
Informorion Processrng & Managemen/ Vol. 27. No. 1, pp. 27-41, 1991 0306-4573/91 53.00 + .I30

Printed in Great Britain. Copyright 0 1991 Pcrgamon Press plc

RANKING LARGE DOCUMENT COLLECTIONS
BY A STATE SPACE SEARCH

MICHAEL D. GORDON
Computer and Information Systems, School of Business,

University of Michigan, Ann Arbor, MI 48109-1234, U.S.A.

f Received 9 August 1989; uccepted in find form 20 June 1990)

Abstract -An algorithm is described for ordering by probability of relevance overlap-
ping document subsets from which a searcher should choose the next document. The al-
gorithm produces the ordering without assumptions of index term independence,
improves its performance with increasing feedback, and estimates most accurately the
probabilities of relevance of the subsets most likely to be relevant. The efficiency and ef-
fectiveness of the algorithm are analyzed theoretically.

1. INTRODUCTION

A collection of documents described by index terms defines a search space of document
subsets. For efficient and effective retrieval on a large document database, a searcher must
make decisions about a vast number of such subsets. These decisions, concerning which
subset to retrieve a document from next, implicitly involve probability estimations and com-
binatorics. Unfortunately, people deal poorly with such situations. Kahneman, Slavic, and
Tversky (1982) describe pervasive human fallacies in estimating probabilities, even among
mathematically sophisticated individuals. Blair (1980) argues that unaided searchers can-
not effectively construct queries that explore a large search space of overlapping document
subsets.

This paper presents a theoretical rationale for employing a novel form of information
retrieval algorithm. The algorithm helps searchers better navigate through large document
collections by continually revising probability estimates for document subsets. The algo-
rithm avoids assumptions of index term independence and predicts relevance more accu-
rately with increasing feedback. A mathematical analysis of the algorithm shows it can
efficiently provide information about the probability of relevance of many different sub-
sets of documents.

Consider a set of documents relevant to an inquirer’s need for information. Suppose
the collection containing this set is very large (millions of documents or more), and the rel-
evant set itself contains thousands of documents. Further, suppose the inquirer requires
many of these documents to do his or her job effectively. (Legal, scholarly, or business re-
search are examples of situations in which these assumptions apply.) Of course, the entire
collection is far too large for the inquirer to search, and he or she needs the collection ar-
ranged in an order that reduces the effort required to find the number of relevant docu-
ments needed.

Finally, suppose that the inquirer can identify perhaps a dozen or fifteen “good” search
terms* but is unable to specify in what combinations they will be best used to retrieve rel-
evant documents. Call this number of terms m.

2” - 1 disjoint, non-empty subsets of these good search terms can thus be defined.
A particular subset of terms can be used to specify for retrieval just those documents that
are indexed by all these terms but by none of the other m terms. For instance, with m =

*Following the model for probabilistic retrieval (van Rijsbergen, 1979), a “good” search term might be one
for which pi > qi, that is, one for which the probability of the term being used in a relevant document exceeds
its being used in a nonrelevant document. Such terms contribute positively, for documents which employ them,
to a discriminant function whose value increases as its prediction of the relevance of a document increases.

This research was supported by the Graduate School of Business Administration, Division of Research, Uni-
versity of Michigan.

27

28 M.D. GORDON

3 “good” terms “computers, ” “business,” and “automation,” the subset {business, automa-
tion) would retrieve any document indexed by both “business” and “automation,” but
would not retrieve documents indexed by any of the other 2m - 2 other combinations of
these three terms. (A document indexed by the terms (business, automation, telecommu-
nications) would be retrieved, because the term “telecommunications” lies outside of the
set of m term being considered.**)

The goal of an information retrieval system in this circumstance is to present these
2” - 1 subsets in an order that minimizes the effort that an inquirer looking through the
documents in the presented order will have to put forth in order to find the number of rel-
evant documents he or she desires.

The “probability ranking principle” (Robertson, 1977) implies that, under certain con-
ditions, the optimal presentation order is to present the subset with the highest (estimated)
probability first, the next highest second, and so on. Probabilistic retrieval (van Rijsbergen,
1979) is the most common method mentioned for producing such rankings. It uses estimates
of the probabilities that various index terms appear in both relevant and nonrelevant doc-
uments, and these probabilities are then combined to provide an estimate of the probabil-
ity of relevance for documents within a subset indexed by a given set of index terms.

The chief failing of this method is its usual reliance on an assumption that index terms
are independently distributed (conditioned on either an assumption of document relevance
or document nonrelevance). However, the underlying independence assumption is not valid
(van Rijsbergen, 1977; Tague 1984), meaning that the rankings of various subsets of doc-
uments will be suboptimal. Unfortunately, no computationally tractable methods for rank-
ing document subsets have been developed that significantly increase the effectiveness of
retrieval based on the independence assumption.

