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Abstract— With the Kirchhoff assumption. a stress resultant constitutive law as a function of the
kinematic variables for thin plates of power-law hardening materials is derived under proportional
straining conditions. Also, in analogy to the J, deformation plasticity and incremental plasticity
theory, & flow rule, based on the constitutive law, to describe the clastic plastic behavior of the
plate is proposed. The constitutive behavior of the plates subjected to uniaxial combined membrane
force and bending moment is examined in detail and the results are compared with those for the
corresponding clastiv -plastic materials using the through-the-thickness integration method. The
yield surfaces for power-law materials are constructed and the formation of vertices on the yield
surfaces for perfectly plastic materials under such a loading condition is clearly demonstrated.

[ INTRODUCTION

IFor the purpose of efficiently simulating sheet metal forming processes by finite clement
methods, plate or shell theories with the Kirchhoff assumption are usually adopted to reduce
computational time. However, numerical integrations through the thickness of plates or
shells under elastic -plastic deformation are necessary. This increases the need of com-
putational storage and time. Therefore, constitutive faws, where the stress resultants such
as the membrane forces and moments are expressed as functions of the kinematic variables
such as the midplane strains and curvatures, are of interest.

The constitutive laws of incremental plasticity nature based on the stress resultants
have been proposed by Crisficld (1974) and Bienick and Funaro (1976) for thin plates of
elastic-perfectly plastic materials as well as by Eggers and Kroplin (1978) and Eidsheim
and Larsen (1981) for thin plates of elastic-plastic strain-hardening materials with a limit
yield surface. Also, Morman er al. (1984) generalized these works to finite deformation
formulation. Further applications of this type of constitutive law have been developed to
analyze viscoplastic shells (Atkatsh et al., 1983), dynamically loaded plates (Lukkunaprasit
and Kelly, 1979), stiffened plates (Kutt and Bienick, 1988), and composite laminated plates
{Bank and Bicnick, 1988).

We have employed the constitutive luws of Crisficld (1974), Bienick and Funaro
(1976) and Eidsheim and Larsen (1981) to simulate sheet metal forming processes and
found that the results of the computations agree well with the results using the through-
the-thickness integration method for elastic-perfectly plastic materials. However, for elas-
tic -plastic strain-hardening materials, the computational results are not satisfactory when
compared with the results using the through-the-thickness integration method. Conse-
quently, we are interested in constructing these types of stress resultant constitutive laws
for strain-hardening materials.

In a typical sheet metal forming process such as forming a body panel of an auto-
mobile, the allowable highest plastic strains of material clements are about a few pereent.
The loading path of a material element may be nonproportional and complex. However,
in order to construct a simple constitutive law in this paper, we make the assumption that
all material elements experience nearly proportional loading conditions so that the use of
the deformation plasticity theory is justified (Budiansky. 1959). Furthermore, since we are
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Fig. 1. The conventions of a plate ¢lement.

interested in the cases where the plastic deformation is large compared to the elastic
deformation, the materials are assumed to be pure power-law materials. Then, the con-
stitutive law can be expressed in terms of the stress resultants as functions of the currrent
deformation state. In analogy to the work of Stéren and Rice (1975). we can conceptually
construct the yield surface and then formulate a flow rule of incremental plasticity nature
in the stress resultant space to determine the work-conjugate strain rates as functions of
the stress resultant rates.

In particular, the results based on the stress resultant constitutive laws for pure power-
law materials under uniaxial combined membrane foree and bending moment are compared
with those for the corresponding elastic-plastic materials using the through-the-thickness
integration method. The yicld surfaces for the corresponding incremental plasticity theory
are constructed. In the limit cases for power-law materials, the yield surfaces for perfectly
plastic materials are compared with those of Rice (1972) and Bienick and Funaro (1976).

