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Ah\tract-With the KirchhoH assumption. . 7 stress resultant constitutive law as a function of the 
kinom;ltic variables for thin plates of power-law h;crdcning materials is dcrivd under proporliod 
straining conditions. Also. in an;tlopy to the .I: dcform;ttion plasticity and incrcmcnt;d plasticity 
thcorv, iI How rule. based on the constitutivc law, to descrihc the cktstic plastic hchaviar of the 
plate& pruyc~sed. Thee~~nstjtutive behavior of the plates subjected to unkxial combined membrane 
force ;rnd batding mnmcnt is cx;tmincd in drtail and the results are compared with those for the 
cc~rrcsponding elastic pl;lstic m;lteri;ils using fhc through-tile-thickrlcss intcpraticrn mcthd. The 
yield surlllccs for ptrwcr-law m;lteri;du arc conutructcd and the formation ol vortices on the yield 
surhccs lix perIdly pktstic materi:tls under such ;I loading condition is clearly dcrnonstritlcd. 

I. IN’lXOl)U(“lION 

For the pttrposc of clticiently simukttirtg stxct metal Ibrnting proccsscs by finite clcmont 
methods. pl;ltc or shell thcorics with the Kirchhotf’assttntptiort arc usually adopted to rcducc 
cotttptttatiort;lI time. llowzvcr, numerical integrations through the thickness of plates or 
shcits under elastic plastic dcform;lticln arc ncccssary. This incrcascs the need of com- 
putational stor;tgc and tintc. Thcrcforc, constitutivc laws, whcrc tlto stress resultants SU~I 

;ts the mcmhranc forces and moments arc cxprcsscd IS functions of the kinematic variahlcs 
such as the midplanc strains and curvatures, arc of intcrcst. 

The constitutive laws of incremental plasticity nature based on thr stress resultants 

have been proposed by Crisficfd (1974) and Bicniek and Funaro (1976) for thin plates of 

elastic-perfectly plastic materials as well as by Eggers and Kriiplin (1978) and Eidsheim 
and Larsen (1981) for thin plates of elastic-plastic strain-hardening materials with a limit 
yield surface. Also. Morman er (if. (1984) generalized these works to finite &formation 
formulation. Further applications of this type of constitutive law have been developed to 
analyze viscoplastic shells (Atkatsh PI NI., 1983). dynamically loaded plates (Lukkunaprasit 
and Kelly, 1979). stilrened plates (Kutt and Bieniek, IYYS), and composite laminated plates 
(1k111k and Bicnick. 198X). 

We have employed the constitutivc laws of Crislicld (1974). Bienick and Funaro 
(1976) and Eidshcim and Larsen (1981) to simulate sheet metal forming processes and 
found that the results of the computations agrcs well with the results using the through- 
the-thickness integration method for cfastic -pcrfcctly plastic materials. However. for elas- 
tic-plastic strain-hardening materials, the con~putation;ll results are not satisfactory when 
compared with the results using ths through-the-thickness integration method. Conse- 
quontly. we arc intcrcsted in constructing these types of stress resultant constitutive laws 
for s[r~iin-hiIrdcnin~ materials. 

In a typical sheet metal forming process such as forming a body panel of an auto- 
mobile. the allownblc highest plastic strains of material clemcnts are about a few pcrccnt. 
The loading path of a mutcrinl clcmcnt may bc nonproportional and complex. However. 
in order to construct a simple constitutivc law in this paper. we make the ~lss~imption that 
all material elements exprricnce nearly proportional loading conditions so that the use of 
the doformation plasticity theory is justified (Budiansky. 1959). Furthermore, since we are 



C H CHOL cl ill 

FIB. I. Thr conventlow ol a phtr element 

interested in the cases where the plastic deformation is Lrpe compared to the elastic 

deformation, the materials are assumed to be pure power-law materials. Then, the con- 

stitutive law can be expressed in terms of the stress resultants as functions of the currrent 

deformation state. In analogy to the work of Stiiren and Rice (1975). WC can conccptuall~ 

construct the yield surface and then formulate a flow rule of incremental plasticity nature 

in the stress resultant space to determine the work-conjugate strain rates as functions of 

the stress resultant rates. 

