probability of going from gray level i to 
gray level j, given that the intersample spacing is d and 
the direction of the intersample spacing is 0. For a given 
value of d and 8 we can generate a matrix which repre- 
sents the estimated second-order joint conditional proba- 
bility density function, which is known as the gray level 
cOOccurrence matrix [ 11. There are many problems asso- 
ciated with the use of the cooccurrence matrices. First, a 
cooccurrence matrix must be computed for different val- 
ues of d and 6, and then the appropriate texture measure 
must be computed from each cooccurrence matrix. Sec- 
ond, cooccurrence matrices are inappropriate to describe 
oriented textures since directionality can vary continu- 
ously in an oriented texture. This is because the cooccur- 
rence matrix is defined only for globally discrete values 
of 6, and is hence incapable of estimating local variations 
in orientation. In this paper we present a more powerful 
tool to analyze oriented textures. 

There is considerable literature on visual texture which 
indicates that there are several kinds of texture that 
should be considered as separate visual phenomena. 
Aloimonos and Swain [15, 161 presented an algorithm for 
determining the orientation of surfaces from the distor- 
tion of textures under perspective projection. The algo- 
rithm assumes that the scene surface is covered with uni- 
formly repeated texture elements. It would be interesting 
to explore how the algorithms would work when pre- 
sented with perspective distortion of texture flow pat- 
terns. Coleman and Jain [171 extend the work on shape 
from shading to include variations in the albedo. Essen- 
tially, the variations in albedo form a texture pattern and 
their shape from shading algorithm compensates for the 
effect of texture on the shape from shading algorithm. 

Julesz and Bergen [18] introduced the notion of tex- 
tons, which are features that are extracted by the preat- 
tentive visual system. Textons are visual primitives such 
as blobs and terminations from the primal sketch theory 
of Marr [ 191 and crossings of line segments. Textons have 
specific properties such as color or orientation. This pa- 
per addresses the extraction of the orientation of primi- 
tive features. 

Kanatani [20] used integral geometry to develop an 
algorithm that determines surface orientation from the 
intersections the image scan lines with curves of texture. 
In principle, the texture orientation field could be used as 
a source for the curves of texture used in the work of 
Kanatani. 

Tomita ef al. [21] presented an algorithm for extracting 
texture elements and the placement rules from images. 

The texture orientation field algorithm presented in this 
paper could be used as a preprocessing stage to extract 
the texture pattern. The notion of texture coherence and 
angle could guide the formulation of the placement rules 
that define the repetition pattern for the texture elements. 

Vilnrotter et al. [22] used a similar approach based on 
computing the repetition of edge elements in a texture. 
Their work is directed toward computing an interpreta- 
tion of the texture. They compute edge repetition arrays, 
which are similar to cooccurrence matrices, from the 
edge detector outputs. The algorithm presented in this 
paper does not require the explicit computation of the 
edge repetition structure as the coherence and angle in- 
trinsic images play a similar role, but the algorithm pre- 
sented in this paper is restricted to flow-like textures that 
can be modeled by coherence and angle alone. 

Witkin [13] presents an algorithm for computing sur- 
face orientation from texture; the possible directions for 
the tangents of markings on the surface are equally likely, 
and surface orientation and tangent direction are inde- 
pendent. These are the assumptions of isotropy and inde- 
pendence, without assuming that the texture pattern is 
regular. The only assumptions are that all possible sur- 
face orientations are equally likely. If there is a flow-like 
texture, then all possible tangent directions are not 
equally likely. It is still important to run experiments to 
determine the effect of violating isotropy. 

Zucker and Cavanaugh [23] have performed experi- 
ments with subjective figures in texture discrimination. 
The test image is called the Ehrenstein illusion. The two 
versions of the illusion, called the pattern and the con- 
trol, should have different texture orientation field struc- 
tures which could contribute to part of an explanation for 
the subjective effects. We present results related to the 
illusion in this paper. 

Statistical models for texture were described by 
Zucker and Terzopoulos [24]. Pentland [12] introduced 
fractal models for texture. Work has been done to ana- 
lyze the style or texture of brush strokes in Japanese 
paintings [25]. 

Bovik et al. [26] have developed a multichannel ap- 
proach to texture analysis using Gabor filters [27]. Tex- 
tures are modeled as signals of band-limited spatial fre- 
quency. Variations in the amplitude and phase response 
of the filter are analyzed to segment texture mosaics. 

Texture plays a critical role in inspecting surfaces that 
are produced at various stages in all types of manufactur- 
ing [5]. For instance, in the inspection of semiconductor 
devices, surface texture is an important factor that is 
used to decide the integrity of a fabricated device [28]. 
Texture plays an important role in the area of machined 
parts. In fact, an entire standard [29] is devoted to the 
specifications related to surface texture. When a metal is 
deformed, its grains are reoriented, with certain orienta- 
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tions being preferred over others. This development of a 
preferred orientation gives rise to a texture. The analysis 
of such directional textures is important because many 
material properties, such as tensile strength, depend on 
the distribution of grain directionality [30, p. 141. In this 
paper, we restrict our attention to flow-like patterns, 
which have several interesting applications. 

The research presented in this paper is also part of a 
larger effort toward texture interpretation [6], One way to 
systematize the interpretation and description of textures 
is to devise a taxonomy for texture. Such a taxonomy has 
been compiled by Rao [31]. Textures are broadly divided 
into ordered and disordered textures, based on the pres- 
ence of repetitive primitive elements and the directional- 
ity of the texture. The class of flow-like textures falls 
under the category of ordered textures, and forms an 
important component of the taxonomy. 

The analysis of flow-like textures can form the basis of 
a scheme for flow visualization [32]. The method of flow 
visualization is an important tool in experimental flow 
mechanics. Computer vision techniques can extract qual- 
itative information about flow behavior which may not be 
readily available from conventional flow measurements 
[33]. Image processing techniques have been applied to 
quantitative flow analysis with promising results [34], and 
there is still plenty of room for technical improvements in 
these techniques. Flow visualization techniques are be- 
coming increasingly popular in diverse areas such as 
biomedical engineering, tracer methods, oceanography, 
aerodynamics, and surface flows [33]. Subsurface micro- 
structure, consisting largely of flow-like textures, plays a 
crucial role in the analysis of fractograph specimens [35, 
pp. 27-351. In petrography, orientation analysis is helpful 
in labeling certain textures as lamellar (plate-like) [3, 361. 

The orientation estimation algorithm presented in this 
paper has been successfully used to analyze oriented tex- 
tures through the geometric theory of differential equa- 
tions [37, 311. The basic approach is to locally approxi- 
mate an orientation field with a linear differential 
equation. This work illustrates the significance of the ori- 
entation field in deriving higher level symbolic descrip- 
tors for texture. 