2. A STRESS RESULTANT CONSTITUTIVE LAW

Within the context of the small-strain approach, the strains of a thin plate clement. as
shown in Fig. 1, can be written with the Kirchhofl assumption as

by = Cpt Xy 2 =12 ()

where ¢, represent the midplane strains and «,, represent the curvatures. In general, the
plastic strain as a function of the tenstle stress of a tensile test for steels and aluminum
alloys can be fitted by a power-law relation. We consider the cases where the plastic strain
is much larger than the clastic strain, Therefore, we can use a pure power-law to describe
the material stress—strain relation. The uniaxial tensile pure power-law stress -strain relation
is shown in Fig. 2. The generalized multiaxial consttutive relation based on the J, defor-
mation plasticity theory is

Pure power-law materials

Elastic-plastic power-law
materials

€

Fig. 2. The stress -strain curves for pure power-law materials and the corresponding clastic plastic
materials.
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where ¢, are the strains, o, (= [1s,5,]' °) the effective stress, 5, (= 0,,— }0..0,;) the deviatoric
stresses, n the hardening exponent, g, the reference stress, and a2 a material constant.

The stress field as a function of x, for the thin plate element shown in Fig. | can be
derived by introducing eqn (1) into (2) with the condition of 6;; = 6, = 6,. = 0:

O = QA+ Byx;)(D+ Exy+ Fx3)!' =", a. By =1,2, 3)
where
2i"g
0= 3¢—+n*,.:‘—|,.

Ay =e,0,5+e,.
By = K04+ Ky,
D = e} +eented el
E=2c, k) +2enkn+ekntenk  +2¢K,

2 3 2
F=Ki +K Kk +Rr3+R.

Then, the stress resultants N,, and M, for the plate clement can be derived as:

k2 + Byx

aft xfi-*
- - Sl - d 4
Non L/. T 03 QJM.(D+E\‘+FY1)(" Wiz G5 ®

and

w2 (Ap+ Byyx3)x,

b2
M’”=f-:.,.- ouxydey = 0 w2 (D+ Exi+ Fx3)™ i 4, ©)

where N,, and M,, are the membrane forces and moments which are the functions of e,,
r. and n. These functions are independent of x; since we carry out the integrations over
a finite interval of x,. Now, if we examine eqns (4) and (5) for nonlinear elastic power-law
materials, the constitutive law relating the stress resultants ¥,, and M, to the kinematic
variables e,; and x,, is completely specified.

Assuming all the material through the thickness is subject to the same proportional
straining condition, we have

=——C-q ©

and

L= (. (M

where C, and C, are constants. Because
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where C, and C, are constants, a proportional straining condition is equivalent to a
proportional stressing condition. At any v ;. the necessary and sufficient conditions to satisfy
eqns (6) and (7) are

Cas
2=,
¢y
K2 €22
bt )
Kii ¢y
and
('lr.z =C,
€y
Ky Cq2
= . 9)
Ky Ciy
With eqns (8) and (9), eqn (3) can be simplitied as
K |.n N
m”=AwQ4|+£Ux) g@(|+~ﬂx0, (10)
11 ¢

3 3 .
R=(ef,+e, ennter+eiy) ™,

The function sign( ) equals 1 when its argument is positive and equals —1 when its
argument is negative. Hence, the stress resultants are derived as follows:

el '\_” ln ' '\,”
Ny = A0R 1+ xyposign| 14+ - x, | dx,
h2 € €y
e\ " K||ll (n+ l)n K”h (ann]
= A,y —— —— QR| |1 + =— - = = 11
iy n+1 H 2e, 2ey, ()
and
B2 . 1n .
Ky K
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2 ¢ Cry
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Note that eqns (11) and (12) involve the ratio x,,/e,,. We can define a ratio C such that
2C=K“h,le,,. (13)
Then eqns (11) and (12) can be expressed as

Ny = QRAhf(C.n)
and

M.,; = QRA,zh*g(C.n),

where f"and g are functions of C and n only. The amplitudes of N,; and M., are now related
to that of the strain by RA,, which represents a quantity with the amplitude of the strain
to 1/n power. In this way, these two equations are in agreement with the general results for
power-law materials given as eqns (8) and (9) in Chou et al. (1988).