III particular, the results based on the stress resultant constitutivc laws for pure powcr- 

law materials under unianial combined membrane force and bending moment arc compared 

with those for the corresponding elastic plastic nialcrials using the tlirou~h-the-liiickncss 

integration mcthod. The yield surfxcs for the corresponding incrcmcntal plasticity thcor) 

arc constructed. In the limit casts for power-law materials. the yield surfaces for pcrfcctl! 

plastic materials arc compared with those of Rice ( 1972) and Hicnick and f:unaro ( 1976). 

2. A STRESS I~f3tiL,~l’hNT C’OKSTI I‘lJ’l’l\‘Ii I.i\W 

Within the context ofthc smali-strain approach. the strains of a 

shown in Fig. I, can bc written with the Kirchholl’i~ssumption as 

thin plate clcmcnt. 3s 

(1) 

where e,,, represent the midplane strains and K,,, represent the curvatures. In general. the 

plastic strain as II function of the tensile stress of ;I tensile test for steels and ;lluminum 

alloys can be litted by ;I powor-law relation. Wc consider the cases where the plastic strain 

is much larger than the elastic strain. Thercforc, wc an USC a pure power-law to dcscribc 

the material stress--strain relation. The uniaxial tensile pure powcr-luw stress-strain relation 

is shown in Fig. 2. The generulircd multiaxial constitutivc relation bused on the J1 dcfor- 

mation plasticity theory is 

pure power-law n1atefials 

Elastic-plastic power-law 
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&,j=$l 5 
“-Is. 0 *u 

2 i, j,k = 1.2.3. (2) 

where E,, are the strains. 6, ( = [ !S,jS,,] ’ ‘) the effective stress, si, ( = oii- fa,,a,) the deviatoric 

stresses. n the hardening exponent, bU the reference stress, and r a material constant. 

The stress field as a function of .Y~ for the thin plate element shown in Fig. I can be 

derived by introducing eqn (I) into (2) with the condition of cJ2 = Q_,, = o_,: = 0: 

*,$‘I = Q(A~p+B,p.KJ)(D+E.r,+FKt)“-“‘,?“, *./?.;I = 1.2, (3) 

where 

2’/“0, 

Q=3 ct In+ ,),'?!I I n ' 

Then. the stress resultants N,,, and M,,, for the plate element can be derived as : 

h/2 h, 2 

Nz,, = *,,, d-\-J = Q 
A,, + ~,PJ -.._____ _. _- _ ___-- .i. d-r, 

-hi? hi2(D+E_v3+F.r;),” I”-” 

h. 2 h, 2 

M,,’ = axll.~cJ ds, = Q 
(A,,, + B,,,.r,).r, 

-h,? -h/Z 
-----I)i?n d.r>. 

(D+ E-r,+ Fx;)‘” 

(4) 

(5) 

where N,,, and IV,,, are the membrane forces and moments which are the functions of c,,~, 

K,,,. and n. These functions are independent of x3 since we carry out the integrations over 

a finite interval of x,. Now, if we examine eqns (4) and (5) for nonlinear elastic power-law 

materials, the constitutive law relating the stress resultants N,,, and M,,, to the kinematic 

variables e.,, and K,,, is completely specified. 

Assuming all the material through the thickness is subject to the same proportional 

straining condition, we have 

and 

E,* c12(1+ z-Kj) 
G=e,,(l+ z..K,) = =?* 

(6) 

(7) 

where C, and Cz are constants. Because 
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and 

where C3 and C, are constants. ;I proportional straining condition is equivalent to a 

proportional stressing condition. At any .Y ?. the necessary and sutfcient conditions to satisfy 

eqns (6) and (7) arc 

With cqns (8) and (9). cqn (2) can bc simpiilicd ;IS 

(8) 

(10) 

where 

The function sign ( ) equals I when its argument is positive and equals - I when its 

argument is negative. Hence, the stress resultants are derived as follows : 

;I n d 

(11) 
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Note that eqns (I I) and (12) involve the ratio K , Je, ,. We can define a ratio C such that 

2C= h-,,h,e,,. (13) 

Then eqns (I 1) and (12) can be expressed as 

and 

NdJ = QRA,,hf(C. n) 

M,, = Qf+#y(C. n). 

where/‘and y are functions of Cand II only. The amplitudes of N,,, and hl,, are now related 

to that of the strain by RA,,, which represents a quantity with the amplitude of the strain 

to I/n power. In this way. these two equations are in agreement with the general results for 

power-law materials given as eqns (8) and (9) in Chou et (11. (1988). 

