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Abstract—1. Live and dry mass, water content, nitrogen, sodium, potassium, magnesium, calcium and
total iron concentrations are reported (or are available from the authors or the Faculty/Staff Collection
of The University of Michigan—Flint Library) for members of 16 orders (360 species) of mostly adult,

flying insects from south-central lower Michigan.

2. Compared to published nutritional requirements (when meeting caloric requirements) for growth and
reproduction in birds and mammals, insects are excellent sources of nitrogen, potassium and magnesium,
highly variable sources of sodium and iron, and, very rarely, adequate calcium sources.

3. Elemental composition of some insects differs by size, sex, season and after culling.

INTRODUCTION

The question, ‘why do animals eat what they eat? has
generated extreme interest among biologists. Such
studies fall generally within the category of optimal
foraging theory (for example, see Schoener, 1971,
1979; Krebs, 1978, 1980; Pyke er al., 1977; Pyke,
1984), and include concepts of time-minimizing and
energy-maximizing feeding strategies, of opportunis-
tic and selective feeding habits, as well as generating
and testing descriptive foraging models (for example,
see Belovsky, 1981, 1984; Belovsky et al., 1989; Clark,
1982; Vickery, 1984). Those studies are predicated on
appropriate, or at least adequate, dietary nutrient
self-selection and nutrient availability, and those
assumptions have been questioned (Sullivan, 1988,
1989; Beck and Galef, 1989; Galef, 1991).

Insects are consumed as dietary items by an ex-
tremely wide variety of vertebrates, including bats
(Gardner 1977; Whitaker, 1988) and birds (Ehrlich
et al., 1988). Estimation of nutritional budgets of
animals requires quantification of amounts and com-
position of foods eaten and of resultant wastes.
Estimates of energy (= caloric or carbon) demands or
budgets and factors affecting those requirements have
been reported for a wide variety of animals (for
review, see Peters, 1983). The focus of most studies on
caloric aspects of energy budgets seems reasonable,
since growth and reproduction in individuals and
populations require long-term maintenance of posi-
tive caloric budgets. Associated with the concen-
tration of such caloric budgets, many reports are
available concerned with energy content of food-
stuffs, including insects (for example, see Cummins
and Wuycheck, 1971; Schroeder, 1977; Slansky and
Scriber, 1985).

Emphasis on examination of energy budgets im-
plies that, in maintaining those budgets, animals
automatically satisfy their remaining nutrient re-
quirements. Except for the unlikely or unusual inges-
tion of “perfect” food that contains adequate levels

of all other required macromolecules, water, vita-
mins, elements, etc., ingestion of enough calories to
meet or slightly exceed energy demands would rarely
provide sufficient intake of all nutrients. Within the
perview of optimal foraging theory, some consider-
ation has been given to dietary optimization when
specific nutrient constraints are important (Pulliam,
1975; Stamps er al., 1981). If intake of a specific
nutrient impacts foraging strategies, then some diet-
ary choices must be inadequate in concentration for
such limiting nutrients and other selected dietary
items must contain adequate or excessive levels of
said nutrient.

Other than caloric content and associated measures
of live mass and water content, rarity of published
data on insect mineral composition (reviewed by
Mattson and Scriber, 1987) precludes expansion of
nutritional budget studies of insectivorous animals to
include other nutrient budgets and application of
optimal foraging models based on non-caloric nutri-
ent constraints. Lack of published data, coupled with
availability of new technology, has prompted the
present study.

While data on caloric and water requirements are
available for a wide variety of organisms (Peters,
1983), requirements for other nutrients, e.g. nitrogen
and minerals, are restricted to commonly studied
small laboratory mammals and commercially import-
ant birds (National Research Council, 1978, 1984).

Some insect-eaters, especially bats (Bell, 1982), cull
food items, and limited data are reported here on
nutritional composition of whole versus culled indi-
viduals of a few insect species. Limited mineral
composition data on insects indicate possible differ-
ences with year, season, size, age and gender (Reichle
et al., 1969; Levy and Cromroy, 1973; Schowalter
et al., 1981; Bowden er al., 1984) and possible effects
of these variables are briefly investigated.