In pure bending cases, the midplane strains are equal to zero under the Kirchhoff
assumption. Equation (3) can be reduced to

o = By QF" "7 x| sign (x,). (14)

Hence, the stress resultants are

3
n ll("”””o'"

L ) 2n
1/‘4;I+2 ~‘(nol)2nalpn F( ' . (IS)

Ny=0 and M, =8

_ll_"'_'_"'

As napproaches infinity in eqns (11) and (12) for perfectly plastic materials, the stress
N = 4. C 9 L+ Kyh
af = Agg T T Py Ze,,

resultants can be expressed as
- (16)
K \/3D 2e, )

el o, ( x,,h)) Kih ( K,,/I)‘ Kyh :’
Mg =dy— = f+ — Nl=c— =l 1= c— )1+ —1] (17)
' ”’\'Tl 2\/30[ 2ey, 2ey, 2e, 2ey,

and

3. UNIAXIAL COMBINED LOADINGS

We consider a thin plate subjected to uniaxial combined membrane force N,, and
bending moment M, with the plane strain condition (g, = 0,7 = 1, 2, 3) and with the plane
stress (simple beam) condition (05, = 0, i = 1,2, 3). Fromeqns (1) and (12), we have

(n+ 1) n
} (18)

l\'“/I (n41hn

€= 5

& -

and
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where ' = | for the plane stress condition and T = (2 \'"/3)""" for the plane strain
condition.

To check the validity of eqns (18) and (19). we compare the constitutive behavior
with that for the corresponding elastic-plastic materials using the through-the-thickness
integration method. The stress—strain curves for pure power-law materials and the cor-
responding clastic—plastic materials are shown in Fig. 2. For the convenience of presentation
of the results under combined membrane force and bending moment, we denote ¥V for vV, .
M for M. e fore . and « for xy,. Also. we normalize the results of N by N, (= ayht). M
by M, (=0a,h*/4), ¢ by ¢, (= 0,/E). and x by x, (= 36,/ Eh). In Figs 3-6 where the
moment-curvature relations are plotted. P-curves (solid lines) represent the results of eqn
(19) and E-P curves (dotted lines) represent the results for the corresponding clastic-plastic
materials using the through-the-thickness integration method.

1.80 0.40
1.44 4
= 1.08 -
0.72
0.38 4 0.08 - n=3, C=0.5
E-P_. P
o 2z 4 8 8 10
‘/‘L
{d)
. |
3 i
T o0 / It
/ i
0.44] 0.104l  n=10,C=05
| i E-P_ P
{ = —
0.2 n=10, C=2 0.051 !
' EP_. P o
[} T T T T 0.00 T T T T
0o 2 4 6 8 10 0 2 4 6 B8 10
&/, &/,
(b) ()
0.80 0.24
7 |
40.54- I/ JO.laﬂ':
I
;o.«- ‘I So.tz-«il
| |
0.32] 0.06 4| n=«, C=0.5
[ i‘ E-P_ P
0.164 n=o, C= 0.00
E-P__ P
0.00 T T T T -0.06 T T T T
6o 2 4 6 8 10 0 2 4 6 8 10
</, x/x,
() n

Fig. 3. Comparisons of the plane stress moment-curvature results under proportional stretching
and bending for pure power-law materials and the corresponding clastic plastic materials.
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Fig. 4. Comparisons of the plane strain moment curvature results under proportional stretching
and bending for pure power-law materials and the corresponding elastic plastic materials.

First, we examine the cases where rutio C (= wxh/2¢) as detined in eqn (13) is fixed
during the monotonically increasing proportional straining processes. Figure 3 shows the
normalized moment-curvature relationship under plane stress conditions for C = 0.5 and
2and n = 3, 10, and . In the figures, P-curves and E-P curves become close to cach other
when a/x, becomes large. For small hardening exponent i, as shown in Fig. 3a.d, the results
based on eqn (19) give a very good approximation compared to the through-the-thickness
integration results, When C < 1, as shown in Fig. 3d-t. cach of the curves for elastic-plastic
matcerials has a peak because the elastic zone dominates the distribution of the moment
initially.

