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Ab&aet--The theory of mixtures is applied to the determination of equilibrium states of a solid-fluid 
mixture which is isolated from contact with a fluid bath. In the particular problem considered, a 
hollow rubber cylinder first undergoes unconstrained swelling in a fluid bath. The solid is 
homogeneously deformed to a larger cylindrical shape, the fluid is uniformly dispersed and the 
mixture is in a saturated equilibrium state. The mixture is then bonded to rigid impermeable 
membranes at its inner and outer surfaces. Rigid impermeable flat plates restrain motion at its ends. 
While the swollen length is held fixed, relative rotation of the membranes induces shear distortion in 
the ~b~r-~~d mixture. Tfie resulting normal stresses cause a change in the mixture from its initial 
equilibrium state in which the system is homogeneously swollen but unsheared to a new equilibrium 
state in which there is radial variation of both the solid deformation and fluid density. A numerical 
example, using properties for a particular rubber-fluid mixture, shows that the volume of the mixture 
and the fluid density decrease near the inner wall of the cylinder and increase near the outer wall. 

1. INTRODUCTION 

When a rubbery material is placed in contact with an appropriate liquid, the liquid will diffuse 
into the rubber. There is a very marked interaction between the liquid and the rubber. The 
solid will undergo a large defo~ation consisting of both swelling and distortion induced by 
stresses, The deformation of the solid will affect the distribution of the liquid. This interaction 
is characteristic of other important situations, such as the diffusion of moisture into a composite 
material or of a biological fluid into biotissue. 

The proper framework for studying such phenomena is the theory of interacting continua, 
also known as the theory of mixtures. In a series of papers (see for example [l-3]), Rajagopal, 
Wineman and co-workers have applied this theory to the study of a number of aspects of the 
interaction between a fluid and a highly elastic solid. A summary of this work is presented in a 
recent review article [4]. Mass flux-pressure differences were studied in [l-3]. Problems 
involving an equilibrium state in which a non-homogeneously deformed cylinder is in 
continuous contact with a fluid bath were treated in [5]. The present work is concerned with 
equilib~um states of a solid-fluid mixture which is isolated from contact with a fluid bath. 

Consider a hollow cylinder of rubber which is immersed in a liquid bath and allowed to 
undergo unconstrained swelling. The cylinder-liquid mixture will reach a swollen saturated 
equilibrium state in which the cylinder has become homogeneously deformed and contains 
uniformly dispersed liquid. The mixture is removed from the bath and is bonded to rigid 
im~rmeable cylinders at its inner and outer surfaces. Impe~eable rigid plates are attached at 
its end in order to maintain a plane deformation. The outer cylinder is then rotated relative to 
the inner cylinder about the center line of the system, thereby subjecting the rubber-liquid 
mixture to radially dependent shear deformation. The normal stresses which accompany the 
shear can be expected to have the following consequences. First, the rubber becomes 
non-homogeneously stretched and swollen as well as sheared, and secondly the fluid becomes 
non-homogeneously distributed throughout the system. The purpose is to determine these new 
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distributions once the system has reached equilibrium. The time dependent redistribution 
process is also of great interest and will be the subject of future work. 

The general theory of interacting continua has been presented in review papers by Bowen [6] 
and Atkin and Craine [7]. The fundamental quantities and field equations which are relevant to 
this work are outlined in Section 2. ~onstitutive equations for a solid-liquid mixture in an 
equilibrium state are given in Section 3. An equation which characterizes saturation is 
introduced in Section 4. Section 5 contains a reduced system of equations which is obtained by 
eliminating certain variables. The swollen unconstrained state of the cylindrical mixture and an 
equation for its new dimensions is introduced in Section 6. Section 7 contains the formulation 
of the boundary value problem for the sheared state of a general swollen cylinder. A particular 
set of material properties and the corresponding form of the boundary value problem is 
presented in Section 8. Finally, results of the numerical solution of the governing equations are 

discussed in Section 9. 

2. FUNDAMENTAL QUANTITIES AND BQUATIQNS 

The concepts and equations of the theory of mixtures which apply to the interaction of an 
ideal fluid and an elastic solid have been presented in [l-4]. The notation and equations which 
are essential to the present study are summarized here. 