Since we are concerned with insects as prey of
aerial insectivores, we present data on live and dry
mass, water content, nitrogen, sodium, potassium,
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magnesium, calcium and total iron content of whole,
primarily flying, insects found in south-central lower
Michigan.

MATERIALS AND METHODS

Except for periodical cicadas (collected near Chicago,
IL, and sent to us, alive, via air express by Dr Thomas
Poulson), all insects were collected from Genesee,
Livingston, Shiawasee or Lapeer Counties in south-central
lower Michigan from March through October 1990.
Although a wide variety of collection sites for day-active
insects were utilized, most collections were made in two
county parks in Genesee Co., MI. Most day collections were
made with hand nets. Night-active insects were primarily
collected at seven different sites; however, repetitive (at 1-2
week intervals) night collections were made at two sites
located within 500 m of maternity roosts of big brown bats,
Eptesicus fuscus. One site was in an uncut hay field in rural
Livingston Co., M1, and the other site was adjacent to the
Shiawasee River within the city limits of Byron, Shiawasee
Co., MI. Night-active insects were attracted to one of three
light traps (white bed sheets stretched over A-frames) con-
taining incandescent, ultraviolet (‘‘blacklight”), or mercury
vapor lamps.

All insects were placed in air-tight plastic vials during or
immediately after collection. Vials were placed on ice,
returned to the laboratory and frozen until identification
and analysis began. Except for eastern tent moth caterpil-
lars, Malacosoma americanum (Studier et al., 1991), no
immature individuals of any species that exhibits complete
metamorphosis were collected. Immature grasshoppers,
crickets, box elder bugs and spittlebugs were deliberately
collected to determine if any relationships exist between
insect size and elements measured. Box elder bugs were
collected in three months (March = spring, June = summer
and October = fall) to determine if any measured elements
varied with season. Finally, since bats often cull their prey
before consuming it, some individuals of some abundant
species (May beetles, periodic cicadas and one moth) were
studied both whole and culled (legs, wings, elytra, if present,
and heads removed).

Individuals were identified utilizing various sources
(Blatchley, 1920; Cantrall, 1943, 1968; Needham and
Westfall, 1955, Gurney and Brooks, 1959; Leonard and
Leonard, 1962; Edmunds and Jensen, 1976, Milne and
Milne, 1980; Pyle, 1981; McCafferty, 1981; White, 1983;
Covell, 1984; Arnett, 1985), as well as local reference
collections of some groups (obtained from The Museum,
University of Michigan, Ann Arbor). Nomenclature gener-
ally follows Arnett (1985). Insects were sexed, whenever
possible, aged as adults or immatures, and sex, if known,
age, and collection data were recorded. Voucher specimens
of all species collected in large numbers have been deposited
at The Museum, University of Michigan, Ann Arbor, or
retained by the authors.

Immediately upon thawing, individual or small groups of
identified insects were weighed (to nearest 0.1 mg), placed in
new aluminum weighing dishes and dried to constant weight
at 50-60°C. Body water content was determined by differ-
ence. Although precautions were taken to prevent desicca-
tion before initial weights were taken, some drying may have
occurred and water content, especially of small insects, may
be somewhat underestimated. In cases where collected
insects were known to be partially desiccated, data on live
weight and water content are omitted.

