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We develop a model to predict optimal diet selection when energy intake varies 
over consecutive foraging periods. The model assumes that fitness is maximized 
when the forager maximizes its net reproduction (survivorship x reproduction) over 
some specified time period. This goal differs from earlier risk-sensitive foraging 
models which assume that the forager minimizes the risk of failing to satisfy mini- 
mum requirements for survivorship or reproduction. In our model, the net number 
of offspring produced per reproductive bout is expressed as an explicit function of 
fitness gained from reproduction and fitness lost due to starvation risk for different 
potential diets. Potential model solutions are explored graphically and are com- 
pared with solutions for previous foraging models. In general, the model predicts 
that foragers with a goal of maximizing net reproduction should accept greater 
risks of starvation than foragers with a goal of minimizing the risk of failing to 
satisfy minimum energy requirements. 0 1991 Academic Press, Inc. 

INTRODUCTION 

Optimal foraging theory (Schoener 1971, Stephens and Krebs 1986) is 
based on the premise that a forager’s nutrient intake is related to its fitness 
(survival and reproduction). Traditional foraging models, which predict the 
range of food types a forager should include in its diet (i.e., “contingency” 
(Schoener, 1974) or “classical” (Krebs et al., 1983) models), are based on 
the assumption that fitness increases simply with the forager’s mean net 
energy intake, although other currencies are possible (Pyke et al., 1977; 
Pyke, 1984). 
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Several recent studies (Oaten, 1977; Caraco, 1980; Stephens and 
Charnov, 1982; Houston and McNamara, 1985), however, have argued 
that food characteristics of real foraging environments exhibit random 
variation. Foragers selecting diets in such environments will accordingly 
have variable energy intakes. 

If animals select diets to maximize only the mean energy intake in any 
foraging period, and the variation in energy intake over several time 
periods is large, there is a probability that the forager will fail to satisfy its 
energy requirements in a given foraging period (Caraco, 1980; Stephens 
and Charnov, 1982). Consequently, variability may lead to a risk of starva- 
tion; a forager will not necessarily maximize its fitness by selecting a diet 
which maximizes its mean energy intake. Both mean and variance in 
energy intake become important determinants of fitness. 

A body of theory (Caraco, 1980; Real, 1981; Stephens, 1981; Stephens 
and Charnov, 1982; Houston and McNamara, 1985) conventionally 
known as “risk-sensitive” foraging (Stephens, 1981; Regelmann, 1984; 
Weissburg, 1986; Real and Caraco, 1986; Stephens and Krebs, 1986) has 
been developed recently to predict how a forager should select its diet when 
energy intake varies. Each of these models is basically a special case of a 
general expected fitness model (Real and Caraco, 1986; Ellner and Real, 
1989) where it is assumed that expected fitness is maximized if the forager 
minimizes its risk of starvation (Caraco, 1980; Real, 1981; Stephens, 1981; 
Stephens and Charnov, 1982; Houston and McNamara, 1985) or mini- 
mizes its chance of failing to satisfy some threshold requirement for 
reproduction (Caraco and Gillespie, 1986; Gillespie and Caraco, 1987). 

While a goal of minimizing risk of failure may be appropriate under cer- 
tain conditions or for a period of time (e.g., small birds in winter), it is not 
necessarily the goal during all stages of a forager’s life history. For instance, 
it may be more important to gain as much energy as possible for growth, 
reproduction, or periods of energy shortage (McNamara “and Houston, 
1982, 1986; Rubenstein, 1982; Stephens and Charnov, 1982; Mange1 
and Clark, 1986). Consequently, minimizing risk may not always be 
appropriate since natural selection should favor individuals with the 
greatest net lifetime reproduction. 

Foragers with a goal of maximizing net reproduction may be faced with 
conflicting demands. For example, diets which provide the greatest mean 
nutrient intake may also have high associated variances and corre- 
spondingly high starvation risks (Houston and McNamara, 1985). Thus 
foragers may have to select diets that balance a trade-off between maxi- 
mizing mean energy intake (to maximize offspring production) and 
minimizing starvation risk. 

Although the variance discounting model of risk-sensitive foraging (Real 
and Caraco, 1986; Ellner and Real, 1989) also can be used to examine 
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effects of variation on reproduction (Powell, 1989), it cannot be used to 
examine a potential trade-off because both reproduction and survival com- 
ponents must be subsumed in a single fitness function. To examine the 
potential trade-off, we construct a model in which the risk of starvation 
and potential offspring production associated with different diets are 
expressed as explicit functions that contribute to the forager’s fitness. The 
model assumes that a forager’s goal is to maximize its net reproduction 
over time. 