Because of the failing of the independence assumption, as the estimates of the prob-
abilities of term occurrences improve, there is no guarantee that the estimate of the prob-
ability of relevance of a document employing just those terms will improve. For instance,
by basing our estimates on larger samples, we can improve our (separate) estimates of the
probability of occurrence of term,, term,, and term, in the set of relevant documents as
well as in the nonrelevant documents. However, this does not mean that the estimate of
probability of relevance (calculated using Bayes’ rule) for a document containing these three
terms will also improve.

In principle, one could obtain samples from all the disjoint subsets described by a set
of m terms, and these could be used to estimate the probability of relevance of each of these
sets. These sets could then be presented to the user, the sets with the highest estimated prob-
ability first. However, with 2m - 1 distinct combinations, we could not possibly expect to
sample each of them reliably. (By “sample” we mean “select documents from and evalu-
ate their relevance. “)

The algorithm we propose in this paper for rank ordering sets of documents attempts
to defeat the three objections just raised. That is, the proposed algorithm

l avoids assumptions of term independence;
l improves its estimates of P(Rel1) with increasing sample size; and
l permits one to sample the document state space far more rapidly than by directly

sampling each disjoint subset.

Further, the algorithm produces the most accurate estimates of P(Rel1) for those subsets
most likely to be relevant.

2. STATE SPACE SEARCHING

The algorithm we propose for searching a document space is motivated by the A* al-
gorithm used in artificial intelligence for graph searching (see, for example, Nilsson (1980)
for a discussion of this algorithm).

**We are describing subsets that are in complete conjunctive normal form. Specified terms are ANDed to-
gether with the negation of excluded terms. We refer to these as disjoint subsets or complete cnf subsets.

Ranking by a state space search 29

We will see later (section 4) how our method develops a document retrieval search
tree.t To understand our algorithm better, we first present the A* algorithm for search-
ing a state space in the form of a tree. This algorithm (adapted from Nilsson, 1980) seeks
goal nodes accessible from the tree’s start node (i.e., its root).

Algorithm 1: A*

1. Put the root node, s, on the list Open.
2. Being with an empty list, Closed.
3. Loop: If Open is empty, exit with failure.
4. Set n := the first node on Open. Take n from Open and put on Closed.
5. If n = a goal node, exit with success.
6. Generate all immediate descendants of node n. Put them on Open.
7. Reorder Open so that the “best” node becomes the first node on the list.
8. Goto Loop.

At any stage of the A* algorithm (as described above) there is a (possibly empty) set
of Open nodes, and their descendants do not yet appear on the tree. The most promising
of the Open nodes is replaced by each of its immediate descendants until a goal node is
reached or until it is impossible to expand the tree further.

For the problem we are interested in, we consider a vocabulary, V, of five “good”
search terms, (A, B, C, D, E). The small size of this set permits clear examples to be pre-
sented. In general, we imagine 11 V I(to be 12, 15, or more.

In searching a tree of document nodes, we envision a start state, s, leading through var-
ious intermediate states to various goal states (see Fig. 1). The intermediate states each per-
tain to a depth of sampling performed on a particular subset of documents. For example,
the node ABCDE3 represents the third time a document from the set of documents jointly
indexed by these terms has been retrieved and evaluated by a searcher.1 Similarly, node
ABE5 represents the fifth time a document indexed by the three terms A, B, and, E and
possibly but not necessarily indexed by C and or D, has been retrieved and evaluated. The
start state of the graph represents the state of no documents having been retrieved and fur-
nished to a user. A goal state (not shown in the figure) represents a search state associated
with a subset of documents from which an inquirer has retrieved a relevant document G
times.

To make the explanation of our algorithm more precise, we introduce some terminology.

3. TERMINOLOGY

Search states
The nodes in the search tree resemble ABE5 or BD3, etc. We refer to these represen-

tations as search states or search nodes.

Lattice nodes
Each search state, stripped of its subscript, represents a subset of documents. For in-

stance ABE represents that subset of documents indexed with at least terms A, B, and E
(and possibly C and D). Given our vocabulary, V, the set of subsets we can represent forms
a lattice, L = (V,s), see Fig. 2.tt Search states indicate a depth of sampling from an as-

tour algorithm could be presented without reference to a state space. However, we feel that such a rePre-
sentation is familiar, easily grasped, and aids discussion.

SWe use sampling with replacement in selecting documents from various subsets. So doing ensures that our
algorithm terminates and simplifies our theoretical analysis. In practice, a document drawn for a second time need
not be actually presented to a user. The system need only update relevance statistics based on the user’s previous
assessment. Note, that sampling with and without replacement both give unbiased estimates of the proportion of
documents that is relevant, though the latter method has smaller variance.

ttWe ignore the lattice “top” which corresponds to documents indexed by none of the given terms. Note that
subsets deeper in the lattice are subsets of their relatives higher in the lattice, even though deeper subsets are de-
scribed by more symbols.