Weighed, identified, dry, whole insects were wet oxidized
in a cleaned volumetric flask in boiling, concentrated
H,SO,, followed by addition of a mixture of 30%
H,0,:concentrated H,SO, (2:1 v/v). After digestion was
complete, cooled samples were diluted to flask volume.
Amounts used were dependent on original dry sample
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weight. Dry samples weighing from 10 to 35mg were
digested in 25 ml volumetric flasks with 0.25ml concen-
trated H,SO, and 0.75 ml of mixture; dry samples weighing
between 35 and 150 mg were digested in 100 ml volumetric
flasks with 1 ml of concentrated H, SO, and 3 ml of mixture;
and, dry samples weighing more than 150 mg were digested
to 250 ml volumetric flasks with 2.5 ml H,SO, and 7.5 ml of
mixture. For very small insects, individuals were grouped to
obtain minimum 10 mg samples. Each diluted sample was
kept in a new, non-sterile, leakproof, 120 ml capacity, clear,
polypropylene, screw-capped container (Fisher Scientific,
Itasca, IL). One milliliter aliquots of diluted samples were
analysed for nitrogen content by Nesslerization (Treybig
and Haney, 1983). Additional aliquots, after appropriate
dilution and preparation, were analysed for sodium, potass-
ium, magnesium, calcium and total iron concentrations
following standard procedures using a Varian Spectra AA-
20 atomic absorption spectrophotometer (analytical
methods for flame spectroscopy, Varian Techtron Pty. Ltd,
Springvale, Australia). Sodium and potassium levels were
determined by flame emission and all other minerals by
atomic absorption. Required dilutions of each sample were
performed with the aid of an Eppendorf Digital Pipette
(Brinkmann Instruments Co., Westbury, New York) and
FISHERbrand Adjustable Dispensers (Fisher Scientific,
Pittsburg, PA) into new, non-sterile, 12 x 75 mm, clear,
polystyrene tubes and covered with PARAFILM (American
National Can, Greenwich, CT). All diluted samples were
analysed within 48 hr of dilution and all samples were mixed
by inversion just prior to measurement. Water used
throughout the determinations was purified by a reverse
osmosis system and further purified with a Barnstead
NANOpure II water purifying system (Barnstead/
Thermolyne Corp., Dubuque, IA). Volumetric flasks used in
digestions were rinsed three times and dried at 50-60°C
between use. These precautions were necessary due to the
extreme sensitivity of atomic absorption spectrophotometry
to contaminants.

Values for nitrogen are expressed as per cent (%) dry
weight and all minerals are expressed as parts per thousand
(ppt) dry weight. With the weight: volume ratios used in the
digestion process in this study, the lower limit of detection
for sodium was about 0.001 ppt dry mass and samples that
read below that limit are reported as 0 (<0.001 ppt).
Minimum detection limit for total iron was about 0.01 ppt
dry mass and samples with lower total iron levels are
reported as 0 (<0.01 ppt). Levels for sodium (Na*), potass-
ium (K*), magnesium (Mg?*) and calcium (Ca?*) include
only those valence states; however, levels for iron include
both common valence states (Fe’* and Fe’*) and are,
therefore, reported as total iron.

Data were stored in Lotus files. Data analyses were
performed using SYSTAT (Wilkinson, 1987).

RESULTS AND DISCUSSION

Live weights and water content

Live (wet) and dry mass, per cent body water,
collection dates, sex and element levels for selected
species studied are shown in Appendix 1. Complete
data sets are available from the authors or from
the Faculty/Staff Collection of The University of
Michigan—Flint Library in hard copy. Water content
in all insects tested is consistent in the 60-70% range
of live weigh:. Regression analyses of per cent body
water vs individual dry weight for Melanoplus spp.,
M. Dbivittatus, Gryllus pennsylvanicus, Hippiscus
rugosa, Leptocoris trivittatus and Philaenus spumarius
show significant relationships only in the melano-
plines (in M. bivittatus, F =31.33, df =1 and 30,
r?=0.511, P <0.001; and, in other melanoplines,
F=18.65, df=1 and 168, r*=0.100, P <0.001).



Body elemental composition in insects

Relations between live mass (LM in mg) and per cent
body water (% BW) in M. bivittarus and other
melanoplines, respectively, are:

% BW = —0.022(+ 0.004)LM + 74.97(£0.75)
and

% BW = —0.017(+0.004)LM + 72.47(£0.43)

where values in parentheses are standard errors of
the means. The group designated Melanoplus spp.
includes, at least, M. confusus, M. borealis and M.
SJemurrubrum. Some of the variation in percentage
body water may be explained by a slight tendency
toward decrease in relative water content with in-
creasing size related to the associated decrease in
surface area: mass ratio with increasing size, Since all
inszcts were analysed whole, gut fullness and percent-
age water of gut contents would also contribute to
variability in percentage body water. High levels of
body fat, especially in large, gravid females, would
contribute to variability by reducing water content
and probably contribute to the negative relation
found for water content as a function of size ii
melanoplines. As can be calculated from the data in
Arpendix 1, significant differences in live weight and
percentage body water exist by sex for many species,
e.g. among the Emphemeroptera, for Baetis spp., live
males are heavier than females (t=6.57, df =34,
P -£0.001), while for Stenonema pulchellum, live
females are heavier than males (t=2.20, df =20,
P 2 0.05).