3. ORIENTED TEXTURE FIELDS 

The algorithm for estimating the orientation of a tex- 
ture field presented in this paper is based on the gradient 
of a Gaussian. The approach is similar to the work of 
Kass and Witkin [7], but involves fewer derivative opera- 
tions and hence has a better signal-to-noise ratio. Figure 
2 is a plot of the magnitude of the Fourier transform of 
the first derivative of a Gaussian. In two dimensions, the 
Fourier transform of the gradient of a Gaussian has two 
lobes oriented along a line passing through the origin in 
frequency space. The frequency spectrum of a sine-wave 

FIG. 2. The Fourier transform of the first derivative of a Gaussian 
filter is tuned to detect oriented textures at a particular orientation and 
wavelength. 

grating has two b-functions at equal distances from the 
origin along a line in frequency space. An oriented pat- 
tern will have a dominant frequency component and the 
response of a gradient of Gaussian can be tuned to this 
dominant component. 

The Gaussian smoothing filter has the impulse re- 
sponse given by 

&) = p*/2w2 
(1) 

and Fourier transform 

G(w) = V% P*‘*~*, 
1 

v = -. 
o- (2) 

The magnitude of the Fourier transform of the first deriv- 
ative of a Gaussian is 

The location of the maximum response of the first de- 
rivative of a Gaussian is easily determined. Let the 
Fourier transform of the first derivative of a Gaussian be 

H(@) = l!zi we-o*/2v*. 

V 

The location of the maximum can be determined by set- 
ting the derivative of H(w) to zero. From this analysis, 

H’(w) = l!zi [+* _ w 2 e-02’2v2] 
V 

(5) 

-6 

V [ 1 
1 _ $ e-w2/2v2~ 

It is easy to see that the maximum response occurs at a 
distance of w  = v = l/(+ from the origin the frequency 
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space. In two dimensions, the maximum response is ori- 
ented along a line passing through the origin in frequency 
space. If the orientation of the line is 0, then the filter is 
the derivative of the Gaussian in the direction of 8; in 
other words, the normal derivative 

- = Vg * (cos 8, sin 6). 
dfi 

The orientation of the filter is adjusted to achieve the 
maximum response for the underlying visual texture. In 
implementation, the orientation of the maximum re- 
sponse is determined by first computing the gradient after 
smoothing with a Gaussian filter, and then processing the 
gradient vector field as follows. The orientation of the 
gradient is the direction of maximum response to within a 
sign reversal. 

There are five steps to estimating the local orientation 
of the texture field: 

1. Smooth the image with a Gaussian filter. 
2. Compute the gradient of the smoothed image. 
3. Find the local orientation angle using the inverse 

tangent. 
4. Average the local orientation estimates over a 

neighborhood. 
5. Compute a measure of the coherence (the degree 

of flow-like texture) of the pattern. 

The first two steps are standard algorithms in edge detec- 
tion [38, 391. These steps are discussed in more detail in 
Sections 5 and 7. The gradient of Gaussian operator is 
near-optimal for edge detection, as shown by Canny 1381. 
This notion of optimality for edge detection can be car- 
ried over to the analysis of oriented textures, since the 
two problems have similar initial processing stages. Kass 
and Witkin use a Laplacian-of-Gaussian operator as the 
oriented filter. Clearly, the gradient of Gaussian involves 
one less differentiation, and will have better performance 
in the presence of noise. 

Since the smoothing of the image must be performed at 
a given scale, this aspect will be explored in this paper in 
greater detail. As we shall show, there is no one scale 
that can be used to describe all textures, and in fact, the 
choice of scale can dramatically affect the description of 
a texture. Thus, the choice of scale is dependent to a 
large extent on what feature sizes one would like to focus 
on, and this is dictated by prior goals of processing. 

The third step can be easily performed using the in- 
verse tangent function. In most edge detection algo- 
rithms, the angle of the edge covers the full range of the 
unit circle; but in estimating the orientation field, it is 
necessary to reflect orientation vectors that lie along the 
same line to a canonical orientation. In edge detection, 
the gradient angle is computed using the arctangent func- 

tion of two arguments [39]; but if this function were used 
to compute the orientation angle in this problem, then 
there would not be a unique angle for each texture orien- 
tation. The texture field orientations would have to be 
postprocessed to reflect orientation vectors into a canoni- 
cal range as is apparently done by Kass and Witkin [7]. 
The texture orientation angle can be computed using the 
inverse tangent function of one argument which results in 
angles in the range (-rr/2,7r/2), and the representation of 
texture orientation is unique. This technique is simpler 
than the resealing operation that must be performed as 
part of the orientation estimation algorithm of Kass and 
Witkin [7], but does not work as well as expected for 
reasons explained in Section 4.4. 

After computing the local orientation of the texture 
field, the orientation estimate must be smoothed to com- 
pute the average orientation over a neighborhood of sig- 
nificant size. In order to perform this, we present a best 
estimate for the dominant local orientation in Section 4.1. 
Let cl be the width of the first Gaussian smoothing filter 
used to compute the local texture orientation and (TV be 
the width of the second smoothing filter used to average 
the orientation estimate. The averaging filter must be 
large enough to average the orientation from several of 
the local estimates and so CQ % UI, but the averaging filter 
should be smaller than the distance over which the orien- 
tation of the texture field undergoes major changes; in 
other words, the averaging filter should not blur changes 
in the texture field. 

The coherence of the oriented texture pattern is the 
degree to which the local orientation estimates computed 
before averaging agree. The essential idea in measuring 
coherence is to project the orientation vectors in some 
neighborhood onto a representative orientation vector 
from the neighborhood and normalize the result. If the 
orientations are coherent, then the normalized projec- 
tions will be close to one; but if the orientations are not 
coherent, then the projections will tend to cancel and 
produce a result close to zero. 

4. EXPERIMENTAL METHODS 

Test images were digitized using a CCD camera from 
photographs of textures available in published sources 
[40, 411. The image is first smoothed with a Gaussian 
filter. The sizes of the filter are indicated in the figures. 
The algorithm for computing the filter coefficients can be 
found in [39]. To make this operation efficient, we have 
implemented the convolution in a separable manner [39]. 
The gradient of the smoothed image is computed using 
finite differences. Let G,(i,j) and G,(i, j) be the x and y 
components of the gradient vector at point (i, j). In order 
to calculate the orientation at a point, one needs to com- 
bine the gradient orientations in the neighborhood of that 
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FIG. 3. Illustrating the method to compute the dominant orientation 
in a group of line segments. 

point. As Kass and Witkin [7] pointed out, one cannot 
smooth the gradient vectors, as they tend to cancel each 
other out at intensity ridges. There are several methods 
that one can use to avoid such a cancellation, and we 
shall present a best estimate for the dominant orientation 
within a neighborhood. 

4.1. A Best Estimate for Dominant Local Orientation 

We now show how the dominant direction can be esti- 
mated in a 2-D case. A generalization of this proof for the 
N-dimensional case will be reviewed later. Though such 
techniques are well known in the statistics of directional 
data [S], we present considerations that are relevant 
when adapting the technique for image analysis. 

Consider a set of line segments, as shown in Fig. 3. The 
problem that needs to be solved is, How does one deter- 
mine the dominant orientation of this set of segments? 

One may think that it is sufficient to sum up these line 
segments vectorially, and find the resultant direction. 
However, this will not work for two reasons. First, any 
given line segment does not have a unique direction, 
since it could be taken to point in either the 8 or the 0 + GT 
direction. Second, even if the line segments were as- 
signed directions, there is the danger that segments point- 
ing in opposite directions will cancel each other out, in- 
stead of influencing the choice of dominant orientation as 
they should. One way to tackle this problem is as follows. 