30 M.D.GORDON

/

1
0

/
0

0 /

/
0

\

0

ABCDE
3

0

ABD4

Fig. 1. Document state space.

sociated ~~~~~ce node. For instance, ABE6 indicates that
searched six times.

lattice node ABE has been

Intentionally sample
When a document is picked at random subject to the constraint that it be a member

of lattice node X (i.e., that its description qualify it as a member of the subset defined by
X) and the searcher makes a judgment about the document% relevance, we say that node
X has been j~~en~jo~Q~1~ s~rn~~~~.

ABCDE

Fig. 2. Lattictt of document subsets.

Actually sample

Ranking by a state space search 31

Since the document sets represented by lattice nodes are not disjoint, a document re-
trieved when one lattice node is intentionally sampled may actually have a description that
belongs to several lattice nodes. For instance, in intentionally sampling lattice element ACE,
the retrieved document may have description ABCDE. Thus, the retrieved document is an
element of each of the following lattice nodes (i.e., subsets) contained in ACE: ACE,
ABCE, ACDE, ABCDE. We say that if one intentionally samples lattice node X and
retrieves a document, d, then all lattice nodes Y such that Y C X and d E Y are actually
sampled (see Fig. 3).

THEOREM

Let S, be the documents actually sampled from lattice node Y and let SY (7 Rel be the
documents from S, that are relevant. Then, #(SY 0 Rel)/#(Sv) is an unbiased estimate of
P(Re1 1 Y).

Proof. Choose any X 1 Y. Let Sx be the set of documents intentionally sampled
from X. By the definition of intentional sampling, S, is a random sample (with replace-
ment) from X. Hence, S, n Y is a random sample from Y. Consequently, #(Sx 0 Y n Rel)/
#(Sx fl Y) is an unbiased estimator for P(Rel\ Y), since it is a sample mean from a random
sample. But S, = U (S, n Y), over all X 3 Y. Therefore, #(S, f7 Rel)/#(Sv) gives an
unbiased estimate of P(Re1 IY) by averaging the separate estimates #(& n Y n Rel)/
#(Sx fI Y), each of which is unbiased. 0

Muftiple accrediting
The application of this theorem lies in its ability to help us sample more efficiently the

set of lattice nodes. Again, suppose that one intentionally samples node ACE and retrieves
a document, d, with description ABCDE. We may then update our estimates of the prob-
ability of relevance for the following lattice nodes: ACE, ABCE, ACDE, and ABCDE. For

A B c D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE A CDE

CDE

ABCDE

Fig. 3. Actual sampling. The lattices nodes joined by heavy lines are actually sampled when lattice
node ACE is intentionally sampled and a document with description ABCDE is retrieved.

32 M.D. CORDON

instance, if d is relevant, and ABCE had previousiy been actually sampled four times and
found relevant twice, we would update our estimate of P(Re1 1 ABCE) from 214 to 315 (and
similarly for the other nodes). We refer to the process of simultaneously updating the prob-
abilities of relevance of several actually sampled lattice nodes with the retrieval and eval-
uation of a single ~i~tentionally sampled) document as ~~l~~~le accred~~~~g.

4. SEARCHING A DOCUMENT STATE SPACE

With this terminology in hand, we describe an algorithm for searching a document re-
trieval state space. The algorithm seeks multiple goal nodes. A goal node is a search node
associated with a lattice node that has been actually sampled (with replacement) until a spec-
ified number, G, of relevant documents has been retrieved.

Consider the lattice in Fig. 2. We desire that our algorithm rank these document sub-
sets (lattice elements) in order of decreasing probability of relevance to a given query. As
a first step, we seek as a goal the lattice node with the highest probability of relevance. (We
will then look for other goal nodes, unhke the A* algorithm.) We assume in this exampIe
that a11 lattice nodes with two or fewer symbols have a lower probability of relevance than
lattice nodes with three or more symbols. Thus, we i~jf~fff~y sample only the latter lattice
nodes, ignoring all lattice nodes with fewer than three symbols. This assumption limits the
number of nodes we initially sample. This assumption may be modified to allow initial sam-
pling of other sets of lattice nodes.

Algorithm 2: Document space search

1.

2.

3.
4.
5.

6.
7.

8.

For each lattice node employing three or more symbols, intent~onaIIy sample that
node j (j = 5, e.g.) times. Use multiple accrediting for each document retrieved and
evaluated. In this way we obtain our initial sample. (At this stage, as a result of
multiple accrediting, we might have the associated search tree depicted in Fig. 4.)
Put each of the current leaf nodes on the Open list, Begin with an empty list,
Closed.
Loop: If Open is empty, exit with failure.
Select from Open any goal node. If such a goal exits, exit with success.
Select from Open the node, n, that has the smallest value off(n) (see discussion
that follows). Take n from Open and put on Closed,
Intentionally sample one document from the lattice node associated with node n.
~1ultipIy accredit each actually sampled node. For each multiply accredited node,
add the corresponding nodes to the search tree. Adjust the tree so that all leaf nodes
are attached to their “natural” parents, and remove from Open and place on Closed
any node that now has a “descendant” on the tree. (For instance, if the search tree
looks like Fig. 4 before step 7 and a document with ABCDE is selected when node
ACE is intentionally sampled, then nodes ACE, ABCE, ACDE, and ABCDE are
multiply accredited (see again Fig. 3). The search tree following Step 7 is shown in
Fig. 5. Nodes ABCDE,, ABCE6, ACE*, and ACDE6 are placed on Open, and
ABCDE6, ABCEs, ACET, and ACDE5 are removed from Open and placed on
Closed.)
Got0 Loop

;icE
A6CoE 6 ACE

*

7

5

Fig. 4. Search tree from initial sampling.