Elemental composition

lemental composition of insects studies (summar-
ized by order in Table 1 and by species in Appendix
1) agrees well with the limited data summarized by
Mattson and Scriber (1987). Minimal requirements
for growth and reproduction in birds for the elements
measured are: iron, 0.08-0.10 ppt dry mass (DM);
calcium, 6.5-12.0 ppt DM; magnesium, 0.3-0.5 ppt
DM; sodium, 1.5-1.7ppt DM; potassium,
4.0-7.0 ppt DM; and nitrogen, 3.5-4.8% DM as ideal
or complete protein (National Research Council,
1964). In mammals, these requirements are: iron,

581

0.025-0.140 ppt DM; calcium, 4.0-8.0 ppt DM; mag-
nesium, 0.4-1.0 ppt DM; sodium 0.5-1.5 ppt DM;
potassium, 2.0-7.2 ppt DM; and nitrogen, 1.9-2.09%
DM as protein (National Research Council, 1978).
These values represent concentrations of nutrients
required in a calorically adequate diet.

As sources of iron, megalopterans appear to be
inadequate (small sample size makes this a very
tentative  conclusion), while walking sticks
(Phasmatodea), mantids (Mantodea), lepidopterans
and, perhaps even hemipterans and coleopterans,
probably provide marginally adequate dietary iron.
As previously stated, the procedure used measures
total iron (both Fe** and Fe’*). Iron is assimilated
primarily as ferrous ion (Fe**) and, since iron is
poorly assimilated (Charlton and Bothwell, 1983),
insect species (Appendix 1) containing less than
0.2 ppt may not provide sufficient iron to meet needs
for growth and reproduction.

On average, only stone flies (plecopterans) provide
sufficient dietary calcium to meet needs for growth
and development of birds and mammals. The female
Perlesta decipiens studied were gravid and show body
calcium concentrations which are significantly higher
than in males (t=27.64, df=22, P <0.001).
Hemipterans may be marginally adequate as calcium
sources for mammals. All other insects represent
inadequate sources of calcium. The possibility that
dietary calcium intake may be a limiting nutrient in
insectivorous birds has received some attention based
on both nutritional models (Turner, 1982) and obser-
vations of the consumption of bone or grit during
reproductively active periods (Maclean, 1974; Jones,
1976; Repasky et al, 1991). Based on quite limited
data, some other arthropods, e.g. millipedes and
isopods, may be excellent dietary calcium sources
(Reichle et al., 1969; Carter and Cragg, 1976).

All insects tested are adequate sources of dietary
magnesium for birds and mammals except for hy-
menopterans, which may be marginal for mammals.

As sources of dietary sodium for birds, phasmatids,
orthopterans, mantids, homopterans, neuropterans,
trichopterans, hymenopterans and lepidopterans are
inadequate and coleopterans are marginal. For mam-

