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ABSTRACT 

This paper addresses issues at the 
shipping/receiving dock of a shipping 
company, where trucks arrive from vendors to 
have their shipments unloaded, sorted, and 
reloaded onto trucks going to the customers. 
The assignment of dock doors to incoming and 
outgoing trucks determines the efficiency of 
the dock operation. A bilinear programming 
model is proposed to solve the assignment 
problem. 

BZBDD.U.~II~I 

A large shipping company has several 
freight yards, located at different cities 
throughout the country. Inbound trucks 
arrive at the yard with shipments from 
venders end/or other freight yards, the 
shipments are sorted according to their 
destination, and then loaded onto outbound 
trucks that make delivery to the customers. 
The shipments are processed in the 
shipping/receiving dock, which is rectangular 
in shape. For management purposes, one side 
of the dock is designated to the inbound 
trucks and the opposite side is designated to 
the outbound trucks. When a full truck comes 
in, it gets assigned an available receiving 
door. The truck driver drops the trailer end 
leaves the yard with another trailer for his 
next assignment. Each trailer is assigned to 
a forklift driver, who is responsible for 
unloading the entire contents and loading 
them on different empty trailers according to 
their destination. The empty trailers are 
parked at the shipping doors, with each door 
assigned to a particular destination. Once the 
trailer is full, it is hauled away and replaced 
by another empty trailer going to the same 
destination. Therefore, depending on the 
amount of travel required between the 

receiving door and the shipping door, the time 
to process each trailer can vary significantly. 
No storage is provided at the freight yard, all 

shipments must be processed the same day 
they arrive, and they go directly from the 
inbound trailer to the outbound trailer to 
minimize the possibility of being damaged or 
lost. The longer it takes to empty the trailer, 
the more forklifts are required and the more 
congested the dock will be. The company has 
records on the size, weight, origin and 
das~nation for each item shipped. Therefore, 
information can be derived on total weight 
and volume of items from each origin to each 
destination. The industrial engineers then use 
the information to assign dock doors so that 
the dock can operate smoothly and 
efficientJy. The shipping pattern changes 
from time to time, which occasionally 
warrants an adjustment of the door 
assignment. Because of the information 
involved and the combinatorial nature of the 
problem, it is not a trivial task to perform 
manually. Tsui and Chang [Tsui, et. al. 90] 
proposed a bilinear programming model and a 
simple method for a local optimal solution. 
However, their result depends heavily on the 
initial solution. This paper proposes an 
approach for an optimal solution that can be 
applied directly by the industrial engineers. 

THE MODEL 

Let there be M receiving doors end N 
shipping doors at the dock. Let there be I 
origins and J destinations for the items. 
Without loss of generality, we can assume 
that IsM and J.<,,N. If there are more origins 
then receiving doors, the origins can be 
redefined to include a larger area so that the 
above assumption holds. Let Xim , ,  1 if origin 
i is assigned to receiving door m, x~ = 0 
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otherwise. Let Yjn = 1 if destination j is 
assigned to shipping door n, Yjn = 0 otherwise. 
Let dmn be the distance between receiving 
door m and shipping door n, and let the 
number of forklift trips required to move the 
items originated from i to destination j be 
denoted as wij. The objective is to find an 
assignment of receiving doors to the origins 
and shipping doors to the destinations, so 
that the total distance traveled by the 
forklifts is minimized. The problem can be 
formulated as below. 

Minimize f(X,Y) = Y. T., Y. Y. wij~Imn Xim Yjn 
i j m n  

subject to 
Y. Xim - 1 for i =1,2...I (1) 
I l l  

~- Xim = 1 for m =1,2...M (2) 
i 

(P) T.,Yjn = 1 for j=l ,2. . .J (3) 
n 

~ Yjn " 1 for n =1,2...N (4) 
J 

Xlm = 0 or I for all i, m 

Yjn " 0  or 1 for all j, n 

Since there are wij forklift trips from 
origin i to destination j, if origin i is 
assigned to door m and destination j is 
assigned to door n, the total distance 
traveled will be wljdmn, hence, the objective 
function sums up the total distance traveled 
from all receiving doors to all shipping doors 
according to the door assignment X and Y. 

Constraint set (1) guarantees that each origin 
is assigned only one receiving door, 
constraint set (2) guarantees that each 
receiving door is assigned to only one origin. 
Constraint set (3) guarantees that each 
destination gets assigned a shipping door, and 
constraint set (4) restricts such that each 
shipping door is assigned to only one 
destination. 

Although different methods are available 
for solving bilinear problems [Thieu, 88], 
[Sherali and Shetty, 80], [Valsh and Shetty, 
77], [Galio and Ulkucu, 77], their constraints 
are in a form of XzD, YeE, and X and Y are real. 
Whereas in this case, X and Y are 0-1 integer 

variables and beth D and E have the property 
of an assignment problem instead of a more 
general form. It is much easier to solve the 
assignment problem than to solve a general 
linear programming problem; thus, it is 
preferred not to add any additional cuffing 
plane constraint to problem (P). The branch 
and bound method proposed by AI-Khayyal et. 
el. [AI-Khayyal and Falk, 83] cannot be 
directly applied because the variables in this 
problem are 0-1 integer variables. We 
propose the following. 