Ranking by a state space search 33

7 8 6 6

Fig. 5. Multiple accrediting and tree updating. The search tree is adjusted to show a) the lattice nodes
actually sampled when ACE is intentionally sampled (solid arcs emanating from ACE,); and b) the
situation after search states are connected to their “natural” parents (dotted arcs).

The algorithm above, like the A* algorithm, selects for expansion (Step 5) the best
node, that is the node with the smallest value off(). In the A* algorithm, the “best” search
node (Step 7 of Algorithm 1) is that node, n, which minimizes the value off(n) = g(n) +
h(n). The right hand side of this equation is composed of two estimated values. g(n) es-
timates the least costly path from a start state to node n. In the case of searching a tree,
a single path leads from the start state to any search state. Thus, once the cost of this sin-
gle path is determined (which is done automatically once this node is generated), the esti-
mate of the least costly path to this node will always equal the true cost. The second term
on the right-hand side of the equation, h(n), estimates the least costly path from n to any
goal node. Thus, f(n) estimates the least costly path from the start state, s, to a goal node
by going through n. In our calculation off(), like that for the A* algorithm, we hope to
estimate a least cost path from the start state to a goal. However, unlike the A* algorithm,
path lengths in our algorithm depend on probabilistic outcomes. We thus choose functions
g () and h () accordingly.

We take g(n) to be the path length to node n. That is, node ABC5 has path length 5,
node BCDE, has path length 7, etc. These path lengths indicate exactly the number of
times the corresponding lattice element has been actually sampled - accounting for attach-
ing nodes to their natural parents, as we did in step 8 of our algorithm.

h(n), on the other hand, estimates the distance from node n to a goal. For instance,
h (AB&) estimates the number of additional times lattice node ABC will need to be actu-
ally sampled until it becomes a goal (i.e., until it has been actually sampled with replace-
ment and found to be relevant G times). We take as our estimate of h(n) the expected
number of documents yet to be retrieved for this node until the Gth relevant document is
discovered.$$ Intuitively, selecting for expansion that node, n, with the smallest value of
f(n) = g(n) + h(n) is equivalent to selecting the node with estimated shortest (i.e., least
cost) path length from the start node, s, through node n to a goal.

LEMMA

For a node, n, with depth b and a relevant documents discovered thus far

f(n) = b + (G-a) * (b/a).

Proof. By definition, the depth of this node, g(n), is 6, and an unbiased estimate of
its probability of relevance is p = a/b. The expected number of documents yet to be re-
trieved must account for G - a additional relevant retrievals with k nonrefeuant retrievals
preceding the (G - a)th relevant document retrieved. That is,

SSWe estimate the probability of relevance of a node by the sampling statistics (number of times found rel-
evant divided by number of times actually sampled) that describe it. This yields an unbiased estimate of its
relevance.

34 M.D. GORDON

h(n) = E(G - a + k)

= G - a + E(k) .

Since k follows the negative binomial distribution, we have

h(n) = G - a + (G - a) * (q/p)

where p = 1 - q = estimated probability that node n is relevant. Thus

f(n) = g(n) + h(n)

= b + (G-a) + (G-a) * (q/p)

= b + (G - a) + (G - a) * [(b - a)/a]

= b + (G-a) * (b/a). I?

5. ANALYSIS

We now analyze the algorithm we have presented. We examine both its effectiveness
and its efficiency.

THEOREM

Algorithm 2 always terminates by finding a goal, given that every lattice node contains
at feast one relevant document.

Proof. By steps 1 and 2 of the algorithm, Open begins as a non-empty list. Open can
only become empty (and the algorithm terminate in failure, step 3), if nongoal nodes are
removed from Open without being replaced. But steps 5 and 7 show that, for any nongoal
node removed, at least one new node is placed on Open. Thus, the algorithm never ter-
minates in failure.

Further, since the lattice is finite, there must be a finite number of search nodes on
Open. Thus, if the algorithm does not terminate, at least one lattice node is sampled an in-
finite number of times without leading to a goal node. That is, a relevant document is never
selected from this (lattice) node for the Gth time. But, we are sampling with replacement,
and each lattice node has one or more relevant documents by assumption. Thus, the num-
ber of draws, k, until the Gth relevant document is discovered for this node is defined by
the negative binomial distribution. But the probability that k is finite is 1.0 (FeIler, 1968).
Thus, no node will be sampled an infinite number of times before a relevant document is
discovered for the Gth time. Therefore, the algorithm always terminates.