Figure 4 presents the normalized moment-curvature results under plane strain con-
ditions for C = 0.5 and 2 and # = 3. 10, and 25. We can see in the figures that the general
trends are the same as those under plane stress conditions except that when & becomes
large. both curves do not match cxactly in cach casc. The reason is that Poisson’s ratio
affects the results in the elastic zone under planc strain conditions. Here, we use v = 0.3 for
the corresponding elastic-plastic materials whereas the pure power-law materials modeled
by the J; deformation plasticity theory are incompressible. If we increase the value of
Poisson’s ratio for the corresponding elastic—plastic materials, the difference of both curves
in each case will decrease. In gencral. the pure power-law results agrec well with the
clastic-plastic through-the-thickness integration results when w/x, > 5. Note that go/E is
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Fig. 5. Comparisons of the plune stress moment -curvature results subjected to constant midplane
strain for pure power-law materials and the corresponding elustic-plastic materials.

of the order of 10 * for structural steels and aluminum alloys. Therefore, when the strain
is larger than 1%, the pure power-law results will give good approximations for the elastic-
plastic behavior of the plates.

Figures 5 and 6 are the results of the normalized moment-curvature relationship for
plane stress cases and plane strain cases under pre-strained loading conditions, where a
small midplane strain is kept constant while the curvature increases. Figure 5a-¢ shows the
plane stress results under pure bending conditions for n = 3, 10, and x, respectively. Figure
5d-f shows the plane stress results under the pre-strain condition of ¢/e, = 0.5 for n = 3,
10, and w0, respectively. Figure 6a-c shows the plane strain results under pure bending
conditions for n = 3, 10, and o, respectively. Figure 6d -f shows the plane strain results
under the pre-strain condition of ¢/e, = 0.5 for n = 3, 10, and =, respectively. In each of
these figures, in spite of some differences at the initial bending stages, both curves become
close to cach other at large x/x,. However, as in the monotonically increasing proportional
straining cases. Fig. 6a~f shows there exist slight differences between the pure power-law
results and those for the corresponding clastic-plastic materials under plane strain con-
ditions as x/x, becomes large. This is duce to the Poisson’s ratio effect as explained carlier.
As shown in Fig. 5d-f for the plane stress cascs and in Fig. 6d-f for the plane strain cases,
there exist transition points with discontinuous slopes for pure power-law materials. This
is due to sign (e, —x //2) in eqn (19). from which different functional forms of the
solutions are generated for C larger and less than unity.
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Fig. 6. Comparisons of the plane strain moment -¢urvature resulls subjected to constuant midplane
strain for pure power-law materials and the corresponding clustic -plastic materials.

4. COMPLEMENTARY POTENTIAL SURFACES
To facilitate further discussions, we define the stress resultant vector S and the gener-
alized strain vector e as

S={Nllszz,le-Mn-MnJ”x:} (20)

and

€= {c'...e;;.2(',;.x|,.x33,2~,:}. (21)

As shown in eqns (11) and (12), the constitutive law between S and ¢ is completely specified
under proportional straining conditions. When we construct the finite element formulation
by variational principles, the tangent modulus D (S = Dé) for numerical iterations is needed
and it can be derived easily. But the approach mentioned above is valid only for power-law
nonlincar elastic materials.

For elastic-plastic materials, phcnomenological plasticity theories based on the
invariants of N,; and M,; and interpolation between the initial yield surface and the limit
yield surface are available in Crisfield (1974), Bieniek and Funaro (1976), and Eidsheim
and Larsen (1981). In Eidsheim and Larsen (1981), material plastic hardening is incor-
porated within the framework of Crisfield (1974) and Bieniek and Funaro (1976) with the
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assumption that the cffective stress will asymptotically reach a limit value and thercefore the
limit yicld surface is still applicable. However, the results are not satisfactory when these
constitutive laws were used in simulating the forming processes of thin sheets of plastic
hardening materials. Therefore, we are interested in constructing a phenomenological
plasticity theory where matenal plastic hardeming can be accounted for.