It is easily seen that problem (P) is 
equivalent to the following : 

Minimize g(X) 
subject to 

• . Xim -, 1 for i =1,2...I 
m 

(GP) 

(1) 

Xir n = 1 for m =1,2...M (2) 
i 

Xim = 0 or 1 for all i, m 

where g(X) = Min T, T., c(X,j,n) Yjn 
j n 

subject to 

~" Yjn = 1 for j =1,2...J (3) 
n 

T_, Yjn = 1 for n ,.1,2...N (4) 
J 

Yjn = 0 or 1 for all n, j 

where c(X,j,n) = Y- Y- wljdmn Xlrn. 
i m 

Let v,, Min ,r. Z c(j,n) Yjn 
j n  

subject to 

T, Yjn = 1 for j =1,2...J 
n 

(cP) 

(3) 

Z Yjn = 1 for n =1,2...N (4) 
J 

Yjn = 0 or I for all n, j 
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where c(j,n) - Min Z ~'- Wlldmn xlm 
I m 

subject to 
I~ xlm - 1 for i ,-1,2...I 
m 

(1) 

~'- Xlm-1 for m-1,2...M (2) 
i 

Xlm - 0 or 1 for all i, m 

Since c0,n) < c(X,j,n) for all X, j, and n, we 
have v < g(X) for any X. Therefore, v is a 
lower bound for problem P. 

The Alaorithm 

We are now ready to state the branch and 
bound algorithm. 

1. Calculate c0,n) for each j,n pair. Solve 
problem (CP) for v and Y. Use the resulting 
Y as the initial starting point to find a 
local optimal solution as the initial 
incumbent according to Tsui's method [Tsui 
et. al. 90]. If the lower bound v equals the 
incumbent, we have found the optimal 
solution, stop. Otherwise, go to step 2. 

2. Calculate T, wij for all i and sort the 
J 

results in descending order so that 
Wbl,j ~ Wb2J > ~. Wb3,j ..... > • wuj. 

J J J i 
Treat the original problem as a candidate 
problem, go to step 3. 

3. Select a candidate problem with the most 
number of imposing additional constraints 
in the form of xlj-1. If the list is empty, 
stop, the incumbent is the optimal 
solution. If there are more than one 
problem to choose from, select the one 
with the smallest lower bound. Let k be 
the number of the additional constraints, 
then we have Xblrnl-1 , Xb2m2-1 .. . . .  Xl~mk,,1. 

Let B-{bl ,  b2 ..... bk} and C-{i; l<isl, and 
i ~,B}. Let D-{ml, m2 ..... mv} and E ,{m; 
1<re<M, and m'~ D}. For each m in E, create 
a candidate problem with the additional 
constraint xbk,m-1 where k'-k+l. Delete the 
original candidate problem. 

4. Calculate the lower bound for these 
candidate problems by solving the problem 

(CP) where c0,n) - cl(j,n) + T., Wbi,jdml,n 
I 

and cl(j,n) - Min ¢ ~, wijdmn Xtm 
i m 

subject to 
T, X i m - l f o r  i sC  (1) 
i 

Xim - 1 for m e E (2) 
m 

Xim., 0 or 1 for all i s C 

and meE 

5. If the lower bound represents a feasible 
solution that is less than the incumbent, 
update the incumbent. If the lower bound 
is greater than or equal to the incumbent, 
discard the candidate problem. OthenNise, 
add the candidate problem to the list. Go 
to step 3. 

( ; O M P U T A T I O N A L  E X P E R I E N C E  

The algorithm is implemented in C and 
tested on a Sun IPC with 8M RAM and 25 MHz 
clock. The W matrix is generated with 
random numbers uniformly distributed 
between 0 and 9; the D matrix is also 
generated randomly with numbers uniformly 
distributed between 50 and 100. Many runs 
and efforts are made to speed up the 
convergence of the algorithm. It turns out 
that if cl(j,n) in step 3 is estimated by the 
sum of row minimums instead of the actual 
minimum, a better CPU time can be obtained. 
It is also observed that the incumbent 
improves frequently at the early stage, then 
few or no changes are made, and finally the 
last portion of the CPU time is spent proving 
that the incumbent is optimal. Problems of 
different sizes are run, two problems are 
solved for each size combination, and the 
computational results are given in Table 1. 
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Table 1. Computational Results 

Size of Size of Average % of lime 
X Y Run Time improving 

I x M J x N in seconds incumbent 

5x6 5x6 5 70 
5x6 7x8 6 35 
5x6 9x10 9 46 
6x7 6x7 13 35 
6x7 8x9 23 46 
6x7 10xll 50 43 
7x8 7x8 84 26 
7x8 9x10 109 19 
7x8 11x12 344 31 
8x9 8x9 969 31 
8x9 10xll 3512 77 
8x9 12x13 5526 11 
9x10 11x12 25285 12 

gl~tCJ.ltSLOB 

There is a trade-off between the tightness of 
the lower bound and the number of candidate 
problems examined. When the lower bound is 
as high as possible, we have less candidate 
problems to examine because they get pruned 
at an eadier stage. When the lower bound is 
not as high, more candidate problems are 
examined. However, it only pays if the time 
spent calculating the lower bound outweighs 
the time spent examining the candidate 
problems. It is apparent that the CPU time 
increases dramatically as the size of the 
problem increases. From the computational 
experience, it also appears that the optimal 
solutions are obtained at an early stage, and 
the rest of the time is spent proving that the 
incumbent is optimal. For a large problem 
that dictates we must terminate the 
algorithm prematurely, we are confident that 
the incumbent will be reasonably close to 
optimal. However, further research is needed 
to prune the candidate problems at some 
early stage, so that larger problems can be 
solved within a reasonable amount of time. 
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