Since the algorithm always terminates and never terminates in failure, it always ter-
minates by finding a goal. cl

The proof above relies on the assumption that every lattice node contains at least one
relevant document and the fact that we are sampling with replacement. Since a lattice node
describes a set of documents, each of which is indexed with a given set of good index terms,
the assumption is quite reasonable. Sampling with replacement ensures that we can retrieve
an arbitrary number of relevant documents from any lattice node.

THEOREM

The Open node with the highest estimated va~uefor P(Re1 1 node) will be intentionally
sampled next 6-y the algorithm.

Proof. Let Open nodes n and n’ have depths of b and b’, respectively, and have a and
a’ relevant documents thus far retrieved, respectively. It suffices to show that f(node) de-
creases monotonically with increasing estimated values for P(Re1 1 node):

f(n) <f(n’) iff

b + (G - a) * b/a < b’ + (G - a’) * b’/a’ iff

Ranking by a state space search

baa’ + Ga’b - aa’b < b’aa’ + Gb’a - a’b’a iff

35

a’b * (a + G - a) < b’a * (a’ + G - a’) iff

a’b c b’a iff

pnf = a’/b’ < a/b = p,,,

where pn and p,,, are the estimated values for P(Rel 1 n) and P(Rel 1 n’), respectively. 0

This means that to pick the search state most likely to become a goal, we need only
look at its estimated probability of relevance and can ignore its path length.

It can be proven that, if h(n) never overestimates the true value of the least costly path
from n to a goal node, the A* algorithm always finds the least costly path from the start
state to a goal. Next, we develop an analogous proof for Algorithm 2.

THEOREM

The lattice node with the highest (non-estimated) probability of relevance will most
often be the first one to place a goal node on Open.

Proof. Because each lattice node contains at least one relevant document, it is, poten-
tially, actually sampled with replacement until it becomes a goal node. The negative bino-
mial distribution

f(k; G,p) = (G+;- ‘) *pGqk

defines, for any lattice node, m, with P(Rell m) = p = 1 - q, the probability that the Gth
relevant document retrieved from that node will be preceded by the retrieval of exactly k
nonrelevant documents.

Let the probability of relevance for lattice nodes LI and L2 be pI and p2, respectively,
and let k; be the number of failures until lattice node L; becomes a goal. We expect a goal
node for L2 to reach Open with fewer failures than L1 if

P(k, > k2) > P(k2 > k,), or

P(kl > k2) - P(k2 > k,) > 0.

If the number of failures associated with sampling L, and L2 are independent then

P(k, > k,) - P(k2 > k,) > 0 iff

2 5 [P(k, = i) * P(k2 =j)] - 2 g [P(k2 = i) * P(k, =j)] > 0 iff
j=O i=j+I j=O i=j+l

,zo ;_$, l[P(k, = i) * P(k2 =j)l - [P(k, = i) * P(kl =j)]) > 0.

Using the formula f(k; G, p), this becomes

5 5 [(“+;-1) *pyq;* y+;-1) *p:q;

j=O i=j+l

- (“‘I- 1) *pfqj* (“‘i- 1) *ppq;] >o.

36 M.D. GORDON

Factoring and distributing terms converts the inequality to

(PI *l&P~ &fll [(G+;-l) * (“+;-‘) * ws2j - &Al] > 0,

which reduces to

q/-j > q$-j iff

qf > q2 (since i > j) iff

The analysis when the number of failures from Li and Lz are statistically dependent
reduces to case when they are independent. To see this, consider a statistical sampling pro-
cess that operates as fohows when L, Z? Lz. Intentionally sample from L, . If the document
drawn actuaily samples Lz (thus contributing another “success” or “failure” to both
nodes), then ignore that draw. Otherwise, 1) update L, based on this draw; and 2) inten-
tionally sample and update Lz.

Ignoring draws that would multiply accredit both Li and Lz is equivalent to picking
a new goal number of relevant documents, G’-G = number of “successes” from common
draws, and then considering statistically independent draws from Li and L2 to reach this
new criterion. Therefore, since P(ki > A-,) > P(/c~ > k,) in the independence case for any
G, it holds in the case where Li 31 Lz, too. Thus, as in the independent case, the probabil-
ity that ki < k2 depends only on pi and p2. The case where neither I;, 3 L2 nor L2 I> L,
also reduces to the case of statistical independence by using a sampling procedure similar
to that just described which incorporates the probabilities of documents belonging to com-
mon supersets of both Li and Lz.