Of course, the constitutive law of the form given by eqns (1) and (12) s applicable
when the plastic deformation is large compared with the clastic deformation and the
loading path is nearly proportional. However, during sheet metal forming processes, clastic
unloading may occur and the yield conditions are theretore needed to determine the state
of clastic unloading or plastic loading after inttial unloading.

Motivated by the construction of the rate form of the J, deformation plasticity in
Storen and Rice (19735), we can construct the flow rule tor the corresponding incremental
plasticity theory based on the detormation plasticity relation of 8 and e in egns (1) and
(12). As shown in Storen and Rice (1975), when we seck the rate form of the constitutive
law for Mises materials, the plastic strain rate in the deformation plasticity theory can be
decomposed into two compornents. One can be identified as the component given by the
constitutive law of the corresponding icremental plasticity for Mises materials. The other
is at & tangent to the Mises yield surface. As sketched in Fig, 7. dS and de of & pure power-
law deformation plasticity material are shown at a given 8 and ¢ in the § space. We
’ s parallel to ¢ and de s
1

decompose de into two components de'"” and de' ', where de

normal to ¢. Under proportional loading conditions, de'™" is zero and de"’ cquals de: the
yield surfuce. by definition with the ussumption of pormality. must be normal (o de or e.
Therefore, we can construct the yield surface of incremental plasticity, which is normal to
e, in the S space based on the constitutive law of eqns (1) and (12). In this way, the
plastic response of incremental plasticity cotncides with that of deformation plasticity under
proportional loading conditions.

The yicld surfuce constructed in this way really corresponds to the complementary
potential surface of deformation plasticity. The complementary potential ' of deformation
plasticity is defined as

W
U= L
L0S,
which indicates that the generalized strain vector is normal to the complementary potential
surface. For a constant complementary potential ' in the S space, we have

S

AW = dS = dS, = 0. (22)

0.,

For the purposc of illustration. we will construct the complementary potential surfaces
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(or the yield surfaces of the corresponding incremental plasticity theory) under uniaxial
combined membrane force N and bending moment M in the following:

dam

d¥ =0 =edVN+xdM or —iN = T

(23)

where C is defined in eqn (13). According to eqns (18) and (19). the ratio of M/hto Nisa
function of C only. That is,

Mk M
&y FC) or C= F'(?'{)- (24)
N N

where F~' represents the inverse function of F. To find the yield surface, we can integrate
eqn (24) starting from an arbitrary set (N, A "). Note that for pure power-law materials,
the yield surfaces (or the complementary potential surfaces) are self-similar. Here we choose
N® = aoyhand M" = 0, where 2 = 1 in plane stress cases and x = 2/{/ 3 in the plane strain
cases. The function of the yield surface is represented by an integral equation as

MY 1
B . — 1 (25)

f 26! <1yllﬁ>
N N’

We can numerically integrate eqn (25) and plot M (= M/M,) as a function of N (= N/N,)
tor several values of n.

Figure 8a.b shows the yicld surfaces under plane stress conditions and under plianc
strain conditions, respectively, for n=1, 3, 7, and o. The surfaces under plane stress
conditions, as shown in Fig. 8a, are smaller than those under plane strain conditions, as
shown in Fig. 8b, for cach n because there are more constraints in the latter case. Due to
the factors ey +w,,4/2] and e, —w A/2] in eqns (18) and (19), there are four sets of
constitutive equations depending on C. Thus, in the stress resultant space, there are four

9.139

-0.12
~02

Fig. 8. The yicld surfaces in the M -N planc under plane stress conditions (a) and planc strain
conditions (b).
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Fig. 9. Four subdomains divided by two transttion lines in the M- ¥ plane,

subdomains corresponding to these four sets of constitutive equations. These four sub-
domains are separated by two transition lines (C = + 1) which pass through the origin with
the slopes +(4n+2) "', as shown in Fig. 9. The slopes of the yield surfaces are continuous
when the yield surfaces pass through the transition lines. In Fig. 8a.b, when n increases, the
curvatures of the yield surfaces at the N axis increase. Also, the magnitude of the slopes of
the transition lines decreases such that the size of subdomains | and 3 decreases. Conse-
quently, when n approaches infinity, the slopes of the transition lines become zero and
subdomains | and 3 degenerate and coincide with the ¥ axis. Therefore, only subdomains
2and 4 exist for n = oc. Because the yield surface goes through subdomain 2 into subdomain
4 directly, it is clearly shown that the slopes are discontinuous at A7 = 0 and so the vertices
arc formed, as shown in Fig. 8a,b forn = .