Table 1. Element composition of some insects from south-central lower Michigan

N DM Fe Ca Mg Na K N
Order Sp *) {mg) {ppt) {ppt) (ppt) {ppt) {ppt) (%)
Eptemeroptera 16 126(324) 152+1.6 0.332+0.038 1.024+0.036 1.211+0.042 2.698 +0.071 10.15+0.23 18.04+0.32
Odcnata 20 120(153) 348+49 0407+0.039 0.869+0.021 1.630+0.125 3.015+0.112 975+ 021 18.25+0.21
Plecoptera S 39(124) 17.8+38 0.581+£0.106 11.515+1.273 2.572+0.190 1920+0.121 725+ 020 17.14 +0.42
Phasmatodea 1 5 83.7+76 0.100+0019 2.634+0443 2952+0.128 0.125+0.050 14.89 +0.57 14.66 + 0.63
Orthoptera 18 269(300) 994462 0211+0023 1.876+0.063 1.340+0.031 0.659+0.054 12.30+0.18 16.3240.17
Mantodea T 7 113.6 + 146 0.143 0055 1.815-+0.157 1366 +0.073 1.336+0.107 9.23+0.22 1434+051
Dermaptera 1 14014 154410 070210042 159540101 1.284+0.063 1.757+0.100 9.52+027 16714050
Hemiptera 10 82(I185) 469+21.7 0.191+0024 3.126-+0.183 2736+0.120 2.406+0.394 13.27+0.79 18.70+0.36
Homoptera 6  94(192) 160.8+28.7 0.563+0034 2.271+0.045 1.804 +0.046 0.581 +0.056 9.43+0.28 14.40+044
Neuroptera 1 6(13) 56+0.5 0385+0.168 2.018+0.575 1.072+0310 0.118 +0.108 13.69 + 1.07 16.60 + 0.91
Meyaloptera 12 76.8 0.034 1.721 1.710 2.285 9.03 13.08
Col:optera 43 194(236) 477482 0,188+0.020 1.050+ 0052 1.523+0.043 1.660+0.096 9.01+0.22 16.84 +0.21
Trichoptera 13 74(173) 156+19 0.338+0.039 1.793+0.110 1.149+0.065 1.412+0.102 7.12+0.28 16.77 +0.27
Hymenoptera 21 135(161) 51.6+44 0270+0025 0.759 +0.036 0956+0023 0.556+0.051 9.21+0.30 1688+0.26
Lepidoptera 181 546(597) 45.1+2.1 014510009 1.221 +0.041 2308 +0.068 0.544 +0.055 9.40:+0.13 1661 £0.13
Diptera 20 108(474) 10.2+1.2 0576+00690 1.471+0.114 1275310070 221740118 8694018 17.81 +0.23

Values for elements are arithmetic means + standard errors, Sp = number of species tested,
individuals tested, if different from number of samples and DM =

N = number of samples, (*) = number of
dry matter. Units for minerals are parts per thousand (ppt) dry mass

and for nitrogen are per cent (%) dry mass. For Orders in which only one species was tested, those species are: in Phasmatodea,
Diapheroma femorata {two females (F), three males (M)]; in Mantodea, Mantis religiosa (seven F); in Dermaptera, Forficula auricularia
(10 F, four M); in Neuroptera, Chrysopa ornata (six, sexes combined); in Megaloptera, Chauliodes rastiicornis (two, sexes unknown).
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Table 2. Significant linear relationships for body element (E) levels

E Slope Intercept r? F df. P
Melanoplus spp. (DM range = 2.9-597.3 mg)
N —0.014 + 0.002 17.91 +0.28 0.195 33.25 1,137 <0.001
K —0.005 £ 0.002 12.66 + 0.26 0.037 5.32 1,137 0.023
Mg —0.002 + 0.001 1.517 + 0.06 0.107 16.39 1,137 <0.001
Ca ~0.002 + 0.001 2.028 +0.101 0.043 6.18 1,137 0.014
Fe —0.002 + 0.000 0.371 + 0.044 0.127 19.95 1,137 <0.001
Melanopius bivittatus (DM range = 11.5-489.7 mg)
N —0.010 + 0.003 17.58 + 0.54 0.284 11.92 1,30 0.002
K —0.011 + 0.004 13.80 + 0.69 0.210 7.99 1,30 0.008
Mg —0.002 + 0.001 1.749 + 0.125 0.211 8.05 1,30 0.008
Hippiscus rugosa (DM range = 17.0-540.7 mg)
N —0.013 £ 0.002 17.47 + 0.52 0.683 36.55 1,17 <0.001
K 0.005 + 0.002 10.62 +0.53 0.230 5.08 1,17 0.038
Fe —0.001 + 0.000 0.419 + 0.087 0.380 10.41 1,17 0.005
Leptocoris trivittatus (DM range = 1.1-20.5 mg)
N —0.107 + 0.041 19.40 + 0.49 0.193 6.71 1,28 0.015
K —0.134 + 0.034 13.00 + 0.41 0.352 15.19 1,28 0.001
Mg —0.065 + 0.015 4.313 + 0.176 0.404 18.98 1,28 <0.001
Philaenus spumarius (DM range = 0.6-3.8 mg)
Fe —0.016 £ 0.006 0.073 £ 0.015 0.376 8.44 1,14 0.012