Thus, one lattice node is more likely to place a search node on Open with fewer fail-
ures than another if it has a higher probability of relevance. Together with the fact that the
node with the highest estimated probability of relevance is the node that will be sampled
by the algorithm, we conclude that the lattice node with highest probability of relevance
will most often be the first node to place a goal node on Open. El

To this point, we have seen that selecting for expansion the node with the smallest
value of f() is equivalent to selecting, on average, the node with the highest probability
of relevance, and, by continuing to pick in this way, that node will be the first to have an
associated Goal node placed on Open. By step 4, the algorithm will terminate with success
upon locating this node.

After locating a goal node and “terminating” with success, the algorithm resumes by
trying to locate other goal nodes. Specifically, the search tree is kept intact, along with all
statistics on the number of times each lattice node has been actually sampled and found rel-
evant. The algorithm then continues by considering for expansion only those search nodes
that have not yet become goal nodes. The best of these is intentionally sampled with mul-
tiple accrediting. Eventuafly, a second goal node will be discovered. The entire procedure
is then continued as governed by a stopping rule: repeat until a predetermined number of
goal nodes has been discovered; or until the total number of documents in the union of the
set of goal nodes reaches some threshold. Once the stopping rule is reached, the documents
in lattice nodes associated with goal nodes are presented to the searcher in order of pre-
dicted probability of relevance-each document within a lattice node receiving the same es-
timated probability. By regarding the search for each new goal node as a new problem, and
maintaining all information concerning the depth of (actual) sampling and relevance of each
node that has not yet become a goal, each of the theorems above can be applied at each
new stage.

Speed up

Ranking by a state space search 37

By multiple accrediting, we can sample the set of lattice nodes far more efficiently than
we could otherwise. Here, we examine the “speed up” in sampling that is achieved, sub-
ject to certain assumptions. Again, for the lemmas and theorem that follow, we assume a
vocabulary of “good” search terms, V, where 11 V 1) = n. For illustrative purposes, we re-
fer to Fig. 2, which uses 11 V 1) = 5.

Note: we use the expression X c Y to mean that “the set of documents indexed by X
is a subset of those indexed by Y.” For example, ABCDE E ABC.

LEMMA 1
A lattice node, m, described by a symbols has 2”-” descendants. (X is a descendant

of Y iff X c Y. For instance, in Fig. 2, lattice node ABC has descendants: ABC, ABCD,
ABCE, and ABCDE.)

Proof. Let k = n - u. Then we may “adjoin” to lattice node m any combination of
these k symbols to represent a lattice node that is a subset of m. (For instance, we may “ad-
join” “D” to lattice node ABC to create lattice node ABCD.) There are C$, (j”) = 2k such
combinations we can adjoin. 0

LEMMA 2
Let X be a lattice node and Y one of its descendants k levels deeper in the lattice. (For

instance, lattice node ABCDE is 3 levels deeper in the lattice of Fig. 2 than BC.) Then, when
one intentionally samples X and draws a document with description8 Y, 2k lattice nodes
are actually sampled.

Proof. We seek lattice nodes, R, such that Y G R E X. (That is, the description of R
must contain all the symbols in the description of X, and the description of R must con-
tain only symbols in the description of Y. X = ABC, R = ABCE, and Y = ABCDE jointly
satisfy these conditions.) Each of these nodes (i.e., subsets of X) will be actually sampled
in the situation that we have described.

Let W be the set of symbols “adjoined” to X in forming Y. Since Y is k levels deeper
in the lattice,)I W 11 = k. Then we may adjoin any combination of these symbols to X and
obtain a lattice node with the property we demand of R. As in the previous proof, there
are 2k such combination. 0

Assumptions. These two lemmas help us prove our “speed up” theorem. This theo-
rem is based on the following two assumptions: 1) Each disjoint (complete cnf) subset
formed by the terms in the underlying searching vocabulary, V, has an equal number of
documents. For instance, AB-C-DE, ABCD-E, -AB-CD-E, etc., all have an equal
number of documents. 2) Each of these subsets has the same probability of relevance.

SPEED UP THEOREM

On average, multiple accrediting actually samples

(S/2Jn - (3/2jn

2” - 1

lattice nodes for each node intentionally sampled, where)I V 1) = n.

Proof Consider a node, m, with w “levels” of descendants excluding itself. (For ex-
ample, ABC has two levels of descendants excluding itself: level 1 descendants = (ABCD,
ABCE); and level 2 descendants = (ABCDE).) By Lemma 2, a lattice node k levels deeper
in the lattice actually samples 2k nodes when it describes a document that is retrieved when
m is intentionally sampled. But a node with w levels of descendants has w symbols that can
be adjoined to its description to create descendants. (For instance, ABC, with two levels
of descendants, can adjoin the two symbols D or E.) Each adjoined symbol corresponds
to another level deeper in the lattice. Thus, there are (7) descendants of m that are i lev-

!jThat is, Y is the subset of X deepest in the lattice that contains the document.