Assume that the segments are indexed by the subscript 
i, where i ranges from 1 to N, the number of segments. 
Consider a line oriented at an angle 8 as shown. Let the 
jth segment subtend an angle 0,. The next few steps will 
show that it does not matter what sense this angle is 
taken in; i.e., it is immaterial as to what vector direction 
one chooses for the line segment. Let Rj be the length of 
the jth segment. The projection of this segment onto the 
line is Rj cos(f$ - 6)). Consider the sum of the absolute 
value of all such projections, 

j=N 

Si varies as the orientation of the line 8 is varied. That 
value of 8 which maximizes S1 is the dominant orienta- 
tion of the given set of line segments. Thus, one can 
evaluate the dominant orientation by maximizing Si with 
respect to 8. Since the absolute value function is not 
differentiable everywhere, one can equivalently maxi- 
mize the sum St, where 

j=N 

S2 = 2 Rj’ cos2(8j - e). 
j=l 

(9) 

Here we have taken the sum of the square of the projec- 
tions. Differentiating Eq. (9) with respect to 8 we get 

d& j=N 

de= j=, 

-2 2Rj’ COs(Oj - e) sin(Oj - e). (10) 

Equation dS2/d0 to zero in order to obtain an extremum, 
we get from the above equation 

j=N 

c Rj’ sin 2($ - 0) = 0 
j=l 

(11) 

j=N j=N 

2 Rj’ sin 2ej cos 28 = 2 Rj’ cos 20j sin 20. (12) 
j=l j=l 

Hence 

tan 2e = xi!‘Rj’ sin 2ej 

x$Zy Rj cos 20j * 
(13) 

Let 8 be the value of 8 which satisfies Eq. (13). Instead 
of finding the sum S2 at different orientations, Eq. (13) 
tells us in a single computation the orientation 0 that 
maximizes S2 and is hence the dominant direction of the 
pattern of line segments. Since 0 maximizes S2, we call it 
the best estimate for dominant local orientation. That 8 
indeed maximizes S2 will be proved shortly. 

Equation (13) has an interesting interpretation. Con- 
sider the line segments to lie in the complex plane, each 
segment being represented by Rje”j, where Rj is the 
length of the segment and 6, is its direction. Now square 
all the segments, which have been represented as com- 
plex numbers. Thus each segment will give rise to a term 
of the form Rje2?. If we sum these numbers, the resulting 
complex number has an orientation (Y, with respect to the 
x-axis, given by 

This equation is the same as Eq. (13). 
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Using the above interpretation, one can show that 0 
derived from Eq. (13) indeed maximizes &. In order to 
show this, one must show that d2 &/de2 is negative at 
8 = 6. From Eq. (10) we get 

j=N 

d2 S2/dd2 = -2 2 RT COS(2Oj - 28). 
j=l 

(15) 

If we show that the summed quantity is positive we are 
done. In order to do this, we must assume that the tex- 
ture has only one dominant local orientation. In this case, 
the term R: cos(28j - 28) represents the projection of the 
squared vector onto the line oriented at 26. The sum of 
such projections is positive when the texture has only 
one dominant local orientation. Thus, we have proved 
that Eq. (13) provides us with a best estimate of the local 
orientation within a neighborhood, in the sense that it 
maximizes the norm in Eq. (9). 

Another interesting point of comparison can be made 
as follows. Equation (13) can be regarded as a smoothing 
operation on the image, where a box filter (all coefficients 
identical) is used for smoothing. Kass and Witkin use a 
Gaussian envelope to perform the smoothing, whereas 
we have used a box filter for smoothing. We found that 
the box filter gave better looking results, as shown in Fig. 
12. 

In order to use Eq. (13) to estimate the orientation at 
each point in the image, one can consider the gradient 
vector having components G, and GY to represent the line 
segments of Fig. 3. Consider the vector in the complex 
plane formed by combining G, and GY as (G, + iG,). Let 
the gradient vector at point (m, n) in the image have the 
polar representation R,,eiew Thus, the estimate of the 
dominant orientation 13 in an N x N neighborhood of the 
image would be given by 

a$,,,, 

The estimated orientation angle at (m, n) is then 8,,, + 
7r/2, since the gradient vector is perpendicular to the di- 
rection of anisotropy. When we refer to the scale of the 
smoothing filter to combine information about the gradi- 
ent vectors, we mean the size N of the neighborhood 
over which the estimate is obtained, as in Eq. (16). In all 
our results we display the estimated orientation angle 
overlayed on the original image. 

4.2. Derivation Using the Moment Method 

The derivation presented above is for the two-dimen- 
sional case, and is equivalent to the moment method, 
which holds for N dimensions. 

Problem. Given vectors vi, . . . , vx, estimate the 
average orientation when the sign of vi is ignored. 

Solution. The average orientation is given as the prin- 
cipal axis of the moment tensor 

i=K 

M = 2 ViVT (17) 
i=i 

corresponding to the maximum principal value, where 
(.)z designates the transpose. 

Proof. Let V be the unit vector along the average ori- 
entation to be estimated. The projection of vector vi along 
this orientation has a magnitude I(\, ?)I, where (e, .) de- 
notes the inner product. Hence the average orientation t 
can be estimated by maximizing 

i=K 

J = 2 (Vi, *)2. 
i=l 

(18) 

In terms of the moment tensor M, this expression be- 
comes 

J = (ii, MT). (19) 

This quadratic form in V is maximized under the con- 
straint IfI = 1. The solution is given by the eigenvector i7 
of M corresponding to the maximum eigenvalue, a well 
known result in linear algebra. 

From this result, the following observations can be 
made. Both t and -t give rise to the same maximum 
value for J. Similarly, replacing any vt by -vi will not 
alter J, as the latter is quadratic in vi. Finally, the above 
proof is independent of the dimensionality of the vector 
space corresponding to vi. 

4.3. Squaring the Gradient Vectors: Kass and 
Witkin’s Scheme 

We now discuss an alternate method, used by Kass 
and Witkin [7] in order to smooth the gradient vector 
field. Consider the vector in the complex plane formed by 
combining G, and G,, as (GX + iG,). Let this vector have 
the polar representation Reie. The square of this vector is 
R2e2ie. Consider the vector Re@+“), which points opposite 
to Reie. The square of this vector is R2e2ie+2?r = R2e2ie. 
Hence, squaring gradient vectors that point in opposite 
directions makes them reinforce each other. This is the 
basis of the first scheme for combining gradient orienta- 
tions, and has been used by Kass and Witkin [7]. 

Let J(i, j) denote the squared gradient vector at (i, j). 
The x component of J is J,(i, j) = G,(i, j)2 - G,(i, j)2 and 
the y component is J,(i, j) = 2G,(i, j)G,(i, j). J, and JY are 
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FIG. 4. This figure shows how the arctangent of one argument can 
be used to map vectors in the q-plane onto a half-plane. Thus, Vl gets 
mapped onto V2. The darkly shaded area represents those regions 
where vectors can point in opposite directions, and can still cancel each 
other out. 

computed from the gradient of the image in this manner. 
The next step is to smooth J, and JY in order to average 
the orientation estimates over a neighborhood. This is 
again done using Gaussian filters, as in the first stage. Let 
J,*(i, j) and J,*(i, j) represent the smoothed squared gradi- 
ent vector at (i, j). Let Bi,j be defined by 

8ij = tan- ’ (gy2, (20) 

where the arctangent is computed using two arguments, 
and lies in the range [O, 27r). The division by 2 occurs 
because the original gradient vector was squared. The 
estimated orientation angle at (i,j) is then 8ij + 7r/2, since 
the gradient vector is perpendicular to the direction of 
anisotropy. 