Figure 10 shows the comparison between the yield surface of perfectly plastic material
under plane stress conditions and the limit yield surface of Bienick and Funaro (1976).
Both surfaces arc very close to cach other. Our yicld surface has a continuous slope at
N = 0, but the yield surface of Bicnick and Funaro (1976) does not. Under plane strain
conditions, the yield surface for perfectly plastic materials (n = =), as shown in Fig. 8b, is
the same as the parabolic yield surface of Rice (1972).

We curve-fit the yield surface by second order and fourth order polynomials for future
application under plane stress conditions. Table 1 lists the constants of these equations. We
can obtain good fits by sccond order polynomials for low hardening materials (with n > 3.
For high hardening materials (with n < 3), fourth order polynomials are needed to give
good fits.

Following the same procedure, we can derive the equation for the yield surfaces under
pure biaxial bending and twisting conditions from eqn (15). The result for uny hardening
power 1 1s

{1=o0

Bieniek and Funaro

oz 0 0.2 04 0.6 0.8 1 1.2

Fig. 10. Comparisons of the yield surface for n = o for pure power-law materials with the limit
yield surface of Bieniek and Funaro (1976).
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Table 1

a | A{Bf C| D E| FIG H J| K

1 6] 1(-077}1.16 S35 -5 11-024) -0.59]1.16

-16) 1]-09311.06] 3846|-33}| 1} -0.11| -0.83|1.06

-26) 1|-096)1.04| 1077(-28| 1} -0.05| -0.92|1.04

7 |-35]|1]-097]1.03[33040(-71] 1| -0.03] -0.94 ] 1.03

o0 S 0.004 | -1.004 | 1

Region : N=AM*+B or N=EM‘+FM*+G
Region2: M =CN*+ D or M=HN'+JIN + K

Mfl—M1|M22+A’[§2+3A[f2 = (. (26)

where ¢ is a function of the hardening exponent n and the kinematic variables. In other
cases, we can obtain the yield surfaces using the numerical integration method.

5. DISCUSSION

In incremental plasticity theories, the flow rule is needed to establish the rate form of
the constitutive relation. Here, we proposc a flow rulc based on the nonlincar elastic
{dcformation plasticity) behavior of eqns (3), (11), and (12) in analogy to the work of
Stéren and Rice (1975). The rate form of the incremental plasticity is expressed as

§=D"-e", (27)

where D' represents the tangent modulus and €' is the cllective generalized strain rate.
Note that the rate form of the deformation plasticity theory is

S=D-¢, (28)

where D can be derived from eqns (11) and (12). Referring to Fig. 7, the effective generalized
strain rate in the corresponding incremental plasticity theory is

¢V =n(n-¢), (29
where n = ¢/|e|. Substitution of eqn (28) into eqn (29) yiclds
¢V =nn"-D'-8). (30

where D ! represents the inverse of D. From eqns (27) and (30), the tangent modulus D'V
of the corresponding incremental plasticity theory can be expressed as

D(l)___[n(n'l'.D-l)]»l' (3])

For determining the loading or unloading condition easily, we define & = §-n. Plastic
deformation occurs when & > 0. Otherwise, there is only elastic deformation and the usual
clastic modulus for elastic thin plates will be used. In addition, an initial yicld surfacc must
be defined for specifying the elastic domain in the stress resultant space. However, we
are interested in the cases where the plastic deformation is much larger than the elastic
deformation. Therefore, a reasonable choice of the initial yield surface may not affect
the global results significantly. The proposed flow rule, of course, is restricted to nearly
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proportional loading conditions. Further numerical experiments are needed to examine the
applicability of the proposed flow rule.
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