38 M.D. GORDON

els deeper in the lattice. Because, by assumption, each complete cnf subset of m has the
same number of documents, it follows that each descendant of m has the same probabil-
ity of being the deepest lattice node that describes a document intentionally sampled from
m. By Lemma 1, m has 2” total descendants. Thus, the average number of nodes multi-
ply accredited when node m is intentionally sampled is:

which equals

$ * (2 f 1)” = (3/2)w

by the binomial theorem.
Further, there are (L) lattice nodes with w levels of descendants. Because, by assump-

tion, all lattice nodes have equal probability of relevance, each will be intentionally sam-
pled equally often. Thus, the average number of nodes actually sampled when an arbitrary
node in the lattice of 2” - 1 nodes is intentionally sampled is:

i& * 2 (;) * (3/2)“‘.

Again, the binomial theorem can be used to rewrite this as

(512)” - (3/2)”

2”-1 -
0

We deem this the “speed up” from multiple accrediting. A graph showing speed up
plotted against search set size, 11 V [I, is shown in Fig. 6.

Multiple
Accrediting

25

20

15

10

5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Seatch Set Size (11~~)

Fig. 6. Speed up via multiple accrediting.

Ranking by a state space search

6. DISCUSSION

39

We stated in the introduction to this paper that our proposed algorithm:

l avoids assumptions of term independence;
l improves its estimates of P(Re1 I) with increasing sample size;
l permits one to sample the document state space far more rapidly than by directly

sampling each disjoint subset; and
l produces the most accurate estimates of P(Rel I) for those subsets most likely to be

relevant.

We now reexamine these assertions.
First, we obtain estimates of form P(Rel j X) for all lattice nodes, X (excluding those

too “high” in the lattice-i.e., those that are not “initially sampled”). These unbiased es-
timates are obtained by sampling X and do not rely on any assumptions of index term
independence.

Second, the estimate for P(Rel j X) improves with increasing sample size. In particu-
lar, we are sampling with replacement and taking Y = the proportion of retrieved docu-
ments indexed by X that is relevant as our estimate of P(RellX). Thus, if the true
proportion of relevant documents in X is p = 1 - q, then the variance of the sampling dis-
tribution of Y is Var(Y) = pqh, where n is the number of actual samples from X. So, our
estimates improve with increasing n. Thus, by choosing larger values for G (the number of
relevant documents until a node becomes a goal) the ranking of lattice elements improves
and we obtain smaller confidence intervals around our estimates of P(Rel I) for the nodes
in the lattice.

Third, our speed up theorem indicates that each sampled document serves to sample
an exponential number of lattice elements simultaneously. Thus, we obtain large sample
sizes for estimating the probability of relevance of each lattice element.

Fourth, the algorithm selects for sampling (steps 5 and 6) the node with the lowest
value of f(node) first, which is equivalent to selecting, on average, the node with the highest
probability of relevance. Thus, as the algorithm discovers multiple goal nodes, it samples
most intensively (and thus produces the most accurate estimates of P(Re1 I) for) those nodes
most likely to be relevant. It is these nodes we hope to rank most accurately, because a
searcher will likely only retrieve documents associated with nodes with the best ranks.

Today, optical storage, subscription information retrieval systems with a single inter-
face to multiple document databases, and other technological advances are making the stor-
age of tens of millions of documents a reahty. In such targe document databases, a searcher
desiring a significant fraction of the documents relevant to his or her need should expect
to have to exert considerable effort in providing feedback for his or her search. For our
searcher who has identified 12 “good” search terms, there will be over 4,000 lattice nodes
by which such a database will be partitioned. Even if we wish to actually sample each of
these nodes 15 times to produce a ranking, our speed up theorem suggests that 4000 (to-
tal) retrievals and evaluations will suffice. Such an effort may be extremely worthwhile
when one needs to find all the documents needed in a lawsuit, or to determine whether to
grant a new patent, or to conduct an exhaustive scientific literature review, etc. By limit-
ing the “initially sampled” set of documents to those, say, at least half way down the lat-
tice (for instance, to documents containing at least 6 of the 12 good search terms in our
example), the number of documents necessary to sample can be sharply reduced, or, for
the same searching effort, the estimates for P(Rel 1) can be improved.

There are several problems with the approach we have outlined. First, the speed up the-
orem is based on questionable assumptions. The assumption that each disjoint (complete
cnf) subset formed from the underlying vocabulary, V, is of the same size may be a crude
approximation to an “ordinary” document database partitioned by a dozen index terms in
the way we suggest. The accuracy of this assumption depends on the co-occurrence pattern
of the terms in V. Such co-occurrence patterns may vary considerably depending upon the
depth of indexing (from a few manually chosen terms to a full-text representation) and the
homogeneity of the document collection.