Kass and Witkin arrived at the above result by making 
several approximating assumptions which veil its impor- 
tance. First, they use the mean of the variance of the 
output of the directional filter as an estimate of dominant 
orientation. Their analysis has been done in a very intui- 
tive manner. However, the derivation presented earlier 
in this paper employs the maximization of a norm, which 
is a more accurate representation of the problem at hand. 
Second, Kass and Witkin assume that the output of the 
directional filter is zero mean, which is unnecessary, be- 
cause the derivation in Section 4.1 does not require such 
assumptions. Finally, Kass and Witkin use a Gaussian 
envelope to perform a smoothing of the squared gradient 
vectors with the sole justification that “Gaussian convo- 
lutions can be computed efficiently” [7, p. 3661. Again, 
this is an ad hoc scheme, based on intuition without rigor- 
ous justification. In fact, if efficient computation is the 
sole justification, then a box filter provides the most effi- 
cient filter for smoothing. 

On the other hand, the only assumption made for the 
method presented in Section 4.1 is that there is a single 
dominant direction at each point in the image. 

4.4. Znverse Arctangent 

Instead of squaring the gradient vectors, a much sim- 
pler scheme may appear to be to use the arctangant of 
one argument, which returns tan-l x in the range (-r/2, 
7r/2). This effectively takes vectors that point in opposite 
directions and maps them onto the same direction, as is 
shown in Fig. 4. This is another way of ensuring that 
gradient vectors pointing in opposite directions actually 
reinforce each other instead of canceling when smoothing 
is performed. 

Using this second scheme, we compute 0ij, defined by 

8ij = tan-i 
( 1 

.i) G,G, 
GG, j) ’ 

(21) 

where the arctangent is computed using one argument, 
and lies in the range (-7r/2, 7r/2). We now smooth the 
array of Bij values using a Gaussian filter, as was done in 
the first stage. However, for this smoothing, we used a 
larger filter size than what was used for smoothing the 
image. Let 0; denote the array of smoothed angle values. 
The estimated orientation angle at (i, j) is then 0; + 7r/2. 

4.5. Flow Orientation Coherence 

Let 0(x, y) denote the estimated orientation angle at 
point (x, y), found in the earlier step. Let G(x, y) denote 
the gradient magnitude at point (x, y) in the image, as 
shown in Fig. 5. To find the coherence at point (x0, yO), 

Projection of the gradient vector 
in the direction B(xo, yo) 

(xi. 

t Win&w size W - 

FIG. 5. Illustration of the method used to compute the coherence of 
the texture flow field. 
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FIG. 6. (a) The original flow image (photograph courtesy of M. Van Dyke). (b) Result of applying the coherence measure in Eq. (22) to the flow 
image in (a). 

consider the point (Xi, yi), where i andj are chosen so that 
they fall within a window W of prescribed size around the 
point (x0, ~0). Project the gradient magnitude G(xi, yi) 
taken in the direction 8(xi, yi) onto the unit vector in the 
direction f3(x,, ~0). This will be G(xi, yi) COS(~(XO, yO) - 
@xi, yi)). Compute the sum of the absolute value of such 
projections over all (i, j) values within the window. The 

absolute value is used in order to avoid the cancellation 
of vectors that point in opposite directions. Consider the 
measure then defined by 

K= 
&j)EW IIG(xi, Yj) cos(e(xo9 YO) - e(xi, yj>>ll 

&;JEw ‘Xxi, Yj> 

(22) 

FIG. 7. (a) The coherence map obtained using Eq. (24). This gives better results than using Eq. (23, which is shown in part (b). (b) The 
coherence map obtained using Eq. (25). 
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FIG. 8. (a) An image of a flow pattern induced by an oscillating cylinder (photograph courtesy of M. Van Dyke). The estimated flow directions 
(calculated from Eq. (16)) are represented by line segments overlayed on the original image. Filter sizes used were m, = 5 and gz = 7. The length of 
each line segment is proportional to the coherence at that point. Thus this image directly encodes the information about flow direction and flow 
coherence. (b) The coherence map. The coherence at each point of the original image (calculated from Eq. (24)) is encoded as an intensity value. 
Filter sizes used were u, = 5 and (~2 = 7. Unit vectors representing the estimated flow directions are superimposed on the coherence map. Note 
that the coherence is low within the cylinder. (c) The estimated flow directions (calculated from Eq. (16)) using filter sizes of u, = 9 and m2 = 13. (d) 
Unit vectors representing the estimated flow directions are superimposed on the coherence map. (e) The estimated flow directions (calculated from 
Eq. (16)Yusing filter sizes of UI = 15 and u2 = 21. (f) Unit vectors representing the estimated flow directions are superimposed on the coherence 
map. Note that the nature of(b), (d), and (f) has not changed even though the scale has changed significantly. 

This measure is related to the dispersion of directional 
data [8]. Assume that we have n data points, where the 

D = i 2 (1 - COS(Bi - Cl)). (23 
t I 

ith point Pi is at an angle 8i, and lies on the unit circle. Let 
CY be a fixed direction. Then the dispersion D for the II Thus if the measure D is generalized to data that do not 
data points about the orientation (Y is defined by necessarily lie on the unit circle, then it follows that K = 
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FIG. (I-Continued 

1 - D. This shows that the measures for both orientation where J,*(i, j) and Jy*(i, j) have been defined in Section 
and coherence come from the same theory of statistics of 4.3 and G*(i, j) is the smoothed gradient magnitude, ob- 
directional data [8]. tained by smoothing the gradient magnitude with a Gaus- 

The result of applying the measure of coherence in Eq. sian filter. We have used both coherence measures and 
(22) to the flow image is shown in Fig. 6. One can observe found that the coherence we propose in Eq. (24) gives 
that the coherence values are low within the center of the better results, as is shown in Fig. 7, 
image, and also around the four vortices in the corners. 
However, at other points in the image the coherence does 

4.6. The Effect of Varying u1 on the Estimate of 

not exhibit much variation. 
Dominant Orientation 

One can obtain a better measure of coherence by 
weighting the quantity in Eq. (22) by the gradient magni- 
tude at that point. Thus, the new measure of coherence is 
defined by 

P = (3x0, YO) 
&j)EW IIG(xi, Yj) COS(WO, YO) - NXi, Yj>>ll 

&j)EW @xi, Yj) 

(24) 

The reason for weighting by the gradient magnitude is 
that we want the coherence to be high at points in the 
image which have high visual contrast, i.e., high gradi- 
ents. The result of applying this measure of coherence to 
the flow image is shown in Fig. 7a. The coherence mea- 
sure that we propose incorporates the gradient magnitude 
and hence places more weight on regions that have higher 
visual contrast. 