THE MODEL 

Consistent with the classical foraging model, we assume the forager 
includes food items in its diet on the basis of food profitability, measured 
as energy per unit handling time, regardless of the prey species (types). We 
assume food items are continuously distributed in the environment and 
that this distribution remains constant during the period foraging behavior 
is examined. We further assume the forager randomly encounters food 
items (i.e., food items are randomly or uniformly distributed in the environ- 
ment). 

Let m be the rank of the lowest profitability category the forager includes 
in its diet such that food items are accepted if their profitability is greater 
than or equal to m. In other words, m defines the forager’s “diet breadth.” 

We assume the forager feeds for a fixed amount of time T within some 
time period T, (e.g., time feeding per day) and there are k such time periods 
such that [T,, Tk] represents the interval over which variation in energy 
intake, reproduction, and survival will be considered. If food items are 
ranked from highest (h) to lowest profitability, then the forager’s energy 
intake per period Tf for a given diet breadth s(m) is (Schoener, 1974) 

Jyzh e(i) n(i)/n di 
E(m)= T, + syeh t(i) n(i)/n di’ 

where e(i) (energy/item) is the energy content for food category i, n(i) is 
the number of food items from category i that were encountered and con- 
sumed during T, T, (time/item) is the search time for all food items in the 
diet, and t(i) is the handling time (time/item) for items from category i. T, 
and t(i) are expressed in the same time units as T. Search costs are ignored. 
The total number of food items n eaten in T is assumed to be constant. 
This is done for mathematical simplicity but the general conclusions will 
not change if n is variable. 

Each n(i) will vary among the k time periods and will depend on (1) the 
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number of items from each food category encountered, (2) the relative 
frequency of profitability i in the environment, and (3) m, the diet breadth. 
The value n(i) will vary because of the assumption that food items are ran- 
domly encountered (distributed) in an environment. This implies that over 
the interval [T,, 7’,J, the energy intake for a given diet breadth becomes 
a random variable with expected value E[e(m)] and variance V[c(m)]. 

The magnitude of E[c(m)] and Q&(m)] will, in turn, determine the 
forager’s level of offspring production. We assume offspring production is 
an increasing function of energy intake, f{ c(m)} @chaffer and Rosenzweig, 
1977; Rubenstein, 1982; Ellner and Real, 1989). If there is variation in 
e.(m), then this results in variation in accrued offspring production in each 
time period. To account for this variation, offspring production is 
expressed as the expectation of the function describing offspring production 
in relation to energy intake, E[f(c(m)}] (Rubenstein, 1982; Powell, 1989). 
This expected value will vary with the distribution of E(m) (i.e., whether it 
is normal or skewed) and the shape of the offspring production function 
(see later). 

In addition to influencing offspring production, Q&(m)] and V[c(m)] 
also influence the forager’s potential risk of starvation (Caraco, 1980; Real, 
1981; Stephens and Charnov, 1982). This risk can be estimated as the 
probability of failing to meet the maintenance energy requirement R within 
time T, where R is defined over time T,. The risk of starvation for a given 
diet breadth (D(m)) is estimated as 

D(m) = 1 - 
[ 

s,” q(c(m, j) dj 1 , 

where q is the probability density function for the distribution of energy 
intakes for a diet breadth and H is the highest energy intake for the diet 
breadth. 

The expected offspring production and starvation risk can now be com- 
bined to estimate fitness W(m) for different potential diet breadths. Let 
S(m) = 1 -D(m), the probability of survival. Fitness at the end of the 
interval [T,, Tk] is then determined by 

W(m) = Kf(4m))l W). (3) 

The diet breadth that maximizes fitness is provided by ti such that 
dW/dm = 0. This gives the condition for the optimum 

ECdf {4m)Wml= -dS(mWm 
ECf(dm)Il S(m) ’ (4) 
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and L is the lowest E(M) value for a diet breadth. 
Equation (4) is the standard form when fitness is a product of two 

variables (Charnov, 1982). The optimal diet breadth occurs when any 
further change in diet breadth results in decreased fitness through either 
lower expected reproduction or increased mortality. 