Nitrogen in % dry weight; potassium, calcium, magnesium and total iron in part per thousand dry
weight, and dry mass (DM) in mg. Values are means + standard errors. No significant
relationships were found for Gryllus pennsylvanicus.

mals, since their sodium needs are less than those of
birds, only phasmatids and lacewings (neuropterans)
are inadequate sodium sources and the other groups
just listed for birds are all marginal sodium sources
for mammals. Among the night-flying geometrid,
arctild and, especially, noctuid moths, which are
consumed readily by bats, sodium levels are essen-
tially bimodal with many species containing immea-
surably low sodium concentrations while others
exhibit extremely high body sodium levels. Some of
those moths, therefore, provide no nutritional
sodium while others are superb nutritional sodium
sources. The extreme variability in sodium level may
relate to puddling behavior reported for some lepi-
dopterans (Arms et al., 1974).

With the possible exception of trichopterans, all
insects tested provide sufficient dietary potassium to
meet the nutritional needs of birds and mammals.
Dietary sodium requirements increase with increasing
potassium intake in herbivores (Meyer et al., 1950;
Weeks and Kirkpatrick, 1978; Staaland er al., 1980)
and insects high in potassium, e.g. phasmatids, ortho-
pterans, hemipterans and neuropterans, may, there-
fore, increase the nutritional minimum for sodium.

Avian and mammalian nitrogen requirements for
growth and reproduction given above are values for
complete or ideal protein, i.e. all amino acids present.
While many plant proteins are incomplete, most
proteins of animal origin are complete. Insects, there-
fore, would seem to be excellent and adequate sources
of dietary protein for birds and mammals. Since
much of the total nitrogen present in insects, how-
ever, is unavailable, e.g. as aminated polysaccharides
in the exoskeleton, much of the total nitrogen cannot
be assimilated. Dry nitrogen levels, however, exceed
dietary requirements by at least a factor of three and
it seems unreasonable that less than one-third of the
total measured nitrogen is available. Consequently,
even with these caveats, insects almost certainly
provide adequate required dietary nitrogen.

Significant linear regression relationships found
with size for nitrogen and minerals are given in
Table 2. Of the species tested, only the crickets,

Gryllus pennsylvanicus, showed no relationships of
mass to any of the elements tested. That lack of
relationships in crickets may well be attributed to the
considerable variability in crop fullness found in the
individuals tested. The observance of a significant
relationship for just one element (Fe) to size in
spittlebugs may relate to the small size range avail-
able for testing. No relationship was found for Na*
level and body mass in any species tested, and Ca?*
was significantly related to size in only the melano-
plines. Relationships to size were found for at least
half of the species tested for the remaining elements
(N, K, Mg and Fe). Nearly all significant linear
relationships have negative slopes which, again, im-
ply a surface area:mass decrease with size phenom-
enon; however, most relationships have quite low
coefficients of determination (r2) which indicates that
although elemental variation is related to body size,
characteristics other than size have marked influence
on elemental variation. Factors other than crop full-
ness, which might explain the observed variability in
elemental composition, include combining species
during classification of the melanoplines, gender
differences, differences in collection sites or seasons
which modify available foodstuffs for insects, and
ages of tested insects which show incomplete meta-
morphosis. Elemental composition of insects that
exhibit complete metamorphosis has also been re-
ported to differ with developmental stage (Levy and
Cromroy, 1973; Studier et al., 1991).