In pure bending cases. the midplane strains are equal to zero under the KirchhotT 

assumption. Equation (3) can be reduced to 

r~,,, = B,,,QI;” ~#’ “‘1.~~1 ‘,‘sign (.\-!). (14) 

tlcncc. the stress resultants arc 

,,’ ?n + I, <to 

lV,,J = 0 and M,,, = UI,, . ” ” F’I #,,f?fl. 
4,,+9 J’“’ II :“%I n -_ 

(15) 

As II approaches inlinity in eqns (I I) and (12) for perfectly plastic materials. the stress 

rasultants c;m be expressed as 

NX,J (16) 

an d 

3. UNIAXIAL COMBINED LOADINGS 

We consider a thin plate subjected to uniaxial combined membrane force N,, and 
bending moment AI,, with the plane strain condition (E:, = 0. i = I, 2.3) and with the plane 
stress (simple beam) condition (a?, =O.i= 1,2,3).Fromeqns(lI)and(12).wch;~ve 

and 



where I- = I for the plane stress condition and I- = (:! L 3)“” ” for the plane strain 

condition. 

To check the validity of eqns (IS) and (19). we compare the constitutive behavior 

with that for the corresponding elastic--plastic materials using the through-the-thickness 

integration method. The stress-strain curves for pure power-law materials and the cor- 

responding elastic-plastic materials are shown in Fig. 1. For the convenience of presentation 
of the results under combined membrane force and bending moment. we denote 1V for rV, I. 

M for MI ,, (J for e, ,. and K for K, ,. Also. we normalize the results of :V by ;\‘,~ ( = a,,lr). :\I 
by ML (= a,,/r’;J). c’ by cL (= G,,]E). and K by h’L (= 3rr,,;Eh). In Figs 3-6 where the 

moment&curvature relations are plotted. P-curves (solid lines) represent the results of eqn 

( 19) and E-P curves (dotted lines) represent the results for the corresponding elastic--plastic 
materials using the through-the-thickness integration method. 
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First. wc rxaminc the c;tscs where ratio C (= K/I,:~L~) us defined in eqn (13) is fixed 

during the monotonically increasing proportional straining procrsscs. Figure 3 shows the 

normali/.cd nionie~~t-curvoture relationship under plane stress conditions for C = 0.5 and 

2 and II = 3. IO. ancl x,. In thr ligurcs. P-curves and E-P curves bccomc close to cuch other 

when K/K,, bccomcs larys. For small hardening exponent II. as shown in Fig. 3a.d. the results 

based on eqn (19) give :I very good approximation compared to the through-the-thickness 

intcgrntion results. When C c I. iIs shown in Fig. 3d~-1: each ot’thc curves for elastic-plastic 

mutcrials has a peak bccausc the &Istic zone dominates the distribution of the moment 

inilinlly. 

t:igurc 4 prcscnts the normalized moment -curvature results under plant strain con- 

ditions for C = 0.5 and 2 and II = 3. IO. and %. We can set in the figures that the general 

trends arc the same as those under plane stress conditions cxccpt that when K becomes 
larpc, both curves do not match cxilctly in cilch GISC. The reason is that Poisson’s ratio 
itfTccts the results in the &stic zone under plant strain conditions. I-lcrc. WC USC v = 0.3 for 
the corresponding elastic-plastic materials whcrals the pure power-law m;~teri:lls modeled 

by the J: deformation plasticity theory arc incomprcssiblc. If WC’ incrcasc the value of 
Poisson’s ratio for the corresponding elastic-plastic materials. the difycrcncc of both curves 

in each CiLSe will decrease. in general. the puro power-law results ugrcc well with the 
c&tic-plastic through-the-thickness integration results when K/K,, > 5. Note that a,/E is 
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Fig. 5. Comp;lrwns of the plans skss moment -curvi(lurc rcsuhs suhJrctcd lo constant mtdplane 
strain for pure power-law materials and the corrcspondmy elastic .plasGc matcruls. 

of the order of IO ’ for structural steels and aluminum alloys. Therefore. when the strain 

is larger than I O/o, the pure power-law results will give good approximations for the elastic-- 

plastic behavior of the plates. 

Figures 5 and 6 are the results of the normalized moment-curvature relationship for 

plane stress cases and plane strain cwx under pre-strained loading conditions, where II 

small midplane strain is kept constant while the curvature incrcascs. Figure 53-c shows the 

plane stress results under pure bending conditions for n = 3, IO. and Z, respectively. Figure 

5d-f shows the plane stress results under the pre-strain condition of e/e, = 0.5 for II = 3. 

