
INFORMA TION SCIENCES 63,87 - 112 (1992) 87

Flexible View Update

YUNG-CHIA LEE*

and

CHENG-HONG CHO

Department of Electrical Engineering and Computer Science,
The University of Michigan, Ann Arbor, Michigan 48109-2122

ABSTRACT

As uninstantiated windows onto a relational database, views are modified only when the
intended update can be realized by updates against the underlying database. Such a
conventional restriction can, and must, be relaxed when some relations, as collections of
predicates, are composed of both basic and derived facts. Therefore, this paper presents an
extended formulation for the problem of view updating based on two notions: the internal
state and the perceptible state of a database. Through a clear distinction between these two
database states, a mechanism is proposed to facilitate those legitimate view updates that are
not necessarily translatable. The proposed mechanism also relies heavily on the normalixa-
tion theory through functional dependencies.

1. INTRODUCTION

A view is a query definition named and stored to represent a dynamic
picture of the query. It enables a user to reconstruct some portion of a database
into a format appropriate for specific applications. When a view is called for, a
set of tuples is derived from the relations of the database according to its
definition [12, 161. Since this set of tuples resembles a relation, it is called a
derived relation or a virtual relation. To distinguish views from relations of
the database, the latter are usually called base relations or real relations.

Views have been supported in most database management systems. As
personalized pictures of a database, views have offered convenient ways for
the user to perceive the database and to retreive information. However,

*Telephone: (908) 957-3319; E-mail:yungchia@speedy . att . corn

OElsevier Science Publishing Co., Inc. 1992
655 Avenue of the Americas, New York, NY 10010 0020-0255/92/$5.00

88 YUNG-CHIA LEE AND CHENG-HONG CHO

facilities for view updating are hardly available; database updates can be made
against base relations only.

1.1. TRANSLATABLE VIEW UPDATE

View updating is the process of modifying a relational database through
views. Yet, there is a question whether the user or the database system should
perform the translation from a view update to base-relation updates. It seems
more desirable to allow the user to update a view directly, while leaving to the
database system its translation onto base relations. Such a translation, if done
by the user, may be ambiguous or ill defined, and consequently create
inconsistencies in the database or cause adverse side effects on the view.
During the last decade, many researchers have worked on the problem of view
update [l-3, 7, 9, 11, 141. Most of them have focused on translating view
updates into base-relation updates. If a view update has a valid translation, the
request is considered admissible and the corresponding updates to base rela-
tions are subsequently performed. Otherwise, without a valid translation, the
view update is rejected.

Dayal and Bernstein [3] provide a good formulation for this problem. They
define the correct translation for a view update as well as the conditions for
the existence of such a translation. They also present the translation algorithms
for the class of view updates with correct translations. Bancilhon and Spyratos
[l] further define a complete set of updates, a complementary view of a
view update, and the sufficient and necessary condition for determining
whether a view update is translatable. As defined, a view update is translatable
if it corresponds to a valid and returnable database update. An update is valid
if the database remains consistent after the change. An update is returnable if
there exists an inverse update that brings the view back to the original state.
The work was later extended by Cosmadakis and Papadimitriou [2]. Mean-
while, Keller [lo] proposed an approach which requires the database adminis-
trator (DBA) to answer a sequence of questions when defining a view. These
answers are used to choose a valid translator for each view update. The
definition of the translator is stored along with the view definition, which
involves select, project, and join operations.

The above approaches focus on determining whether a view update is
translatable and, if so, how it can be translated. The underlying philosophy is
that “Since in the common model of relational databases the view is only a
uninstantiated window onto the database, any update specified against the
database view must be translated into updates against the underlying
database” [lo]. The corresponding database updates then produce a new view
state as if the update were performed on the view directly. This process is

FLEXIBLE VIEW UPDATE 89

translation
of view update

database (S) h database fS))
database update

Fig. I. Translation of view update.

briefly illustrated in Figure 1. View state v is derived from the database in
state s, according to its definition. The transition of view state from u to u’ is
performed by moving the database from state s to a state s’ such that u’ can be
derived from s’.