The possible importance of sex and season on mass
and elemental composition are demonstrated by data
on box elder bugs (Leptocoris trivittatus) shown in
Table 3. The high coefficients of determination
suggest that, at least in this species, both sex and
season strongly affect elemental composition. Such
seasonal and gender composition differences have
been previously reported for a few insects (Reichle
et al., 1969; Bowden et al., 1984).

Culling generally removes body parts which con-
tain slightly lower water content, such as elytra,
wings, legs and the head; and culled individuals may,
therefore, have a slightly higher percentage of water
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Table 3. Dry mass (DM, mg), N (% DM) and mineral (ppt DM) levels in box elder bugs, Leptocoris trivittatus, by sex and season

Mo S N DM Fe Ca Mg Na K N

Mr F 5(15) 16.3+09 0.158 £0.024 1.339+0.042 3.061 £0.08]1 0916+0.181 21.22+1.75 19.74+0.74
Mr M 4(16) 82403 0.189 +0.024 1.907 +0.027 3.425+0.140 0.663+0.164 13.00+0.52 22.42+0.50
Jn F 5 147+ 14 0.016 +0.004 3.348 + 0.265 3.486 +0.357 0.663 +0.084 11.60+0.56 17.84 +0.38
Jn M 5 8.7+02 0.034 £ 0.004 2.526+0.313 3.296+0.188 0.955+0.083 10.35+0.29 17.85+0.50
Oc F 11(12) 11.0+ 0.5 0.284 +0.016 4.0531+0.349 2.147+0.204 0.715+0.089 14.83+0.78 20.51 +0.93
Oc M 6(12) 58104 0311 +£0.010 4.540 +0.463 2.177+£0.275 0.829 +£0.054 16.18+0.90 21.77 +1.56
F 14.76 114.8 23.29 14.12 NS 15.47 5.199

P <0.001 <0.001 <0.001 <0.001 <0.001 0.012

r? 0.793 0.887 0.628 0.504 0.662 0.294

F = female, S = sex, M = Male; Mo = Month; (Mr = March, Jn = June, Oc = October), N = samples analysed, while values in parentheses
are numbers of individuals used, if different from sample size. Values shown are arithmetic means + standard errors. Results of a two-way
ANOVA (by season and sex) are given at the bottom of the table for season only. For each analysis, df for season=2, sex=1,
season x sex interaction = 2 and error = 30. There were no significant season x sex interactions. Sex is only significant for potassium level

and DM (F =9.189, P =0.005; and F = 90.55, P < 0.001, respectively).

than whole insects, e.g. Phyllophaga rugosa (t = 3.58,
df =24, P <0.01) as shown in Table 4. Table 4 also
shows element composition data in some other whole
and culled insects. Although culling reduces biomass
consumed/insect, no differences in elemental compo-
sition were found for periodical cicadas, Magicicada
septemdecim, of either sex. In the moth, Crambus
laqueatellus, culling increases the nutrient density of
Fe, Ca and Na. In June beetles, Phyllophaga rugosa,
culling increases the nutrient density of Mg, Na and
K. No pattern of nutrient modification is observable
in the few species studied, except for the possibility
that culling increases nutrient density for some
elements.

Nutritional value of insects

Data reported here may have certain nutritional
implications for insectivorous birds and mammals.
These implications are based on the assumption that
minimal nutritional requirements for growth and
reproduction reported for birds (National Research
Council, 1984) and mammals (National Research
Council, 1978) are typical for all birds and mammals.
Requirements for less than a dozen species of birds
and mammals are summarized in those references and
none of the species studied are primarily insectivo-
rous. Ongoing research (as yet, unpublished) in our
laboratory with nestling eastern bluebirds (Sialia
sialis) suggests that their requirements for Na* are
slightly higher, K* are typical, iron and Mg?* are
slightly less, and N and Ca’* are markedly less than
reported previously for larger, non-insectivorous
birds (National Research Council, 1984). We must
also assume that data on composition of the insects
reported here are typical for all insects. Although
data on a wide variety of adult, flying insects are

reported in this study, considering the massive num-
bers of known insect species, acceptance of this
second assumption must be tentative.