MODEL SOLUTIONS 

The solution to this model depends on the probability density function 
of ranked item protitabilities in the environment and the shape of the off- 
spring production function. A general explicit solution is not possible 
without specification of these functions. However, the qualitative behavior 
of the model can be understood if V[c(m)] changes predictably with 
increasing m for all profitability distributions. 

Equation (1) shows that variation in c(m) is proportional to variation in 
the number of items of each profitability ranking (n(i)) eaten in a foraging 
period. Therefore, to determine how V[.s(m)] changes with increasing diet 
breadth, we need only determine how the variance of the sampling distribu- 
tion of food items included in the diet changes with increasing m. Appendix 
1 shows that the variance will increase when incrementing from m - 1 to m 
categories if 

where g(i) is the probability density function for the distribution of all i 
profitability rankings. 

This condition is not satisfied when m < 2 (i.e., when the diet contains 
the highest or the highest and second highest pro&abilities). However, for 
m > 2, we explored when V[c(m)] can be expected to increase with diet 
breadth. We examined distributions that were skewed right, normal, and 
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Highest 
Food Profitability 

FIG. 1. Mean E[s(m)] and variance V[s(m)] in energy intake as a function of the range 
of food prolitabilities included in the diet (diet breadth). Here the diet breadth contains food 
profitabilities at a given point on the x-axis and left of that point (higher profitabilities). 
Horizontal line R is the energy requirement for survival. 

highly skewed left. These reflect distributions likely to be encountered 
under natural conditions (Schoener and Janzen, 1968; Werner, 1977; 
Belovsky, 1981; Richardson and Verbeek, 1986; Dickman, 1988). The con- 
dition was satisfied for all increments in all distributions, including the case 
when 99% of the distribution was assigned to the last category. Therefore, 
v[s(m)] should increase with increasing diet breadth when m > 2 (Fig. 1) 
for most naturally occurring distributions. 

1. Influence of Variation on Offspring Production 

We begin examining the influence of variation in energy intake on the 
qualitative behavior of the model by considering three shapes of offspring 
production functions f {e(m)}: linear, concave upward, and concave 
downward (Fig. 2). Biologically, linear functions occur if energy is conver- 
ted to offspring production at a constant rate @chaffer and Rosenzweig, 
1977). Concave upward functions occur if foragers must make some initial 
investment before offspring production is realized (Schaffer and 
Rosenzweig, 1977). Finally, concave downward functions occur when there 
are upper constraints on offspring production (Schaffer and Rosenzweig, 
1977). 

For the following analysis we assume c(m) is normally distributed and 
m > 3 (we address the case for m < 2 in the Discussion). Stephens and 
Charnov (1982) demonstrate that according to the central limit theorem 
the distribution of E(M) will tend to be normal when the number of 
foraging periods is large (k + 00). Therefore, for any diet breadth m, 
V[e(m)] will be symmetrical about EC&(m)] for any range of e(m) values. 
This range defines the potential range of offspring production values 
resulting from variation in energy intake. The range of offspring production 
values, in turn, determines the forager’s expected offspring production 
E[f {E(m)}] for a given diet breadth. 
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FIG. 2. Offspring production as a function of energy intake e(m) (Figs. 2A-2C) and 
expected offspfing production as a function of the range of food protitabilities in the diet (diet 
breadth) (Figs. 2D-2F). Offspring production is presented for linear (Fig. 2A), concave 
upward (Fig. 2B), and concave downward functions (Fig. 2C). Horizontal lines in each curve 
represent the range of possible energy intakes for a diet breadth, defined by the variance 
V[&(m)]. Figs. 2A, 2B, and 2C show relative loss and gain in offspring production for the 
same mean and variance in energy intake. The diet breadth that maximizes expected offspring 
production for the linear function ml will be intermediate between diet breadths maximizing 
expected offspring production for a concave upward, I?z,,, and a concave downward function 
M,~ (Figs. 2D, 2E, and 2F). 

Iff{e(m)} is linear, then offspring production varies symmetrically about 
f{&(m)}. Thus, E[f{s(m)}] =f(E[s(m)]) (Fig. 2A). If the offspring 
production function is concave upward, then a given deviation in energy 
intake above E[s(m)] increases production more than the same deviation 
below the mean will decrease it (Fig. 2B). Consequently, E[f{s(m)}] > 
f(E[c(m)]). If the production function is concave downward, then the 
opposite is true. Thus E[f{s(m)}] <f(E[e(m)]) (Fig. 2C). 

