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AlmtractmThis paper presents a brief description of a numerical procedure for evaluating multiple 
integrals over the unit cube in N-dlmensionai space, for N ~- 2,... ,8. A fmnili~Lr emoothin~ process 
enhances the speed and accuracy. Examples are given. 

We consider integrals over the unit cube C : 0 _< zi _< 1 (i = 1 , . . .  , N )  in N-dimensional space. 
We start  with the well-established formula [1, pp. 142-163]: 

/ / (1) r .Ol  
• ~" f ( Z x , . . . , Z N ) d z x . . . d z N ~  f k [  P J " " '  ' 

k--1 
(1) 

where {z} is the fractional part  of z. To improve results, we make the well-known polynomial 
substi tutions [2, pp. 124-130]: 

zi- 'Pa(z~),  i = I , . . . , N ,  (2) 

where Pa is of degree a ,  before applying (1). Here, Pa is monotone and Pa(0) = 0, Po(1) = 1. 
The  principal novelties are the following: (i) the integer vector c = (c l , . . . ,  CN) and the integer 

p > 1 are chosen, after a long and elaborate search and test procedure, to give good accuracy; 
(ii) a correction is made for a flaw in the usual naive application of the substi tution (2). 

Choices of c and p 

In general, we use a c of the form (1 ,s~nod(s2 ,p) , . . .u lod(sN-l ,p) ) ,  wheremod(b,p) is the 
integer between 0 and p -  1, inclusive, congruent t o / m o d p .  For example, for N = 3, as one 
choice, we use p = 2331 and 8 = 988, so that  c = (1,988, 1786). 

For each N -- 2, 3 , . . . ,  8, ten good choices of p and s have been found. For each N,  these 
choices (Pl, s l ) , . . . ,  (Pl0, sl0) have 1 < si < Pi and Pl < P~ < - "  < Pl0; typically, they give a 
sequence of ten approximations which appear to close in on a value for the integral. Thus, for 
f = [(1 + z~) (1 + z] )  (1 + zl)]  -1 and a = 5, one obtains the sequence .4882 7250, .4844 3705, 
.4844 7522, . . .  7476, . . .  7304, . . .  7308, . . .  7308, . . .  7308 (only the last 4 decimals places are 
shown after the third approximation, since the first 4 repeat).  The  exact value is 0.48447307 (to 
8 places). 

*An correspondence should be sent to this author. 
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Correction of the Flaw in Polynomial Substitution 

A good numerical integration procedure should integrate constant functions exactly. The use 
of the substitution (2) followed by application of (1) fails to meet this requirement. For it is 
equivalent to computing a "weighted" average of the values of f at p points of C. But the sum 
of the "weights" is, in general, not equal to 1. Thus, an error occurs for f _ const. To eliminate 
it, one need only multiply the sum in (1) by the appropriate factor. 

A similar flaw arises if one evaluates an iterated integral, such as 

b /0(=) 
fa JO(z) f (z ,y)dydz,  

by the familiar method of writing it as 

j g(z) dz, 

and integrating this using a weighted average of values of g at z l , . . . ,  zN, then evaluating each 
g(zi) using a weighted average of values of f (z i ,  y) at y i l , . . . ,  YiN. The resulting approximation 
of the integral is, in general, not exact for f -- 1. 

Further Ezamples 

(a) f = e x p ( - z l  z~zaz4). Exact value: 0.9430 8257. Approximations: 0.9422 3615, 0.9429 
6988, 0.9430 6899, . . .  8394, . . .  8128, . . .  7706, .. .  7840, . . .  8238, . . .  8237, . . .  8266. 

(b) f = sin(10 zx z2 za z4 z5 ze). Exact value: 0.1279 4385. Approximations: 0.1339 1372, 
0.1270 8588, 0.1274 7138, 0.1285 1864, 0.1280 5595, . . .  3985, ... 082'2, 0.1279 4979, .. .  
4640, . . .  4264. 

(c) f = (zl z2 . . .zs) - l /2( improper  integral). Exact value: 256. Approxi_'rr~tions: 159.10821, 
190.37757, 253.65332, 255.83547, 255.83030, 255.47852, 255.46981, 256.61489, 256.06273, 
256.01225. 

Software has been written in FORTRAN 77 that computes the successive approximations as 
far as desired, up to the tenth, with a choice of 5 polynomials Pa of successively higher degree. 
The above examples use Ps(t) = 10t s - 15f 4 + 6t s. A hardware implementation in the form of 
a dedicated integrated circuit (chip) has also been designed. 

Computing times on an IBM 3090 computer, for examples such as those given above, vary 
from about 0.001 seconds for N = 2 in the first approximation, to about 4.5 seconds for N = 8 
in the tenth approximation. The times are roughly proportional to the number p of function 
evaluations, and p varies from numbers less than 100 to numbers close to 50,000. 

Tests have also been run on IBM-compatible PCs of several configurations. On a moderately 
capable PC (80286 processor running at 10 MHz with an 80287 math co-processor), the computing 
times required should be around 50 times larger than those mentioned above. With state-of-the- 
art hardware, e.g., 80486 @ 30-50 MHz, these times could be reduced quite substantially. 
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