IO, and Y;, respectively. Figure 6a-c shows the plane strain results under pure bending 
conditions for f~ = 3. IO, and %. rospcctivcly. Figure 6d-f shows tho plant strain results 

under the pre-strain condition of C/L’,. = 0.5 for II = 3, IO, and r;. respectively. In each of 
these figures. in spite of some ditfcrcnccs at the initial bending stages. both curves bccomc 

close to each other at large GK,.. However. as in the monotonically increasing proportional 

straining GLSCS. Fig. 6:1--f shows thcrc exist slight dilrcrences bctwecn the pure pow”-ia\6 
results and those for the corresponding c&tic-plastic materials under plane strain con- 

ditions as K/K,, becomes large. This is due to the Poisson’s ratio effect as explained carlicr. 
As shown in Fig. Sd-f for the plane stress casts and in Fig. 6d-f for the plane strain CWS. 

there exist transition points with discontinuous slopes for pure power-law materials. This 

is due to sign (c, , - ~,,k/?,) in eqn (19). from which ditTerent functional forms of the 

solutions are generated for C larger and less than unity. 
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Fig. 6. Comp;lrisons of the plant strain momcnf curwturcz results suhjcctcd IO constant midplane 
strain for pure power-law m;ltcri;lls ;tnd ths corresponding cl:tstic~pl;tstic m:ltcriA 

4. COMPLEMENTARY POTENTIAL SURFACES 

To facilitntc further discussions, WC dcfinc the stress resultant vector S and the gener- 
a 12cd strain vector e ;1s I’ 

and 

As shown in cqns (I I) and (17). the constitutivc law bctwccn S and e is completely specified 
under proportional straining conditions. When WC construct the finite element formulation 
by variational principles. the tangent modulus D ($ = IX) for numerical iterations is needed 
and it can bc derived easily. Rut the approach mcntioncd above is valid only for power-law 
nonlinear elastic materials. 

For elastic-plastic mrltcrials, phcnomcnological plasticity theories based on the 

invariants of N,p and izf,, and interpolation between the initial yield surface and the limit 

yield surface are available in Crisfield (1974). Bieniek and Funaro (1976). and Eidsheim 

and Larsen (1981). In Eidsheim and Larsen (1981), material plastic hardening is incor- 
porated within the framework of Crisfield (1974) and Bieniek and Funaro (1976) with the 
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assumption that tlic dcctivc stress uill as) mptotically reach 3 limit value and therefore the 

limit yield surface is s(ill applicable. Howcvcr. the results arc not satisfactory when tllcsc 
constitiitivc lab3 wcrf used in siniulating the forming proctxcs of thin shfcts of plastic 

hardening materials. I‘hcrcforc. IVC arc intcrcstcd in constructing ;I pllctiotiienologi~~il 

plasticity theory \vhcrc niatcrial pld5ric liarclcning wn lx accounted for. 

Of coiirsc, tlic constiliiti\c Ian ()I‘ tlic li~rni givtn 17~ cqnk ( I I ) and ( 17) is appl~c;~l~lc 
wlicn tlic plastic cfcfortwli~~ti is large coniparcd u i1h tllc elastic dcfr)rmiric)ri 2nd tlic 

loading path is iicarly proporfional. I Ior\cvcr. during sheet ri~ct;il fcwntin~ proccsw. cl;i\tic 

iinloadin_c ni;iy occur and tlic yicltl contliric~ii~ arc tlicrtl’orc iiccdctl to ilctcrniinc the stale 

ofclaslic iiiiloatlitig or pl;l5tic loading , 3ftcr inilial iiiilo;idir~g. 
Molivatctl by (IIC construction of lllc rate for111 of LIIC .I, tlcfor1wtion plx[icity it) 

Sliircn and I<icc ( 1075). wc c;iIi coiis;lrucl tlic Ilow rule for lhc corrcsponcling iticrciwnI;~I 

pl;islicity theory h;id oil Llic dcli~rnialirm pl;isticitl rchtioll of S awl c in cqils ( I I ) and 