40 M.D. GORDON

The second assumption, that each lattice element have the same probability of rele-
vance, is clearly inaccurate. If it were not, then there would be no need to choose among
the various subsets of documents at all! We can reanalyze the speed up associated with mul-
tiple accrediting under different assumptions. Let p, be the probability that a lattice node
whose description fails to use i search terms in its description has the current highest esti-
mated probability of relevance. (For instance, ABD fails to use the i = two search terms
“C” and “D” from the search vocabulary V = [A, B, C, D, El.) Further, let pj; be the
probability that, when a node with i unused search terms in its description is intentionally
sampled, the description of the document actually selected will lie j levels deeper in the lat-
tice. Then, the speed up arising from multiple accrediting is:

n-1 i

,Fo PiJFo PJi * 2j .

Another problem that arises with this algorithm is that, even if lattice elements are cor-
rectly ranked by probability of relevance, the optimal presentation order may be different
than such an ordering of lattice nodes. For instance, a ranking may properly rank lattice
node ABC before AB, and AB before AC. Since AB and AC are both supersets of ABC,
presenting all documents from lattice element ABC, then all those from AB, and then all
from AC is equivalent to first presenting documents with descriptions ABC, then those with
descriptions AB-C, and then those with descriptions A-BC (it is not necessary to present
the same document twice). Suppose ABC has 1000 documents, 100 of which are relevant;
AB-C has 100 documents, none of which is relevant, and A-BC has 1000 documents, 50 of
which are relevant. Then, P(Rel(ABC) > P(RelI AB) > P(Re1 1 AC). But, P(RelI AB-C) <
P(Rel(A-BC).

To properly utilize our algorithm, conditions are required for suggesting when an or-
dering of lattice element is consistent with an ordering of disjoint elements. For instance,
P(Rel IABC) > P(RellAB) > P(RellAC) implies P(RellABC) > P(RelIAB-C) >
P(RellA-BC) if (but not only if) P(AB) > P(AC).§§ A partially ordered set of lattice
nodes can be presented in a single order by a topological sort (Knuth, 1973) when neces-
sary and sufficient ordering conditions cannot be met.

The algorithm suggested in this paper has many variations, including the choice of:
G, the number of relevant documents for a node to become a goal; the set of nodes to be
initially sampled; the number of goal nodes sought until the algorithm terminates; and the
decision to sample with or without replacement. In addition, new search terms may be
added to the lattice based on evidence of their usefulness part way through a search.

It is clear that this algorithm is not suited to searches on small document databases
where a searcher would not tolerate having to evaluate many prospective relevant docu-
ments just to improve the order in which a larger set of documents is presented. On the
other hand, in very large document databases it is necessary for searchers to have assistance
to navigate through overlapping document subsets (lest they make these decisions ran-
domly) and to use information about both retrieval successes and failures wisely in decid-
ing which subset to retrieve a document from next. The method we propose presents a
theory for accomplishing these ends. In addition, this algorithm may provide a basis for
other search methods. For instance, tentative, initial evaluations of relevance may some day
be made satisfactorily by machine, with our algorithm controlling which subsets the ma-
chine evaluates next and, thus, minimizing the number of such evaluations. The multiple
accrediting from this algorithm may also be incorporated in other retrieval techniques.

Acknowledgements-Choon Lee and Peter Lenk helped me present certain theoretical results more simply. Dave
Blair gave me feedback that 1 have incorporated into this paper. Manfred Kochen, who died recently, pointed
out the ties between these ideas and other work. All are from the University of Michigan. I also thank Richard
Belew, UCSD, and the anonymous referees for their comments.

6§A less intuitive necessary and sufficient condition can be derived, too:

P(ABC)
- > P(Rel 1 AC) - P(Rel (AB) +

[P(Rel 1 AB) - P(Rel 1 ABC)] * [P(Rel 1 ABC)/P(AC)]

P(AB) P(Rel I AC) - P(Rel) ABC)

Ranking by a state space search

REFERENCES

41

1. Blair, DC. (1980). Searching biases in large interactive document retrieval systems. Journal offhe Americun
Society for Information Science, July, 211-217.

2. Feller, W. (1968). An Introduction to probability theory and its applications. Vol 1. New York: John Wiley
& Sons.

3. Kahneman, D., Slavic, P., & Tversky, A. (Eds.) (1982). Judgment under uncertainty: heuristics and b&es.
Cambridge: Cambridge University Press.

4. Knuth, D.E. (1973). The Art of Computer Programming. Vol 3. Reading, MA: Addison-Wesley.

5. Nilsson, N.J. Principles of Artificial Intelligence. (1980). Palo Alto, CA: Tioga Publication Co.

6. Robertson, S.E. (1977). The probability ranking principle in IR. Journal of Documentation, 33, 294-304.

7. Tague, J., McClellan, C. & Nelson, M. (1984). The hyperterm model of a bibliographic database. Cunadion
Journal of Information Science, 9, 37-58.

8. van Rijsbergen, C.J. (1979). Information Retrieval, Second Edition. London: Butterworths.

9. van Rijsbergen, C.J. (1977). A theoretical basis for the use of co-occurrence data in information retrieval. Jour-
nal of Documentation, 33, 106-l 19.

IPM 27:1-o