Kass and Witkin propose the following coherence mea- 
sure 

p = (J:(i, j)’ + J;(i, j)*)“*lG*(i,j), (25) 

The scale corresponding to Eq. (l), (+I, is the size of 
the Gaussian filter used to derive the gradient vectors as 
presented in Section 4.1. We now provide a brief discus- 
sion of how varying or affects the estimate of dominant 
orientation in Eq. (16). 

We shall restrict our analysis to the ideal case first. 
Consider again the example of a sine-wave grating, say 
S(x, y), which is an ideal oriented texture. According to 
the method presented in Section 4.1, a best estimate of 
the dominant orientation at a point is provided by Eq. 
(16). This equation has embedded in it two smoothing 
operations: (1) smoothing with a Gaussian with variance 
aI; (2) a smoothing with a box filter of width 02. Let us 
consider the effect of varying or on Eq. (16), when u2 is 
constant. 

Let g(x, y) be the gradient vector at a point (x, y) of the 
function S(x, y) 8 G(c+r, x, y), where G is the Gaussian 
filter. If we use a Gaussian filter of different size G(c+i, x, 
y), then it can be shown that the gradient vector at point 
(x, y) becomes (o i/u r)g(x, y); i.e., there is a linear scal- 
ing. Furthermore, all gradient vectors get scaled by the 
same amount. The effect of scaling all gradient vectors by 
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FIG. 9. (a) An image of flow past a circle, with estimated flow directions overlayed (photograph courtesy of D. H. Peregrine). Filter sizes used 
were C, = 5 and cz = 7. (b) The coherence map. Filter sizes used were (T, = 5 and c2 = 7. 

the same constant leaves the best estimate in Eq. (16) 
unchanged. Thus, for an ideal texture pattern the choice 
of oi to extract gradient vectors is immaterial. No matter 
what o1 is used, Eq. (16) provides the same estimate. In 
fact, this result holds for any texture that can be ex- 
pressed as a linear combination of sine-wave patterns. 

In the general case, we are faced with nonlinear tex- 
tures (i.e., textures that cannot be expressed as a linear 
combination of sine-wave patterns), as illustrated in the 
next section. For such cases, the above analysis no 
longer holds, and the choice of (T 1 will affect Eq. (16). 
However, the behavior of the orientation estimation algo- 
rithm is not critically dependent on o1 or 02. It is only 
when these parameters are varied significantly that dif- 
ferent responses could result, as shown in the next sec- 
tion. If one knows a priori the sizes of features in the 
texture pattern, then this knowledge can be used to esti- 
mate the values of both u1 and o2 needed. Normally one 
would use widely spaced V’S, as indicated in the edge 
detection theories of Mat-r and Hildreth [42] or Canny 
[381. 

5. EXPERIMENTAL RESULTS 

Figure 8a shows a 240 x 240 image of secondary 
streaming induced by an oscillating cylinder 140, p. 231. 
The cylinder, which is in the center of the image, is oscil- 
lated by a loudspeaker in a fluid. This pattern results 
when suspended glass beads are illuminated by a strobo- 
scope, and consists of four vortices around which there is 

circulation. This texture is a useful test case because it 
exhibits orientation specificity at all possible angles, and 
is also symmetric. The results of applying the orientation 
estimation algorithm described in Sections 4.1 and 4.5 are 
displayed in Figs. 8a and 8b. The orientation field is cal- 
culated for each point in the image, but is displayed in a 
sampled form in order to avoid clutter. No arrowheads 
are drawn for the line segments because there is an inher- 
ent ambiguity in the direction of the line segment: it could 
point in either one direction or exactly the opposite. 

Two methods of presenting the orientation field are 
used in order to provide easy means for interpretation. In 
the first method, the orientation field is overlayed on the 
original image to aid comparison. The orientation at each 
point is represented by means of a line segment, where 
the direction of the segment corresponds to the dominant 
local orientation, and the length of the line segment is 
proportional to the strength of orientation (or coherence). 
In the second method, the orientation at each point in the 
image is encoded as the angle of orientation of a unit 
vector and is superimposed on the coherence or strength 
of orientation which is encoded as a gray value. 

Figure 8a shows the result of applying the orientation 
estimation algorithm at a scale of o1 = 5 to compute the 
gradient vectors, and a scale of (+2 = 7 to smooth the 
gradient vectors. The oriented segments are displayed at 
regularly sampled points overlayed on the original image. 
The segments capture the flow of the texture very well at 
each point, and orient themselves along the direction of 
flow. Hence the resulting pattern looks much like the 
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FIG. 10. (a) An image of flow past an inclined plate, with estimated flow directions overlayed. Filter sizes used were u, = 5 and cr2 = 7 
(photograph courtesy of D. H. Peregrine). (b) The coherence map. Filter sizes used were (+, = 5 and or = 7. 

original texture. Figure 8b shows the coherence of orien- 
tation (calculated using Eq. (24)) encoded as an image. 
The coherence at each point is quantized into one of 256 
gray levels, and then displayed as an image. The angle 
vectors are then overlayed on the coherence image. The 
coherence image shows how orientation specificity varies 

over the original image-the brighter points indicating 
strong coherence of flow. Note that the coherence at the 
center of the image is low, indicating that there is no 
dominant flow direction in that area. Thus, the coherence 
image combined with the overlayed angle image provides 
a good description of the underlying flow-like texture. 

FIG. 11. (a) An image of a wood grain with a knot in the center. The estimated flow directions are overlayed on the original image. Filter sizes 
used were o, = 5 and (TV = 7. (b) The coherence map. Filter sizes used were (T, = 5 and cr2 = 7. 
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FIG. 12. Comparing the two schemes for measuring local orientations, as described by Eqs. (16) and (20). Figures (a) and (b) show the result 
obtained by using Eq. (16). Figures (c) and (d) show the result obtained by using Eq. (20) on the same image. 

The filter sizes of 5 and 7 have been arbitrarily chosen and the descriptions of some textures change dramati- 
at this point. In fact, Figs. 8c through 8f show the applica- tally with changing scales, as illustrated in Section 7. 
tion of the orientation estimation algorithm at different Figure 9 and 10 show more results of applying our 
scales to the same texture. The nature of the orientation algorithm to flow textures from an album of fluid motion 
field does not change significantly even though the filter 1401. The algorithm captures well the direction of anisot- 
sizes have been increased significantly. The results indi- ropy and the coherence at each point of the texture. 
cate that for the texture in question, the choice of scale Figure lla shows a knot in a piece of wood, scanned 
does not play an important role in the description of the from a book of textures [41]. The orientation field swirls 
texture. However, this does not hold true for all textures, around the knot, though the fluid flow analogy is not 
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FIG. 13. Comparing two techniques for computing the angle of orientation. This figure shows results obtained by using Eq. (21). Note that the 
algorithm does not perform well on horizontally oriented patterns. 

entirely correct as there is no directionality to the vec- 
tors: it is an orientation field, not a vector field. The 
results of applying the orientation estimation algorithm 
described in Sections 4.1 and 4.5 to the wood image are 
displayed in Fig. 11, The orientation vectors are drawn 
without arrowheads since the flow structure is nondirec- 
lion al. 