(17). As ~liou~i in Stiirw and Iliac ( 1975). wllcn uc seek lllc rxtc forni of the conslitiilivc 

law for Misch Iii;iLcri;il\. Lli~ phlic sltui11 r;ilc iI1 lhc rlcl~~~rtnation phsticily Llicorj c‘;itl lx 

clcconiposctl into two cotnponcnl~. (hc can bc itlcn~ilictl ;is the componc1~1 givcil hq’ tllc 

consliltitivc law ol‘ tlic coi3upoiidin, ~1 incrctnw~;~I pla\licilv for Mists nla~crial~. I’llc o~llcr 
is at ;I hngcnl IO tlic Mists yiclcl siirliicc. 115 ~kclcl~ctl in I,‘ig. 7, d.S and de of2 ptirc pwvcr- 

hw dcforination plasticity riiatcrial 2t.c shown at ;I giwn S 2nd e in tlic S space. WC 
&conipow tic into lwo cotiiponcti1~ Ad ” aid ild ‘I, \I licrc ilc’ ” I> p;ir;tllcl to c’ 2nd tic”’ is 
norni:il to r. lindcr proporIiolial Ioxlitig condilion~. clr“’ is /cro and ild ” qwls dc: lllc 

yield sLirf;icc. by dclinitioii u illi lllc ;ihhtitlIpliotl of nornl;ilil~. t11uht bc normil Lo dc or c’. 

Tkrcforc. WC a11 cons[rtlcl (IIC yicltl surfa~c 01‘ incruwn~al plasticity. which is norm;il LO 

C, in thr S spxc basccl on the constiltlGvc I;IW of CCIIIS (I I) ;~nci (12). III this lvay. [IX 

plastic rcsponsc ol‘incrcm~11lal plasticit> coitlcitlcrs bill1 tllal ~~l’il~for1i~alic,r~ plabticity lllltlcl 

proportional loading conclitioris. 
The yiclcl surlilcc conslruckcl in (Iii5 day really corresponds to [lx complc~iicrilar~ 

potcnrial s;urf;icc oftlcl~orliiati~~ti plasriCily. l‘lic coniplcnic1ilary polcntial ‘t’ ol‘d~fornlalion 

plasiicity ic tlclincd 35 

(“I’ 
(’ = 

(?.S, * 

wllicll indic:llcs that tlic ~cncr:ilkcJ strain vector is norni;il to tllc cc~iii~~lcrn~nt~~ry potcntinl 

surf;icc. For ;I consL11it coiiipl~lilc’ilI;ir4. potcn(i:il ‘I’ in tllc S spxc. wc ll3VC 

,? ‘,’ 
li’l’ = 

f3 s, 
d.S, = (‘, d s, = 0 (72) 

For the purpose of illustr;ltinn. WC xvill construct the complcmcntary potential surfaces 
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(or the yield surfaces of the corresponding incremental plasticity theory) under uniaxial 

combined membrane force N and bending moment M in the following : 

dY = 0 = e diV+K d.M 
d(Wh) I 

or ------_=__- 
d,V 2C’ 

(23) 

where C is defined in eqn (I 3). According to eqns (18) and ( 19). the ratio of M,‘h to N is a 

function of C only. That is, 

where F- ’ represents the inverse function of F. To find the yield surface. we can integrate 

eqn (24) starting from an arbitrary set (N”, A-I”). Note that for pure power-law materials, 

the yield surfaces (or the complementary potential surfaces) are self-similar. Here we choose 
/V ” = w,,/I and M” = 0, where cx = I in plane stress cases and z = 2i,,b in the plane strain 

cases. The function of the yield surface is represented by an integral equation as 

(25) 

We can nunicrically intcgratc eqn (25) and plot A (= rZI/‘:If,,) ;LS iI function of N ( = N/N,,) 

for SCVtXill VillllCS Ol’lf. 

f+‘igurc 8a.b shows the yield surfaces under plant stress conditions and under plane 

StlYliIl conditions. rcspcctivcly. for It = I. 3, 7. and 00. The surfaces under plant stress 

conditions. ;IS shown in Fig. Ha. arc smaller than those untlcr plant strain conditions, as 

shown in Fig. Xb. for each !I brcausc there arc more constraints in the latter cast. Due to 

the factors IL*, , +ri, ,/I/?[ and Ic,, -K, ,/f/2/ in sqns ( 18) and (19). there arc four sets of 

constitutive equations depending on c’. Thus. in the stress resultant space. thcrc are four 

Fig. 8. The yield surfaces in the A-8 pbnc under plant slrcss conditions 
conditions (b). 