The positions of a solid particle in its reference and current confi~rations will be denoted, 
respectively, by X” and x”. Its deformation gradient is 

Let pS, denote the density of the solid in its unmixed state (mass per unit unmixed volume), and 
p” denote its density in the mixture (mass per unit volume of the mixture). The corresponding 

quantities for the fluid are pfo and pf, respectively. At each point in the mixture region, the 
mass density of the mixture is 

p = p” + pf. (2) 

The partial stress tensors associated with the solid and fluid will be denoted, respectively, by tr” 
and crf. The total stress in the mixture is 

u = crs + a’. (3) 

The equations which represent physical principles and which are relevant to the present work 

are: 

2 I Conservation of mass--solid 

p” det F = pi. (4) 

The conservation of mass equation for the fluid will play no role here and is therefore omitted. 
It is assumed that there is no external body force. The interactive body force which each 

constituent exerts on the other is denoted by b. 

2.2 Equilibrium equation--solid 

div a” - b = 0. (5) 

2.3 Equilibrium eq~tio~~uid 

divaf+b=O. (6) 

It is a consequence of the law of balance of moment of momentum that the total stress is 
symmetric, cr = uT, but that the partial stress need not be. 



Shear induced redistribution of fluid 1585 

3. CONSTITUTIVE EQUATIONS 

It is assumed that when a volume of fluid is mixed with a volume of solid, the volume of the 
mixture is the sum of the unmixed volumes. This assumption of volume additivity is commonly 
made when an organic liquid mixes with rubber [8]. This volume additivity assumption imposes 
the following constraint on the densities of the solid and fluid (cf. Mills [9]). 

f pI+P+ 
Ps, P:, 

(7) 

Let A0 denote the Helmholtz free energy of the mixture per unit volume of the solid in its 
reference state. Let it be assumed that the solid is isotropic in its reference state. It can be 
shown that A0 =A&, I,, p’). Here I1 and Z, are the invariants of the left Cauchy-Green 
deformation tensor B = FFT, 

Zr=trB, Z, = i [I: - tr(B*)]. (8) 

The constitutive equations for the partial stresses in the equilibrium state are given by 

[( 1 , 
f u =-,$I-,,$ 

and for the interactive body force by 

(9) 

(IO) 

(11) 

In (9)-(ll), p is an indeterminate scalar which arises from the volume additivity constraint 

(7). 

4. SATURATION EQUATION OF STATE 

Let a block of the unstrained unswollen solid be placed in a bath of the fluid and let a 
uniform surface traction distribution be applied to its surface. The block will swell with the 
fluid and become distorted by the surface tractions. The solid-fluid mixture will eventually 
reach an equilibrium state in which the solid is homogeneously deformed and contains 
uniformly dispersed liquid. No additional fluid will enter the block and a saturated state is 
reached. This state can be characterized by a condition presented in [8]. In [ll], Rajagopal et 
al. expressed this condition in a form which is appropriate for the theory of mixtures. Let the 
total stress tensor in the saturated state be denoted by a”‘. The saturation equation of state 
which relates the stress, solid deformation and fluid density is given by 

[( 

5. REDUCED SYSTEM OF EQUATIONS 

(12) 

A reduced system of equations can be obtained by eliminating the unknown scalar p from 
the governing system of equations. If equilibrium equations (5) and (6) are added, the result is 
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an equation in terms of the total stress (3), 

div o = 0. (13) 

Next substitute (9) and (11) into (5) and (7), (9), (10) into (13). It is possible to eliminate the 
scalar p between these equations and, after straightforward but lengthy manipulations, reduce 
the system of equations to the form 

div asat = 0, (14) 

in which da’ is given by (12) (cf. Gandhi and Usman [12]). 

6. UNCONSTRAINED SWELLING OF A CYLINDER 

Consider an isotropic nonlinear elastic solid whose reference shape is a hollow circular 
cylinder. Its inner and outer radii are Ri and R,, respectively, and its length is Lo. Let a 
cylindrical coordinate system be concentric with the elastic cylinder and the coordinates of a 
particle of the solid in this system by (R, 0, 2). 