As diet breadth increases (i.e., m increases), E[.s(m)] and V[s(m)] will 
change predictably because prey are ranked from highest to lowest 
profitability and because V[.s(m)] increases with m. This predictability 
allows us to compare how E[f{e(m)}] changes with diet breath for 
different shapes of production functions. 

When f is linear, expected offspring production will be maximized when 
expected energy intake is maximized (i.e., when the forager selects the 
optimal diet predicted by the classical model) (McNamara and Houston, 
1982; Pyke, 1984; Ellner and Real, 1989). 
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To examine effect of nonlinear functions on diet breadth let p and cr* 
represent EC&(m)] and V[s(m)], respectively. Because s(m) is assumed to 
be normally distributed, the effect of mean and variance can be 
approximated using a Taylor expansion in the deviations from the expected 
energy intake which, after expected value operators are applied, gives the 
variance discounting formula (Real and Caraco, 1986; Powell, 1989; Ellner 
and Real, 1989) 

~Wk(m))l =fb) + ;f”(~b’~ 

where f” = d*f (p)/d,u*. 
Let p1 and cr: be the mean and variance in energy intake for the classical 

optimal diet breadth and p2 and 0: be the mean and variance for an alter- 
native diet breadth. The alternative diet breadth will give higher expected 
offspring production if 

When f is concave upward, f “(cl) > 0 and 

However, pL1 > ,u2, by definition. Thus f(p2) - f(pL1) c 1 and f”(pI) > f “(p2) 
(whenever f”(p) is nonconstant). Condition (6) will not be satisfied when 
cf > 0: (i.e., when diet breadth is narrower than the classical diet breadth). 
Therefore, when f is concave up, a forager will never maximize expected 
offspring production with a diet breadth narrower than the classical diet 
breadth. 

When f is concave downward, f” < 0 and 

f(P*)-f(PI)>fCf”(P*)+f”(Pdd. (7) 

Because If “(p2)l > If “WL condition (7) will never be satisfied when 
0: > 0:. Thus, a forager will never maximize expected offspring production 
with a broader diet breadth than the classical optimal diet breadth. 

These results are presented graphically in Figs. 2D-F. 

2. Influence of Variation on Starvation Risk 

When E(M) is normally distributed, Eq. (2) will be equivalent to 
(Stephens and Charnov, 1982; Ellner and Real, 1989) 

R-P @[z(m)] = @ - [ 1 CJ ’ 
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FIG. 3. Starvation risk as a function of the range of food profitabilities in the diet (diet 
breadth). 

where @[ ] is the cumulative standard normal distribution function. Since 
@ is an increasing function, the diet breadth minimizing starvation risk is 
the one which gives the smallest value of (R - P)/G (Stephens and Charnov, 
1982; Ellner and Real, 1989). 

When I.J~>P~>R (R-P,)/ rrl will always be smaller than (R -pz)/a, 
when eZ>cl. Therefore, a forager with a positive energy budget (i.e., 
expected energy intake exceeds requirements) should never select a diet 
breadth broader than the classical diet breadth to minimize starvation risk. 
Whether or not it should select a narrower diet breadth will depend on the 
magnitude of the p’s and CJ’S (see also Stephens and Charnov, 1982). 

When R >p, > pZ, (R -~~)/a, will always be smaller than (R -p2)/a2 
when er > c2. Consequently, a diet breadth narrower than the classical diet 
breadth can never minimize starvation risk when the forager has a negative 
energy budget. Again, whether a broader diet breadth minimizes risk will 
depend on the magnitude of p’s and Q’S (Stephens and Charnov, 1982). 

Qualitatively, starvation risk will decrease to some minimum and then 
increase with increasing diet breadth (Fig. 3) because the mean energy 
intake increases to some maximum and decreases with increasing diet 
breadth whereas the variance continually increases (Fig. 1). 

3. Qualitative Outcomes 

Functions for expected offspring production and starvation risk in 
relation to diet breadth can be substituted into Eq. (4) to determine the 
optimal diet. The explicit solution will depend on the exact parameter 
values that determine the various functions. The model solutions, however, 
can be examined graphically. Solutions in Fig. 4 are presented for a linear 
offspring production function. 