1.2. NONTRANSLA TABLE BUT LEGSTIMA TE VlEW UPDA TES

Unfo~unately, there are view updates that are legitimate but not translat-
able. These view updates would be rejected by the approaches just described.
The main reason is that the information associated with each view update may
not be sufficient to update all corres~nding base relations, for example,
missing the key value for some base relation. However, some of these updates
are logically acceptable, as they never result in any database inconsistency;
theoretically, an update request should be rejected only if it results in an
inconsistent database state. In reality, there are indeed non~ans~a~b~e updates
which are essential and of interest to some applications. Let us consider
/egiGmate view updates as logically acceptable view updates. The set of
translatable view updates is therefore only a subset of legitimate view updates.
Specifically, a tr~s~a~bie view update is both legitimate and functionally
acceptable, where the function is the translation onto base relations. An
important question can then be raised: “Should a database management system
reject an update request as a result of its own limitations?” If the answer is
yes, the state of art being so, the database management system will remain
incapable of fulfilling more advanced demands, On the other hand, if the

90 YUNG-CHIA LEE AND CHENG-HONG CHO

answer is no, one must develop a more sophisticated update mechanism which
allows users to retrieve as well as modify the databases through the same
scenes, i.e. views.

We have thus far discussed the problem of view update from a traditional
perspective. There is at least one different way to see the need of accepting
nontranslatable but legitimate view updates. From the logic point of view, a
tuple of a relation in the relational database is a ground atomic formula in
first-order logic, and then the database can be viewed as a collection of
formulas belonging to two classes [9]: database intension (IDB) and database
extension (EDB). IDB corresponds to time-invariant properties of database
and usually consists of integrity constraints and view definitions. EDB reflects
the current state of knowledge about the part of the world being modeled and is
subject to frequent updates.

Models such as Datalog, described in [171, consider that a predicate whose
relation is stored in the database is an EDB relation, while one defined by
logical rules is an IDB relation. It can be shown that an IDB relation is
equivalent to a view in the relation model as long as neither any of its rules nor
any of the relations from which it is derived is recursively defined. What
concerns this paper is the assumption usually made that each predicate symbol
denotes either an EDB relation or an IDB relation, but not both. In many cases
this assumption would be fine, but there are situations where a naturally
named predicate simply denotes both types of relations. As far as end users
are concerned, a missing fact must be inserted if not shown in the collection of
formulas corresponding to that particular predicate name. Thus, it is the
responsibility of the system or database administrators to, for example, set up
two relations, one in IDB and the other in EDB, that are artificially named
differently in terms of the internal state of the database.

1.3. OBJECTIVES

There appears to be a clear distinction between end users and the database
system, as far as naming predicates in a logic-based model (or naming
relations/views in a relational model) is concerned. When the facility for view
update is discussed at the system level, it can be assumed that a predicate
symbol will never denote both an IDB relation and an EDB relation, and a
view is only an uninstantiated window onto the database. On the other hand,
when it is discussed at the end-user level, these assumptions are too inflexible
to follow. Considering the fact that updates are realized by the system but are
initiated by end users, it seems more appropriate to deal with the problem of
views updates by separating the two levels.

This paper hence suggests for the problem of view updates a more compre-
hensive formulation, which recognizes the distinction between the system level

FLEXIBLE VIEW UPDATE 91

and the end-user level. Based on this formulation, a more flexible update
mechanism is proposed to accommodate view updates that are not necessarily
translatable. In the following, Section 2 presents the proposed problem formu-
lation. The more flexible update mechanism is then described in Section 3.
Section 4 further elaborates specific problems that have been identified and
solved under this formulation.

2. PROBLEM FORMULATION

In this section, two different database states are identified. The internal
state denotes the database at the system level, while the perceptible state
denotes the database perceived at the end-user level. Described first are the
internal states and the consistent transitions among them. The perceptible states
are subsequently introduced along with their consistent transitions. Lastly, the
problem of view updates is generalized and presented as a problem of update
realizations.

2.1. INTERNAL STATES OFA DATABASE

The logical structure of a relational database is generally defined by its
conceptual schema. The conceptual schema of a relational database consists of
a set of relation schemes. Each relation scheme is formed by a set of attributes.
Corresponding to each relation scheme, there is a relation extension, usually
represented by a set of tuples. The content of the database defined on the
conceptual schema is called the extension of the conceptual schema or
database extension The database extension and the conceptual schema to-
gether form the foundation of the database, called base relations.