Let the cylinder be immersed in a fluid bath so that it can swell freely, that is, without the 
application of surface tractions. It can be anticipated that the cylinder will reach a saturated 
state in which it is uniformly swollen. If the coordinates of a particle in this state are denoted 
by (i, 8, .f), the swollen configuration can be described by the mapping 

i=AR, 

e=o, 

f=AZ, (15) 

where A, the stretch ratio for uniform swelling, is a constant. From (l), (4), (7), (8) and (15), it 

is found that 

F= AI, B = FFT = A21, B2=3L41, 

det F = A3, z, = 3)3*, 12 = 3)c4, 

ps 1 Ll_!_ -=- 
p; A3’ P:, A3' (16) 

Let these be substituted into the saturation equation of state (12) in which d”’ = 0. This gives 
the following equation for 3c, 

P:, WI ; 2A2 

A3 dp’ [ 

5$+&g? co. 

1 2 1 (17) 

7. CIRCUMFERENTIAL SHEARING OF THE SWOLLEN CYLINDER 

Let the swollen cylinder be bonded to a fixed impermeable rigid cylindrical support at its 
inner surface of radius ~Ri, and let an impermeable rigid membrane be applied to its outer 
surface of radius AR,. Also, let impermeable rigid plates be applied to the ends of the cylinder. 
A moment acting about the cylinder center line is applied to the membrane, whose purpose is 
to transmit a uniformly distributed circumferential shear stress distribution to the outer surface 
of the swollen cylinder. Let M denote the moment per unit length of the cylinder. The 
deformation of the cylinder will be described by the mapping, 

r=f(?) =f(AR), 

fJl=b+g(i)=O+g(AR), 

z=i+AZ, (18) 
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where i 3 [ARi, AR,]. Here, g(P) is the rotation of the cylindrical surface at radius i and 
accounts for local shear deformation. f(i) gives the radial motion of the cylindrical surface due 

to normal stresses which arise during shear. The radial deformation can be non-uniform and 
will be accompanied by the redistribution of fluid within the cylinder. The third equation of 
(18) expresses the condition that the cylinder is maintained at a fixed length as the moment is 
applied. 

The deformation gradient (1) can be written as 

F= A#, (19) 

where k denotes the deformation gradient with respect to the swollen unsheared configuration, 
It is given with respect to cylindrical coordinates by 

,=[~~~~~~ r;? H]=[~ + ~1, (20) 

where the prime denotes differentiation with respect to the argument 5 Let 

.X = r/i =f(i),i, (21) 

which represents the ratio of the lengths of a circular line in its current and swollen unsheared 
configurations. The ratio of the volume of a material element of the solid in the current 
configuration to its volume in the unswollen unsheared state is 

det F = A”.!, j=,tfifl, (22) 

in which A3 is the ratio of the volume in the swollen unsheared state to its initial volume, and is 
the same for all material elements. j is the ratio of the current volume to its volume in the 
swollen unsheared configuration, and will vary with radius. 

The invariants (8) become 

1, = lz2[1+ (f y + f’ + (fg’)2], 

22 = A”[(1 + (f ‘)2)A2 + (f ‘)2 + (fg’)2]. (23) 

Using (4), (7) and (22), the density ratios for the solid and fluid are, respectively, 

pflp:,= 1 -&A. (24) 

Dependence on j accounts for the redistribution of fluid due to shear. If j increases, then (24) 
shows that p’/pz also increases. 

The normal stress components calculated from (12) are 

or, sa’=@+2(~)A2(f’)2[~+A2(l+ji2)-$], 

6.E =@,+2 p” p ( ) PG [( g3+q!? 
1 2 

) (fi” + ffg’12> + A$$ (f w], 
2 

as”: = Q, + 2 5 A2 [ 9 + P((f’)’ + A” + (fg’2)) F] , 
1 2 

(25) 

(26) 

(27) 
where 

azpfi rrs “aft, ( > P"o dP'. 
(28) 
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In addition, 

and c’=G;=O. 
The equation of equilibrium in the radial direction is 

while that in the circumferential direction is 

dti I 26 
-=o. 

dr r 

(29) 

(30) 

(31) 