5.1. Comparing Calculations for Orientation 

Figure 12 shows a herringbone weave texture, obtained 
from [41]. Figure 12 compares the two schemes for mea- 
suring local orientation, as described by Eqs. (16) and 
(20). Filter sizes used where (+I = 5 pixels and (+2 = 7 
pixels for both schemes. From a subjective estimate, Eq. 
(16) gives better results. 

The use of Eq. (21) gives the result shown in Fig. 13a. 
This algorithm fails to respond well to flow patterns that 
are oriented horizontally. The problem with this ap- 
proach is that gradient vectors having angles in the range 
[a/2 - E, 7r/2) and (-CT/~, -7rl2 + E] (indicated by the 
darkly shaded region in Fig. 4) do not get flipped around, 
and hence cancel each other instead of reinforce. This 
results in poor estimates of the orientation when the pat- 
tern has a horizontal flow direction. 

5.2. Comparing Measures of Coherence 

The result of using the coherence measure in Eq. (24) is 
shown in Fig. 7a). By comparing Figs. 7a and 7b, one can 

see that Eq. (24) gives better results than Eq. (25). The 
coherence image corresponds closely with the original 
image, showing that the coherence measure that we have 
proposed is robust and accurate. We found this coher- 
ence measure to give better results than the measure pro- 
posed by Kass and Witkin. 

6. ANALYZING TEXTURE AT DIFFERENT SCALES 

There are many textures, such as the herringbone 
weave, which exhibit different behaviors at different 
scales. At finer scales, the pattern has more than one 
dominant orientation, but at coarser scales, the pattern 
has only one orientation. 

This trend is clearly seen in the results shown in Fig. 
14. This figure depicts a homespun woolen cloth, taken 
from [41]. At finer scales, the pattern appears to have 
alternating bands, where every other band has a texture 
that is diagonally oriented. At coarser scales, the pattern 
begins to appear vertical. This is the behavior that one 
would expect from the orientation estimation algorithm, 
and Fig. 14 proves that our algorithm indeed exhibits this 
behavior. 

Figures 14a and 14b show the result of applying the 
orientation estimation algorithm at a scale of 5 to com- 
pute the gradient vectors, and a scale of 7 to smooth the 
gradient vectors. At these scales, the algorithm picks out 
the diagonal stripes in the texture. Figures 14~ and 14d 
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FIG. 14. Analyzing the behavior of the texture at varying scales. Figures (a) and (b) show the angle and coherence maps obtained by using a 
filter of window size 5 pixels to compute the gradient and a filter of window size 7 pixels to smooth the gradient vectors. Figures (c) and (d) show the 
angle and coherence maps obtained by using a filter of window size 11 pixels to compute the gradient and a filter of window size 17 pixels to smooth 
the gradient vectors. Figures (e) and (f) show the angle and coherence maps obtained by using a filter of window size 15 pixels to compute the 
gradient and a filter of window size 21 pixels to smooth the gradient vectors. 

show the result of applying the orientation estimation tion estimation algorithm at a scale of 15 to compute the 
algorithm at a scale of 11 to compute the gradient vec- gradient vectors, and a scale of 21 to smooth the gradient 
tors, and a scale of 17 to smooth the gradient vectors. At vectors. At these scales, the texture appears predomi- 
these scales, the diagonal nature of the alternating bands nantly vertical. 
begins to weaken, and starts to tend toward the vertical These results show that in order to analyze certain 
at areas close to the boundaries between the bands. Fig- textures, one must employ different scales, because the 
ures 14e and 14f show the result of applying the orienta- description of the texture may vary according to the scale 
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employed. There are some textures, such as the home- 
spun woolen cloth and the herringbone weave [4 11, which 
appear quite different at coarse and fine scales. We pro- 
pose to extend our work in this direction in the future, 
where we will employ a bank of filters, tuned at different 
scales in order perform orientation estimation. One can 
then use measures based on the coherence of the output 
to determine the scales at which the description of the 
texture is strong. In this manner, one can have rivalrous 
descriptions of textures such as the homespun cloth, 
where at one scale the texture appears to have certain 
orientations, and at another scale, the texture has differ- 
ent orientations. 

Zucker and Cavanaugh [23] have performed experi- 
ments with subjective figures in texture discriminations. 
They investigate the Ehrenstein illusion, which involves 
two patterns-the Ehrenstein pattern and the control 
pattern. The Ehrenstein pattern consists of horizontal 
and vertical segments. The areas bounded by the end- 
points of these segments appear as disks. Figure 15a 
shows the underlying Ehrenstein pattern, with the esti- 
mated orientation field overlayed. Figure 15b shows the 
corresponding angle and coherence images. Figures 15~ 
and 15d show similar results for the control pattern, 
which is obtained from the Ehrenstein by shifting the 
horizontal segments by 0.5 cycles. Now let us rotate the 
Ehrenstein pattern by 45” about an axis perpendicular to 
the plane of the paper. Instead of an array of disks, sub- 
jective brightness stripes are seen, which are vertically 
oriented. However, the control pattern does not undergo 
any qualitative change as a function of orientation. Fig- 

ures 15e through 15h show the orientation field for the 
rotated patterns. The results obtained by running the ori- 
entation estimation algorithm do not indicate the pres- 
ence of subjective brightness stripes in the rotated pat- 
tern. This is because the coherence in the areas away 
from the line segments is very low, and hence the esti- 
mated direction of orientation within these areas has little 
meaning. This seems to indicate that the orientation esti- 
mation algorithm does not exhibit the subjective effects 
that humans do in this case. This is to be expected, be- 
cause if the algorithm did exhibit the illusion, then it 
would not be independent of orientation of the texture, 
which is contrary to the fact that it is mathematically so. 

7. PROCESSING OF THE INTRINSIC IMAGES 

In keeping with the philosophy of Barrow and Tenen- 
baum [14], the angle and coherence images can be re- 
garded as intrinsic images obtained from the original tex- 
ture image. Intrinsic images were intended to capture a 
more invariant and more distinguishing description of 
surfaces than raw light intensities [14]. The recovery of 
these intrinsic images was based on domain-independent 
constraints generated through the physics of image for- 
mation. The first few intrinsic images proposed were 
those of range, orientation, reflectance, and incident illu- 
mination. The orientation intrinsic image, as originally 
used by Barrow and Tenenbaum [14], refers to surface 
orientation, as described by surface normals at each point 
in the image. However, we use the term texture orienta- 
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FIG. 15. (a) The original Ehrenstein pattern. (b) Its orientation field. Filter sizes (T, = 5 and (TV = 7 pixels were used. (c) The coherence map. (d) 
The control pattern and (e) its orientation field. Filter sizes u, = 5 and v2 = 7 pixels were used. (f) The coherence map. (g) The Ehrenstein pattern 
rotated by 45” and (h) its orientation field. Filter sizes vI = 11 and c2 = 17 pixels were used. (i) The coherence map. (j) The rotated control pattern 
and (k) its orientation field. Filter sizes W, = 11 and (T* = 17 pixels were used. (1) The coherence map. 

tion intrinsic images to describe local orientation speci- 
ficity of patterns on a two-dimensional surface. 