Subject to the above assumptions, adult flying
insects are excellent sources of nitrogen, potassium
and magnesium and should readily exceed minimal
requirements for growth and reproduction in birds
and mammals. For iron and sodium, the extreme
variability of levels of those elements in flying insects
suggests that some species are excellent nutritional
sources while other species are certainly inadequate.
No day-flying insects meet published nutritional re-
quirements for calcium for birds or mammals and, of
night-flying insects, only plecopterans (stone flies)
meet or exceed those requirements. Exclusive inges-
tion of a readily available, easily captured insect
species by pregnant big brown bats, then, should not
be expected to meet all nutritional requirements
(Keeler and Studier, 1992). Flying insects, then, do
not generally fulfill all nutritional requirements for
growth and reproduction in birds and mammals.
Growing or reproductively active insectivorous birds
and mammals should, therefore, be expected to sup-
plement their insect diet with non-insect sources of
deficient nutrients, especially calcium, e.g. grit to
meet calcium needs in nestling birds (Turner, 1982),
utilization of stored skeletal calcium during preg-
nancy and lactation in bats (Sevick and Studier,
1992), ingestion of certain non-insect arthropods or
other invertebrates which are high in calcium (Reichle
et al., 1969; Carter and Cragg, 1976) or cocoons of
certain lepidopterans (Studier ez al., 1991). Insectivo-
rous time-minimizers would, almost surely, be mal-
nourished in respect to some non-caloric nutrients.

Finally, all of the previous discussion of nutritional
requirements applies only to birds and mammals

Table 4. Live mass, percentage body water and element levels (as parts per thousand or percent dry mass) in whole and culled (C) individuals
of three species (Sp): Magicicada septemdecim (Ms), Crambus laqueatellus (C1), and Phyllophaga rugosa (Pr) by sex(s)

Mass Water Fe Ca Mg Na K N

Sp S N (8) (%) (ppY) (ppt) (ppY) (ppY) (ppt) (%)

Ms F 15 09549 +0.0399* 5232+1.15 042040025 1.503+0.109 1.520+0.080 0.641 +0.039 5.89+0.18 9.22+0.38
MsC F 10 0.7067 £0.0202* 53.67 £2.35 0.614+0.091 2.097+0.331 1.874+0.216 0.632+0.060 584+0.36 9.46+0.75
Ms M 15 0.6947 £0.0201 6298 +1.18 0.692+0.063 1.188+0.056 1.950+0.077 1.028 £0.050 8.35+0.62 12.20 +0.59
MsC M 10 0.5590 +0.0204 63.46+0.89 0.723+0.050 1.051 +£0.033 2.006 +0.056 0.739+0.073 8.54 +0.40 12.61 + 0.58
Cl U 15 0.0958 £0.0042 58.69 1097 0.061 +0.016* 0.267 +0.019* 1.119 +0.058 0.015 + 0.009* 7.08 +0.21 15.99 +0.76
CIC U 4 0090+0.0186 59.53+3.24 0.521 £0.089* 0.504 +0.035* 1.201 +£0.211 0.205 +0.041* 7.27+0.80 13.45+0.92
Pr U 15 0.3034+0.0126 67.27 £ 0.95* 0.168 +0.010 0.432+0.073 1.898 + 0.057* 0.787 + 0.024* 11.51 +0.22* 13.16 + 0.34
PrC U 11 0.285410.0211 71.79 £0.83* 0.206 +0.025 0.456+ 0.060 2.637 +0.147 1,348 + 0.054* 15.06 + 0.74 14.27 +0.58

S = Sex, F = female, M = male, U = unknown, N = samples analysed. Pairs marked * are significantly different by independent ¢-tests at

P < 0.05, after adjustment in accord with the Bonferroni method.
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during periods of growth or reproductive activity.
Although we have found no data for non-reproduc-
tively active adults, their maintenance requirements
would certainly be less than those of growing or
reproductively active individuals. Insects may well be
complete nutritional sources during such non-repro-
ductive periods in adult birds and mammals.
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