Note that the stress components are expressed in terms of functions of radius P in the swollen 
unsheared configuration, It will thus be convenient to transform the equilibrium equations to a 
form in which P is the independent variable. Equation (30) becomes 

and equation (31) becomes 

(33) 

in which use has been made of (22). 
When the stresses given by (25), (26), (28) and (29) are substituted into (32) and (33) and 

use is made of (22), (23) and (28), the result is a system of second order nonlinear ordinary 
differential equations for f(f) and g(P). The solution depends on A and A4 and must meet the 
boundary conditions 

f(kZ?i) = ARiy f(~R,)=~R,, (34) 

g(ARi)=O. (35) 

8. SPECIFIC A0 

Consider materials for which A0 has the form 

Ao = G’(pf) + G(Z,, 12). (36) 

A," is the contribution to A0 from the mixing of the fluid and solid and A$ is the contribution 
from the deformation of the solid. This is the Flory-Rehner assumption and is discussed in [8]. 

In particular, Ar is such that Cp in (28) has the form 

* = F[ln(l - v) + v + xv2], (37) 
1 

where 
1 

v=Fj’ (38) 

and represents the volume fraction of the solid in the mixture. A: is given by 

A; =; K[(Z, - 3) + a(Zz - 3)], (39) 
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R is the universal gas constant, T is the absolute temperature, VI is the molar volume of the 
fluid, MC is the molecular weight between cross links for the solid, and x is an interaction 
constant which depends on the specific solid-fluid mixture, and o is a constant. 

The development of the form for A0 given by (36)-(39), with (Y = 0, is discussed in [8]. It is 
based on a combination of statistical and empirical arguments, and has some experimental 
justification. When this A,, is substituted into (12), the result is a set of specific stress-stretch- 
swelling relations for homogeneous deformations of saturated rubber-fluid mixtures. It is 
shown in [8] that predictions based on these relations are in good agreement with experimental 
results involving homogeneous triaxial deformations. 

When (Y =O, A: in (39) corresponds to the neo-Hookean material in nonlinear elasticity. 
When LY > 0, A: corresponds to a Mooney-Rivlin material. Parameter a is introduced in order 
to permit a study of the dependence of results on Iz. 

Let A0 in (36)-(39) be substituted into (17). Since this is the equation for the stretch ratio )c 
for the swollen unsheared state, j = 1 in (38) and Y = 1/3c3. The resulting equation for I is 

-$[ln(l--$)+$+-$]+;(1+2Pn)=O. (W 

Now consider the equations for the boundary value problem for the sheared state. Substitute 
A0 into the expression for the shear stress (29), and make use of (22) and (24). This gives 

u s”B’= K(l + d%)fg 
nfi . 

Next note that equilibrium equation (31) can be integrated to give 

sat - M M 
(7 re -gz=gpp (42) 

where the last step follows from (21). Combining (41) and (42) leads to the following 
expression for fg’, 

fg’= MA L 
2JrK( 1+ i15Y) i2i * (43) 

Consider the normal stresses et and $$. According to (37) and (38), Q, depends on j. Since 
j represents the local volume change and is related to the fluid density redistribution by (24), $ 
is chosen as a primary dependent variable in developing the governing system of equations. To 
this end, (25) and (26) become 

n 

~t=~+K[l+arl2(1+~2)]~, 

f$g; = Q, + K[(l + A’&,)@” + (fg’)2) + P] $. (45) 

When fg’ is substituted from (43), the right-hand sides of (44) and (45) become functions of j 
and fi” as well as of ?. The problem is now formulated as a system of two first order nonlinear 
ordinary differential equations for j and A’. 

The first equation is a compatibility condition obtained by differentiating (21) with respect to 
3. Using (22) this can be written in the form 

d(@2 2 ,. 
- = ; (.I - A”). 

di (46) 
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Next let (44) and (45) be substituted into (32). The resulting equation has the form, 

d.! 
dr^=- 

[Z&P, 1, i) + 2(j - fi”)Z,(P, I)] 

?Z,(P, j) 
, (47) 

where use has been made of (46), and the functions Z,, Z, and Z3 are defined by the relations 

Z2(L2, j) = - [1+ &(l + ;i”)Ef + &L2.G2, (49) 

Z,(X”, f, i) = (1+ PLu)P [; - L” - @+I, 

where Y is defined in (38) and fg’ is given by (43). 