The use of the term “texture orientation intrinsic im- 
ages” is justified because the spirit in which these images 
are extracted and processed echoes the principles cited 
above. First, these images are extracted by using domain- 
independent processing. Second, they are independent of 
lighting conditions, because of the process of averaging 
and normalization in computing the orientation and co- 

herence. Third, domain-dependent knowledge and con- 
straints can be imposed on the intrinsic images to yield 
appropriate conclusions in specific contexts. The view- 
point we have taken is also close to that of Mat-r [43], who 
proposed the extraction of a “primal sketch,” based on 
domain-independent processing. 

We strongly advocate the use of the angle and coher- 
ence images as intrinsic images. Almost every analysis of 
oriented textures will require the computation of these 
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intrinsic images as a first step. In this sense, the computa- 
tion of the orientation field, resulting in the intrinsic im- 
ages, is indespensible in the analysis of oriented textures. 
In order to justify this claim, we provide results from a 
number of experiments to indicate the usefulness of the 
angle and coherence intrinsic images. 

Let us consider a specific domain in order to illustrate 
the application of our algorithm to real images. The auto- 
mation of lumber defect detection is vital for the future 
control of lumber processing, which is an important in- 
dustry [44]. Defects in wood are rich in textural content, 
and typically involve the identification of knots, worm 

holes, checks, and grains [45-47, 51. As observed in [5], 
tonal measures alone are not sufficient to isolate these 
defects. For instance, both checks and splits are darker 
than clear wood, just as knots are. 

In order to illustrate the importance and usefulness of 
the texture orientation intrinsic images, we have used 
them to identify some of the defects that occur in wood, 
such as knots and worm holes. 

7.1. The Coherence Intrinsic Image 

The coherence image encodes the degree of anisotropy 
at each point of the original image. Coherence is low 
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within knots since there is no anisotropy of the texture nitude into its computation. Equation (24) would be suit- 
within this region. Hence, the coherence image can be able in an application where one needed a very detailed 
used to isolate knots, as these are locations in the ori- coherence map. However, Eq. (22) proves to be ade- 
ented pattern that have low coherence. Figure 16a shows quate in the isolation of knots, since it is a smoother 
an image of a piece of wood containing three knots, ob- measure of coherence. Figure 16c shows the result of 
tamed from [47, Fig. lo]. Figure 16b shows the result of thresholding the coherence image to produce a binary 
computing the coherence of this image, by using Eq. (22). image. One can see that the locations of the knots have 
The coherence has been encoded as a gray value, with been isolated in the binary image, thus showing that sim- 
darker regions representing low coherence values. Recall ple processing of the coherence image yields meaningful 
that Eq. (22) computes a coarser measure of coherence results. 
than Eq. (24), as the latter incorporates the gradient mag- Figure 17a shows an image of a piece of wood contain- 
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FIG. 16. (a) An image of a piece of wood containing three knots (reproduced with permission from Defects in Wood, by W. Erteld, W. H. 
Metta, and W. Acterberg, 1964 (Leonard Hill), Blackie, Glasgow/London). (b) The coherence image calculated using filter sizes r, = 5 and crZ = 7 
pixels. (c) The threshold coherence image. Note that the locations of the knots show up in the threshold image. 

ing worm holes, obtained from [5]. Figure 16b shows the 
result of computing the coherence of this image, by using 
Eq. (22). The positions of the worm holes correspond to 
regions of low coherence, i.e, the dark regions. Figure 
17c shows the result of thresholding the coherence image 
to produce a binary image. One can see that the locations 
of the worm holes have been isolated in the binary image. 

An application where the detailed coherence map gen- 
erated through Eq. (24) is used is illustrated in Fig. 18. 
Figure 18a shows the cross section of a piece of wood, 
obtained from [48]. The coherence measure in Eq. (24) is 
used to generate the coherence’s image of Fig. 18b. The 
coherence image is then thresholded with a high thresh- 
old, so as to isolate regions having high coherence (the 
brighter a region, the higher its coherence). In the result- 
ing image, shown in Fig. 18c, one can see that the cell 
boundaries show up. This is because the cell boundaries 
are regions of strong anisotropy in the texture, and hence 
become regions of high coherence. 

It is in this sense that the coherence measure is similar 
to a measure of edginess. The spirit of the orientation 
estimation algorithm is the same as that of edge detec- 
tion, as the early stages of processing are identical-they 
both involve smoothing and the computation of the gradi- 
ent. However, the postprocessing reflects different goals. 
The goal of edge detection is to strictly localize the posi- 
tion of sharp gradients, while the goal of orientation esti- 
mation is to combine gradient information within a neigh- 
borhood to infer a dominant local orientation. 

The coherence image can be processed in a variety of 
ways. Figure 19a shows the image of a brick wall, ob- 
tained from [41]. The coherence measure in Eq. (24) is 
used to generate the coherence image of Fig. 19b. The 
coherence image is then thresholded with a low thresh- 
old, so as to isolate regions having low coherence (the 
brighter a region, the higher its coherence). The resulting 
image is shown in Figure 19~. Note that the interior of the 
bricks are regions with low coherence, and are hence 
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FIG. 17. (a) An image of a piece of wood containing worm holes (reproduced, by permission of the publisher, from Ref. 151, 0 1983 IEE). (b) 
The coherence image calculated using filter sizes u, = 5 and u2 = 7 pixels. (c) The threshold coherence image. Note that the locations of the worm 
holes show up in the threshold image. 

isolated in the thresholding image. This can then be used 
to locate the positions of individual bricks within the lat- 
tice. 

Another class of defects that appears in wood is that of 
checks [46, p. 2841. Checks are longitudinal openings at 
weak points in the wood. One way of determining the 
gross “cheekiness” of a piece of wood is to simply com- 
pute its average coherence. The larger the number of 
checks, or the more severe the intensity of the checks, 
the larger the coherence measure will be. Hence a simple 
averaging of the coherence image suffices to obtain a 
global measure of the number of checks on the wood. 

A problem that arises in semiconductor wafer inspec- 
tion is determining the precise characterization of surface 
texture [49]. For instance, an orange peel defect arises 
when the surface texture appears wrinkled, like the skin 
of an orange. Such a wrinkled texture is actually an ori- 
ented texture, and the method described in this section 
can be used. Figure 20a shows an image of an orange peel 
defect. The sample consists of a silicon wafer that has 
undergone an isotropic etch using hydrofluoric and nitric 
acids. 

Currently, inspection technicians use terms like 
“light” orange peel and “heavy” orange peel to describe 
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FIG. 18. (a) An image of a cross section of wood. (b) The coherence image calculated using filter sizes (+% = 9 and (+2 = 13 pixels. (c) The 
threshold coherence image. Note that the boundaries of the cells show up in the threshold image. 

the severity of the defect. However, no precise quantita- 7.2. The Angle Intrinsic Image 
tive measure is available. Hence, we propose the follow- 
ing measure for the severity of an oriented texture defect, When the fiber alignment in a piece of wood does not 
such as orange peel. Find the average coherence p over coincide with the longitudinal axis of the piece, the wood 
the image of the defect, where p is defined in (24). is said to be cross-grained [46, p. 2511. Any form of cross 

In the case of the image shown in Fig. 20, the average grain which occurs in structural lumber is a defect be- 
coherence measure for the region of orange peel is 0.13, cause of the reduction in the strength of the member in 
which represents the severity of the defect. which it occurs. The direction of grain may be deter- 
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FIG. 19. (a) An image of a brick wall. (b) The coherence image calculated using filter sizes g1 = 9 and (TV = 13 pixels. (c) The threshold 
coherence image. Note that the interior of the bricks show up in the threshold image. 

mined by observing the orientation of resin canals or ves- 
sels. 