(a) and plant strain 
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Fig. 9. Four subdomains dlwded by IWO transItion lines in the .ii-,C plane. 

subdomains corresponding to these four sets of constitutive equations. These four sub- 

domains are separated by two transition lines (C = k 1) which pass through the origin with 

the slopes + (4n + 2)- ‘, as shown in Fig. 9. The slopes of the yield surfaces are continuous 

when the yield surfaces pass through the transition lines. In Fig. 8a.b. when n increases, the 

curvatures of the yield surfaces at the fl axis increase. Also. the magnitude of the slopes of 

the transition lines decreases such that the size of subdomains I and 3 decreases. Consc- 

quently. when II approzches infinity, the slopes of the transition lines become zero and 

subdomains I and 3 degenerate and coincide with the m axis. Therefore. only subdomains 

2 and 4 exist for n = cc. Because the yield surface goes through subdomain 2 into subdomain 

4 directly, it is clearly shown that the slopes are discontinuous at &i = 0 and so the vertices 

arc formed. as shown in Fig. 8a.b for n = x). 

Figure 10 shows the comparison between the yield surface of perfectly plastic material 

under plane stress conditions and the limit yield surface of Bicnick and Funaro (1976). 

Both surfaces arc very CIOSC to each other. Our yield surface has a continuous slope at 

fl = 0. but the yield surface of Bicnick and Funaro (1976) dots not. Under plant strain 

conditions. the yield surface for porfcctly plastic matcriiils (II = 32). as shown in Fig. Xb. is 

the same as the parabolic yield surface of Kicc (1972). 

We curve-fit the yiclcl surface by second order and fourth order polynomials for future 

application under plane stress conditions. Table I lists the constants of these equations. WC 

can obtain good lits by second order polynomials for low hardening materials (with 11 > 3). 

t:or high hardening materials (with II < 3). fourth order polynomials arc nccclcti to give 

good fits. 
Following the same procedure, WC can derive the equation for the yiclcl surfaces under 

pure biaxial bending and twisting conditions from eqn (I 5). The result for any hardening 

power II is 

1.2% 

0.4- 

0.2- 

0 

n=m 

Bieniek and F\lnaro _----- 

Fig. 10. Comparisons of the yield surface for n = x for pure power-law materials wth the hmit 
yield surface of Bieniek and Funaro (1976) 
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Table I 

13YY 

Region 1: R=A&f2+B or A = E&f' + F.ti' + C 

Region 2: A? = Cm’ + D or it2 = HA’ + JP + K 

where y is a function of the hardening exponent N and the kinematic variables. In other 

cases, we can obtain the yield surfaces using the numerical integration method. 

5. DlSCUSSlON 

In incremental plasticity theories, the flow rule is needed to establish the rate form of 

the constitutive relation. Here, we propose a tlow rule based on the nonlinear elastic 

(deformation plasticity) behavior of eqns (3). (I I), and (I 2) in analogy to the work of 

Storcn and Rice (1975). The rate form of the incrcmcntal plasticity is exprcsscd as 

whcrc I)“’ rcprcsents the tangent modulus and c “I’ is the cII’cc1ivc gcncrali& strain rate. 

Note that the rate form of the dcformatian plasticity theory is 

s = D-P, G-9 

where D can be derived from eqns (1 I ) and (I 2). Referring to Fig. 7. the ctfcctivc gcncralizcd 

strain rate in the corresponding incremental plasticity theory is 

$1, = n(n*ti), (“9) 

where n = C/ICI. Substitution of eqn (38) into cqn (39) yields 

,j”’ = ,,(,,“.D--I .b&. (30) 

where D ’ represents the inverse of D. From eqns (27) and (30). the tangent modulus D”’ 
of the corresponding incremental plasticity theory can be exprcsscd as 

D”’ = [n(n“ - D- ‘)I - ‘. (31) 

For determining the loading or unloading condition easily. WC define < = $-II. Plastic 

deformation occurs when c’ > 0. Otherwise, there is only elastic deformation and the usual 
elastic modulus for elastic thin plates will be used. In addition. an initial yield surface must 

be defined for specifying the elastic domain in the stress resultant space. However, we 

are interested in the cases where the plastic deformation is much larger than the elastic 
deformation. Therefore, a reasonable choice of the initial yield surface may not affect 

the global results significantly. The proposed flow rule, of course, is restricted to nearly 
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proportional loading conditions. Further numerical experiments are needed to examine the 
applicability of the proposed flow rule. 
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