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We report on resonant Raman scattering by plasmons in a modulation-doped Fibonacci super- 

lattice consisting of 270-A-thick GaAs wells separated by Alo.3GaonAs barriers whose 

thickness is either BOO A or 430 A. The ordering of the barriers is determined by the 

Fibonacci sequence. In the region below ~ i0 meV, the spectra exhibit relatively broad 

features {full width ~. 0.5 meV) resulting from a large number of unresolved plasmon 

contributions. The dependence of the peak positions on the in-plane wavevector is in good 

agreement with theoretical predictions. 

ELEMENTARY EXCITATIONS in quasiperiodic 

systems and, in particular, Fibonacci super- 

lattices, have been the object of intensive 

theoretical study in recent years. I The generic 

Fibonacci spectrum, characterized by critical 

(power-law decaying) eigenstates and a fractal- 

like structure of gaps, I distinguishes itself 

dramatically from the Bloch's behavior of perio- 

dic solids. Experimentally, most of the work on 

excitations has concentrated on acoustic phonons 

in AlxGa1_xAS and GexSi1_ x superlatt ices.1 Be- 

cause acoustic modes in these sys tems  are  hardly 

perturbed by the layering, however, the measure -  

ments  (especially those of Raman scat ter ing)  z 

bear much more on quasiperiodic s t ruc tu ra l  a s -  

pects  than on the propert ies  of the phonons. In 

this  communication, we concern ourselves with 

plasmons in a Fibonacci layered electron sys -  

tem. 3-s Unlike acoustic phonons, plasmon eigen- 

funct ions  depend strongly on the paramete rs  and 

the sequence defining the  superlat t ice.  3-s Our 

s tudy was part ial ly motivated by theoret ical  

r e su l t s  comparing Raman spec t ra  of  plasmons in 

periodic and quasiperiodic s t ruc tures .  3 A prel i -  

minary account of  our da ta  is given in Ref. 2. 6 

The s t ruc tu re  used in th is  work was a 

modulation-doped Fibonacci super la t t ice  grown by 
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molecular  beam epitaxy on a (100) GaAs subs-  

t ra te .  The sample is def ined  1,z by the ninth 

generat ion of the Fibonacci sequence of 

2"/0-A-thick GaAs/800-A-thick Alo.3Gao.TAs (buil- 

ding block A) and 2"/O-A-thick GaAs/430-A-thick 

Al0.3Gao.TAs (building block B). Alternatively, 

there  is a to ta l  of 5.5 GaAs wells (all 270-A- 

thick) separated by either d~= 1070 A or 

ds.= 700 A (distances between well centers) in a 

pa t te rn  determined by the Fibonacci rule 

Sr--Sr_lSr_ 2 (S r is the rth-generation sequence, 

with SIre d A and S2m dAds). Transmission electron 

microscopy was used to determine the thicknesses 

of the layers. The Alo.3GaonAs 'barriers were 

doped with Sl-donors leading to trapping of 

carriers by the GaAs wells and, thus, to the 

formation of a set of 55 quasi-two-dimensional 

electron systems. We chose a doping profile ex- 

pected to give the same free electron density 

(n) across the superlattice. From the analysis 

of photoluminescence data, we find the average 

value n = 3.8 x 1011 cm -2 corresponding to two 

occupied subbands. 

Raman measurements were performed at ~ 4 K 

using an LD700 dye-laser pumped by a Kr-laser. 

The LDT00 dye operates in the range 7800-8000 A 

covering the region of resonances with {quantum- 

well) critical points derived from the fundamen- 

tal gap of GaAs. Resonant mechanisms for elec- 
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t ron ic  Raman s c a t t e r i n g  in q u a s i - t w o - d i m e n s i o n a l  

s y s t e m s  - pa r t i cu la r ly  GaAs s u r f a c e  l a y e r s -  

were  f i r s t  cons idered  by Burs te in  e t  al .  ~ Spec -  

t r a  with a reso lu t ion  of ~ 2 cm -I were  ob ta ined  

in the  s t a n d a r d  backsca t t e r ing  geomet ry .  S c a t t e -  

r ing  by p la smons  is allowed when  t he  p o l a r i z a -  

t i ons  of  the  incident  and s c a t t e r e d  pho tons  a r e  

para l le l ,  i r r e spec t ive  of the o r i en t a t i on  of  t h e  

po la r i za t ion  wi th  respec t  to c ry s t a l  axes .  8 The 

magni tude  of  the  in-plane s c a t t e r i n g  wavevec t o r  

q was  var ied  by changing the angle  0 be tween  t h e  

l a se r  beam and the  normal  to  the  l aye r s  

(q = 4~ s i n 0 / k  k, where  ~t L is t he  l a se r  w a -  

velength).  8 In our  exper iments ,  we were  able  to  

probe in-p lane  wavevectors  in t he  r a n g e  0.1-  

1.5 (x 10 s ) cm -I. The cor responding  r a n g e  f o r  

t he  component  normal  to the  layers ,  k, is 5 -7  

(x 10 s) cm -x. 