The diet that maximizes expected offspring production is defined when 
(E[df{.$m)}/dm])/E[f{e(m)}] =0 (Fig. 4). When f{&(m)} is linear, this 
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FIG. 4. Graphical solutions to the optimization model for a linear offspring production 
function. Solid lines represent E[/‘{e(m)}]/E[f{s(m)}] and dashed lines represent 
- .S’(m)/S(m), where f’ and s’ are df/dm and dS/dm, respectively. Diets balancing expected 
offspring production with risk of starvation occur at Cr. Diet breadths maximizing mean 
energy intake, m,, (i.e., classical model optimum diet breadth) and minimizing starvation risk, 
m,, are present for comparison. Solutions are presented for positive (A) and negative (B) 
expected energy budgets. 

will be the diet predicted by the classical foraging model (i.e., the diet that 
maximizes mean energy intake). The diet that minimizes the risk of starva- 
tion (risk-sensitive diet) occurs when ( -dS(m)/dm)/S(m) = 0 (Fig. 4). 

In the first example, we present the case when the forager can expect a 
positive energy budget but there will be a risk of starvation associated with 
the diet that maximizes mean energy intake (Fig. 4A). Relative to simply 
maximizing expected offspring production, the optimal strategy is to select 
a more narrow diet breadth and accept a lower expected offspring produc- 
tion to decrease the risk of starvation. However, the forager must accept a 
nonminimal risk of starvation to maximize fitness. 

We also show the solution when a forager incurs a negative energy 
budget (i.e., expected energy intake is less than average energy 
requirements) (Fig. 4B). In this case, variation in energy intake may con- 
tribute to offspring production because the shape of the expected offspring 
production function E[f{a(m)}] will remain the same. However, the 
forager will incur greater risks of starvation for different potential diet 
breadths causing the function (-dS(m)/dm)/S(m) to shift to the, right. 
Here, the optimal strategy is to select a diet broader than the contingency 
diet to maximize fitness. However, the forager should still select a diet with 
greater than minimal starvation risk. 
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There is also the trivial special case where the risk of starvation is mini- 
mized and expected offspring production is maximized by the same diet. 

DISCUSSION 

Most previous studies of risk-sensitive foraging have focused on predict- 
ing behavior when foragers must choose among prey or patches with the 
same mean rewards but different variances and when starvation risk is the 
only component of fitness (Real and Caraco, 1986). In this case, there are 
two optimal strategies: risk prone and risk averse (Real and Caraco, 1986). 

A risk prone forager should select the more variable reward while a risk 
averse forager should select the less variable reward over the variable one 
(Caraco, 1980). Risk prone behavior is optimal when the forager has a 
negative energy budget, on average. By selecting a more variable reward, 
a risk prone forager maximizes its probability of obtaining sufficient energy 
intake to meet requirements. Risk averse behavior is optimal when the 
forager has a positive energy budget, on average, but the risk of starvation 
with the variable rewards is nonzero. A risk averse forager selects a less 
variable reward to reduce the risk of obtaining a reward that falls below 
requirements. 

When foragers must choose among prey or patches with differing means 
and variances these simple predictions break down. The optimal strategy 
depends on the magnitude of means and variances (Stephens and Charnov, 
1982; Houston and McNamara, 1985). 

In this paper, we examine diet selection when the forager must choose 
among combinations of EC&(m)] and V[s(m)] represented by different 
potential diet breadths. Consequently, there is a different level of risk 
associated with each potential diet breadth. We assume the forager iden- 
tities prey items simply on the basis of their individual profitability values 
and the forager accepts items of profitability rank m or better whenever 
they are encountered. 

Previous risk-sensitive models (e.g., Stephens and Chamov, 1982; 
Houston and McNamara, 1985) assume that foragers select prey on the 
basis of mean and variance in profitability for each prey type (species). 
Energy gain for a diet (i.e., prey type 1, 2 or both) is estimated using both 
the means and variances of each prey type and the encounter with each 
prey type. Our approach reduces this level of complexity by subsuming the 
variability in profitability, for each prey type, into a single distribution. 
Energy gain for a diet then depends only on encounter with different 
profitability prey items. 

In our model the condition provided by Eq. (5) suggests that including 
lower profitability items in the diet increases variance in energy intake 
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except when the diet contains fewer than 3 different pro&abilities (i.e., 
m < 3). When m < 2, the general predictions of our model do not hold 
because the variance could increase or decrease with diet breadth. Houston 
and McNamara (1985) arrive at the same result in their examination of 
diet selection for two different prey types. 