The angle intrinsic image readily yields this informa- 
tion. All one needs to do is histogram the angle image, 
and locate the peak of the histogram. This will yield the 
most dominant global orientation in the texture, and will 
coincide with the direction of the grain. In order to esti- 
mate the dominant global directions, one can compute an 

angle histogram, weighted according to the coherence 
measure. Let us map all the angles into the range [O, 7~), 
and discretize this range into 180 bins, each bin corre- 
sponding to the angle in degrees. Let the angle at point 
(i, j) be 8ij deg, where 8ij is quantized to be an integer in 
the range [0, 180). Let the coherence at this point be pij. 
Let H denote the histogram, and Hk be the kth bin of the 
histogram. In order to compute the weighted histogram, 
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FIG. 20. (a) The original image of the orange peel defect, obtained at a magnification of 500, using Nomarski phase contrast. (b) The orientation 
field overlayed on the original image in the form of white segments. 

the contribution of point (i, j) is then pij toward bin 8ij. 
These contributions are summed over all image points, in 
order to yield an angle histogram. Thus, 

Hk = C (p;jleij = k ) .  (26) 
i,j=l,N 

Figure 21a shows an image of a piece of wood contain- 
ing checks. In order to find out whether there is a domi- 
nant orientation, one needs to compute the orientation 
field, which is shown in Fig. 21b. Figure 21c shows the 
weighted angle histogram, computed according to Eq. 
(26). One can see that there is a very sharp peak at 8 = 
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FIG. 21. (a) An image of a piece of wood with checks and its orientation field computed for filter sizes o, = 5 and o2 = 7 pixels. (b) The 
weighted angle histogram, showing a sharp peak at 140”, indicating that the texture is strongly unidirectional, with an orientation of 0 = 140”. 
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FIG. 22. (a) An image of a herringbone weave, from [41], with its orientation field computed for filter sizes (T, = 5 and or = 7 pixels. (b) The 
weighted angle histogram, showing sharp peaks at 40” and 140”. (c) The orientation field computed for filter sizes o, = 15 and err = 21 pixels. (d) 
The weighted angle histogram, showing a sharp peak at 90”, indicating that the texture is predominantly vertical. 

140”, showing that the pattern is strongly unidirectional, image of a herringbone weave, digitized to a size of 240 X 
and the dominant direction is 140”. Thus, one can easily 240 pixels, obtained from [41]. Figure 22b shows the 
obtain reliable estimates of dominant orientation in such result of applying the orientation estimation algorithm at 
cases. (In all the figures displayed, the angle is measured a scale of 5 to compute the gradient vectors, and a scale 
clockwise with respect to the x-axis, which points hor- of 7 to smooth the gradient vectors. At these scales, the 
izontally to the right). texture has two distinct directions, as shown by the 

Figures 22 and 23 show another application of the angle weighted angle histogram in Fig. 22~. There are strong 
histogramming technique, where the dominant orienta- peaks at 40” and 140”. A dramatically different picture 
tion is computed over different scales. As mentioned in emerges when the orientation estimation algorithm is ap- 
Section 6, the description of a texture may change over plied at a scale of 15 to compute the gradient vectors, and 
different scales. One way this can happen is that the dom- a scale of 21 to smooth the gradient vectors. Figure 22d 
inant orientation of a texture can change dramatically shows the result of applying the orientation estimation 
when observed at different scales. Figure 22a shows an algorithm, and Fig. 22e shows the weighted angle histo- 



COMPUTING ORIENTED TEXTURE FIELDS 183 
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b 

FIG. 23. The angle histograms for the image of homespun cloth, shown in Fig. 14. The orientation fields have been displayed in Figs. 14a and 
14~. (a) The weighted angle histogram, showing a sharp peak at 120”. This was calculated from the orientation field. Filter sizes (T, = 5 and or = 7 
pixels were used. (b) The weighted angle histogram, showing sharp peaks at 90” and 120”. This indicates that the texture has started acquiring a 
strong vertical component at this scale. The orientation field was computed for filter sizes (T, = 15 and or = 21 pixels. 

gram. Figure 22e displays a completely different behavior 
from Fig. 22c, because there is only one sharp peak in the 
histogram at 90”. This shows that the texture appears 
predominantly vertical at higher scales, and distinctly bi- 
directional at lower scales. 

Figure 23 illustrates a similar behavior in the case of an 
image of homespun cloth, obtained from [41]. Figure 14a 
shows the result of applying the orientation estimation 
algorithm at a scale of 5 to compute the gradient vectors, 
and a scale of 7 to smooth the gradient vectors. At these 
scales, the texture has one dominant direction, at 120”, as 
shown by the weighted angle histogram in Fig. 23a. Fig- 
ure 14e shows the result of applying the orientation esti- 
mation algorithm at a scale of 15 to compute the gradient 
vectors, and a scale of 21 to smooth the gradient vectors. 
At these scales, the texture has two dominant directions, 
at 120” and 90”, as shown by the weighted angle histo- 
gram in Fig. 23e. Thus, one can see that the description 
of oriented textures is dependent on the notion of scale. 

Another method of processing the angle intrinsic image 
is to obtain qualitative descriptions of the flow pattern. 
Thus, the flow pattern in Fig. 8 could be described in 
terms of the four vortices present in the corners. In fact 
such a description is enough to reconstruct the qualita- 
tive nature of the original flow-like image, as shown in 
Fig. 24. We have successfully used the geometric theory 
of differential equations to analyze such flow-like tex- 
tures [37]. Once again, we stress the fact that the angle 
and coherence intrinsic images form the input to the fluid- 
dynamic approach to analyzing flow-like textures. The 
orientation field is the starting point for the process of 
synthesizing symbolic descriptors of different oriented 
textures. 

8. CONCLUSIONS 

In this paper we presented a new algorithm for comput- 
ing the orientation field for flow-like textures. The basic 
idea behind the algorithm is to use an oriented filter, 
namely the gradient of Gaussian, and perform manipula- 

FIG. 24. A flow image created by constructing a flow field on the 
basis of four vortices distributed over a plane. Note how this texture 
appears visually similar to the texture in Fig. 8. 
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tions on the resulting gradient vector field. We have 
proved the optimality of this algorithm in estimating the 
orientation direction. An added strength of the algorithm 
is that it is simpler and has a better signal-to-noise ratio 
than previous approaches, because it employs fewer de- 
rivative operations. We have also proposed a new mea- 
sure of coherence, which works better than previous 
measures. 

We are convinced that the angle and coherence intrin- 
sic images represent a necessary initial stage in the pro- 
cessing of oriented textures. We justified the role that the 
texture orientation intrinsic images play by providing 
results from a number of experiments. These results indi- 
cate that operations on the angle and coherence images 
yield useful results in many domains. Given this impor- 
tant role that the texture orientation intrinsic images 
play, our results suggest the best way to compute these 
images. 
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