Let F and i: be dimensionless radii defined by 

r= ililRi, f=f/LRi. (51) 

Then ? 3 [l, R,/Ri]. When these are introduced into (46)-(50), f ‘, A,9 and the equations have 
the same form except that ? is replaced by P, f is replaced by f and (43) becomes 

hPA 11 fg'=_-- 
1 +A20i21’ 

where M* is a dimensionless moment per unit length and is defined by the relation 

&f*= 
A-f 

21rh~R:K - 

The boundary conditions for (46)-(50) are obtained from (34) and are 

(52) 

P=l,F=l, and r= R,/Ri. 

Once x2 and 1 have been determined, g(P) can be obtained by 
boundary condition (35). In terms of the dimensionless quantities, 

by 

g(i) = M*12 / T dx - 
1+ A2a , A”(x) . 

(54) 

integrating (52), subject to 
the relation for g(J) is given 

(55) 

9. NUMERICAL SOLUTION 

The boundary value problem was solved by a numerical method. The differential equations 
were integrated using a fourth order Runga-Kutta method. A one-dimensional shooting 
method was used to select f at i = 1 so as to satisfy the boundary condition at F = R,/Ri. The 
material parameters were the same as in previous work (cf. [l-3]) and correspond to a 
vulcanized rubber-toluene mixture: R = 8.317 x lo7 dyne-cm/m01 K, T = 303.16 K, V, = 
106 cm3/mol, & = 0.862 g/cm3, 2 = 0.425, M, = 9151 g/mol. Calculations were carried out for 
cx = 0 and (Y = 1. For the unswollen rubber cylinder R,/Ri = 2. 

When (Y =O, it was found from (40) that A = 1.723 which corresponds to a ratio of the 
swollen unsheared state volume to its initial volume of A3 = 5.115. When 1y = 1, E. = 1.388 and 
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Fig. 1. .? vs F for (Y = 0. 

the volume ratio is 2.674. Thus, when A: has the Mooney form, the predicted amount of 
swelling is reduced. 

It is clear from the numerical results that the shear deformation does indeed cause local 
volume changes and redistribution of the liquid. Figures l-4 present results for the case when 
cy = 0. Figure 1 shows the radial variation of .!. The volume decreases from that in the swollen 
unsheared state near the inner portion of the cylinder and increases near the outer portion. The 
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Fig. 2. fi vs P for CY = 0. 
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Fig. 3. p’/pb, vs i for a = 0. ph, is the fluid density in the swollen unsheared state. 

change increases with the applied moment. As seen from Fig. 2, this volume change is 
produced when all cylindrical surfaces move to smaller radii. The volume contained between 
two cylindrical surfaces thereby increases in the outer portion and decreases near the inner 
portion. This is consistent with the plot shown in Fig. 3 of the radial variation of the current 
fluid density normalized by its value in the swollen unsheared state. As the moment increases, 
fluid leaves the mixture in the inner region, causing a local volume decrease, and moves to the 
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Fig. 4. g vs f for cr = 0. 
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Fig. 5. jvs?for ~y=l. 

outer region, causing a local volume increase. The rotation g(r’) of the cylindrical surfaces is 
shown in Fig. 4. The rotation increases rapidly near the inner surface and then more gradually 
in the outer region. This is a consequence of the inner region being one of the higher shear 
stress, as indicated in (42), and the relation between the local shear deformation and the slope 
of the rotation as seen from (20). 

Distributions of local volume ratio, stretch ratio, and fluid density ratio, when 1y = 1, are 

R 
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Fig. 6. i vs P for (Y = 1. 
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Fig. 7. pf/phl vs i for (Y = 1. pf,, IS the fluid density in the swollen unsheared state. 

shown in Figs 5-7, respectively. The distributions have the same general features as in the case 
when (Y = 0. However, when A: has the Mooney form, the changes in the mixture caused by 
shearing are much smaller than in the neo-Hookean case. The relation between the moment 
and the rotation of the outer surface is shown in Fig. 8, for (Y = 0 and 1. The relation is slightly 
softer than a linear one and gives no indication of the substantial changes induced in the 
mixture by the shear deformation. 
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Fig. 8. Dimensionless moment M’ vs angle of rotation of outer cylinder for (Y = 0 and 1. 
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