In the  ca lcu la t ions ,  the  induced po t en t i a l  

a t  the  l t h -we l l  eu(1) and t he  f r equency  ~v o f  

the  p la smons  were  obtained by numer ica l ly  so l -  

ving the  t i gh t -b ind ing  equation3-SO 

2 2 
( ~ / ~ p  - I} ~v ( t )  = Z e v ( / ' )  , V ( l , l '  ) (i) 

l~l" 

where p labels the eigenstates. Here, ~p(q) = 

{2~e2nq/cmo )I/z is the two-dimensional plasma 

frequency and g(t,l')= exp(-qlz l- Zl,l); z I is 

the position of the center of the /th-well, m o 

is the electron effective mass and c is the 

background dielectric constant. Eq. (I) descri- 

bes plasmons propagating parallel to the layers 

with a wavevector of magnitude q. The scattering 

intensity I was calculated using the expression 

which relates it to the dynamical structure fac- 

tor of  the  s y s t e m  s 

i(~,q,k) ~ Z I~v(k)12~(~-% ) ' (2) 
V 

wi th  Cv(k} = ~.exp(ikzl)¢u(l) (as before,  k is 

t h e  normal  componen t  of  the  s c a t t e r i n g  wavevec -  

tor ) .  Broadening was  accoun ted  fo r  by i n t r o d u -  

c ing  a phenomenologica l  damping  p a r a m e t e r  7 so 

t h a t  the  6 - f u n c t i o n  is rep laced  by the  e x -  

p r e s s ion  I / [ (~-ev)2+ ~.2]. 

F igure  l(a) shows  l ow-ene rgy  Raman s p e c t r a  

f o r  va r ious  va lues  o f  the  in -p lane  s c a t t e r i n g  

wavevec to r  q. The ca lcu la ted  d i spers ion  o f  p l a s -  
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F i g u r e  I. (a) Raman  s p e c t r a  showing  s c a t t e r i n g  
by p l a smons ,  q is the  i n -p l ane  componen t  of  the  
s c a t t e r i n g  wavevec tor .  The l ase r  energy  is  
1.569 eV. (b) Calcula ted  d i spe r s ion  o f  p l a sma  
modes .  Dots  r e p r e s e n t  t he  m e a s u r e d  m a x i m a  of  
s p e c t r a l  f e a t u r e s .  Inset:  Sample  p a r a m e t e r s .  

ma  modes  is r eproduced  in Fig. l(b}; not ice  t h a t  

t he  n u m b e r  of  so lu t ions  to Eq. (I) a t  a given q 

is equal  to  the  number  o f  GaAs wells.  As shown 

by t he  dashed  l ines  connec t ing  Figs.  l(a) and 

l(b), t he  pos i t ions  o f  t he  Raman peaks  - do t s  in 

Fig. l ( b ) -  c o r r e l a t e  wi th  ca lcu la ted  p lasmon  

e igenene rg i e s .  Resu l t s  o f  numer ica l  s imu la t i ons  

u s ing  Eq. (2) a re  shown in Fig. 2(a). The 

c o m p a r i s o n  wi th  the  e x p e r i m e n t a l  da t a  s t r ong ly  

s u p p o r t  our  iden t i f i ca t ion  o f  t he  s c a t t e r i n g  in 

Fig. l(a) a s  due to p lasmons .  F u r t h e r m o r e ,  the  

obse rved  ~r-behavior o f  t he  t heo re t i c a l  s p e c t r a  

i nd i ca t e s  t h a t  the  t h r e e  main  l ines  cons i s t  o f  

much  n a r r o w e r  f e a t u r e s  s e p a r a t e d  by ~ 0 .1-0 .3  

meV. In Fig. 2(b), we compare  the  ca lcu la ted  and 

m e a s u r e d  pos i t ions  o f  t h e s e  f e a t u r e s .  The 
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exper imental  a r t i f ac t  due to depar tures  f rom 

nominal values of  the sample parameters .  

In recognition of his fundamental  work in 
the field of Raman sca t te r ing  and his profound 
influence on many generat ions  of s tudents  (and 
s tudents  of s tudents) ,  it is a pleasure to dedi- 
cate  th is  paper to Professor  Elias Burstein on 
the occasion of his 75th birthday. 
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Figure 2. (a) Calculated Raman intensity at two 
different linewidths. (b) Comparison between 
calculated and measured dispersions. Dashed and 
full curves are guides for the eye. 
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