Applying the concepts of risk prone vs. risk averse strategies to the 
foraging situation presented here, a risk averse forager should select a more 
narrow diet breadth than the one which maximizes mean energy intake 
(classical optimal diet, Fig. 4). A risk prone forager should select a broader 
diet than the contingency diet. However, such a simple “rule of thumb” 
does not yield unique predictions. 

First, when the forager has a positive energy budget and is reproductive 
the optimal diet breadth may also be more narrow then the classical 
optimal diet breadth but it usually will be intermediate between the classi- 
cal diet and one which minimizes starvation risk. The exact optimal diet 
will depend on the degree to which reproductive output changes relative to 
the risk of starvation. This will depend not only on the mean and variance 
in energy intake relative to requirements but also on the shape of the off- 
spring production function in relation to energy intake. 

We also obtain opposite predictions than provided by the “rule of 
thumb” when considering the effect of variation in energy intake on both 
reproduction and starvation risk. For example, if a forager has a positive 
expected energy budget, starvation risk, and a concave upward offspring 
production function, its fitness maximizing diet may be broader than the 
diet predicted by the classical optimal foraging model. This shows that we 
cannot use observations of shifts in diet breadth or support for “rules of 
thumb” as evidence that foragers are behaving in accordance with an 
optimal diet selection model. 

In our model, the objective function (Eq. (3)) is the static analog of 
McNamara and Houston’s (1986, e.g., Eq. (10)) dynamic optimization 
model. When foraging behavior is considered over several intervals, the 
foraging decisions may involve sequences of choices which depend on the 
forager’s energy budget in previous time intervals. In this case, a dynamic 
optimization approach may be most appropriate. 

However, Ellner and Real (1989) have shown that if net energy intake 
for a foraging strategy (analogous to diet breadth) is independent of 
strategies and energy budgets in previous time periods, the dynamic 
approach becomes equivalent to a sequence of static expected fitness maxi- 
mizations. Our model provides a means of determining the static optimal 
diet within an interval. We predict the average diet selection strategy for 
average conditions during the time interval [ Tr, Tk] given the expected 
fitness for different potential diet breadths at the end of this time interval 
(i.e., short-term fitness ~en~u McNamara and Houston, 1982). 
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Overall, foragers which are reproductive should always select diets with 
some intermediate risk of starvation, so risk averse and risk prone 
strategies represent endpoints of a continuum of possible optimal diets. 
Consequently, the description of foraging behavior using these two alter- 
natives becomes relative. For example, with a positive energy budget, a 
forager will be risk averse relative to a forager maximizing its expected off- 
spring production but it will be risk prone relative to a forager minimizing 
its starvation risk. Consequently, the terms risk prone and risk averse only 
provide limited information about the exact optimal diet. Instead, the 
optimal diet might be better described as that which balances relative gains 
in reproduction with relative losses in survivorship. 

APPENDIX 1 

For any random variable x with probability density g, we can define the 
variance of x ( V[x] ) as 

V[x] = .qxq - E[x]‘, (Al) 

where E[ ] is an expected value. For any finite range [A, B] within the 
domain of x, let 

E[x] = j-1 xg(x) dx 

and 

E[x’] = r” x2g(x) dx, 
JA 

(AZ) 

where A remains constant and B increases. Then substituting Eqs. (A2) and 
(A3) into (Al) we obtain 

I’[x] = j” x2g(x) dx - [ j” xg(x) dx]‘. 
A A 

However, when sampling from a finite portion of a distribution, the 
variance must be standardized by the factor l/(j: g(x) dx). Thus, the 
variance for the portion being sampled becomes 

v(x) = I: x2gb) dx - Cj; xdx) dx12 
Jfi g(x)dx (A51 
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The variance will increase as the range B - A increases when dV(x)/dx > 0. 
Upon obtaining dV(x)/dx and ignoring the denominator, since it will 
always be positive, we obtain the condition when the variance increases as 

(B2 - 28) s,B g(x) dx > j: x’g(x) dx - [J; xg(x) dx12. (A6) 

Equation (A6) states that the variance will increase with increasing range 
of the sampling distribution if the product of the proportion of the distribu- 
tion being sampled and a function of the number of classes being sampled 
is greater than the variance of the sampling distribution. 
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