A database can be extended by employing view definitions to derive new
facts as virtual relations. Each view definition can be applied as an inference
rule to construct a view. View definitions can thus be defined on both base
relations and virtual relations. The scheme, i.e., the set of attributes, of a view
is defined by the view definition. At any instant of time, the content of a view,
the view extension, can be obtained by applying its view definition to the
database extension and other view extensions. Although views defined on other
views cannot be derived directly from base relations, the closure of the set of
view definitions can derive all views from base relations.

In addition, certain integrity constraints can be employed to prevent the
database from being inconsistent. If some fact must not occur in the world
being modeled, there should be a rule to prevent the database from stating that
fact. Rules of this type are called integrity constraints. An integrity constraint

92 YUNG-CHIA LEE AND CHENG-HONG CHO

is a rule that states a specific restriction on the content of database, including
the database extension and view extensions.

An internal state of a database can be defined as follows:

DEFINITION 2.1. An internal state of a database is a quadruple (S, E, V, I).
S is the conceptual schema of the database; E is a database extension
represented by sets of tuples defined on S; V is a set of view definitions that
are applicable to S and E; Z is the set of integrity constraints of the database.
The set of all internal states is denoted by X. Let the sets of all conceptual
schemata, database extensions, view definition sets, and integrity constraint

sets be denoted by Xs, XE, XV, and X,, respectively. For every

(S,E, V,Z)EI, one has SECT, EEX~, VEX,, and ZEN,.

As mentioned earlier, a view scheme is defined by the view definition. In

contrast to conceptual schema, we define view schema as the following:

DEFINITION 2.2. Let (S, E, V, Z)E C. The view schema of the database,
V(S), is obtained by applying V to S. The view extension of the database,

V(E), is obtained by applying V to E.

Let us define a partially ordered set for all conceptual schemata so as to
elaborate the relationships among them. A conceptual schema is said to be
contained in another conceptual schema if and only if all the schemes appear

in the former are also in the latter.

DEFINITION 2.3. Let S, and S, be conceptual schemata. S, is said to be
contained in S,, written S, < S, , if and only if every relation scheme in S, is

also in S,.

Isomorphic to containment among sets, this relation is a partial order
relation and implies the following theorem.

THEOREM 2.1. Let S and S’ be conceptual schemata, E be sets of tuples,
V be a set of view definitions, and Z be a set of integrity constraints. Zf
(S,E, V, Z)E X and S < S’ then (S’, E, V, Z)E X.

Proof. S’ is known as a conceptual schema. (S, E, V, Z)E 1 concludes that
E is a database extension defined on S, V is a set of view definitions that are
applicable to S and E, and Z is the set of integrity constraints of the database.
Since S < S’, every relation scheme in S is also in S’. This implies that E is a
database extension defined on S’, and V is a set of view definitions that are
applicable to S’ and E. By Definition 2.1, (S’, E, V, Z)E X. n

We can now define what constitutes a consistent internal state of a database.

FLEXIBLE VIEW UPDATE 93

DEFINITION 2.4. An internal state (S, E, V, I) is said to be consistent if
and only if

(1) (S, E, I’, Z)E C.
(2) the set of integrity constraints Z itself is consistent, and
(3) the facts represented by E and V(E) follow the constraints stated in I.

The set of all consistent states can be denoted by Cc.
The two theorems below immediately follow from the definition of consist-

ent internal state.

THEOREM 2.2. Let S and s’ be conceptual schemata, where S < s’. Zf
(S, E, V, Z)E& then (S’, E, Y, Z)EC~.

Proof. (S, E, V, Z)E Cc implies that (S, E, V, Z)E C. Since S < s’, by
Theorem 2.1, we have (s’, E, V, Z)E C. Since (S, E, V, Z)E Xc, the set of
integrity constraints Z itself is consistent, and the facts represented by E and
V(E) follow the constraints stated in I. By definition, (S’, E, V, Z)E X. W

THEOREM 2.3. Zf (S, E, Y, Z)EC then (S, E, V,4)eCc.

Proof. (S, E, V, Z)E C implies that E is a database extension defined on
S, and V is a set of view definition that are applicable to S and E. The empty
set of integrity constraints itself is certainly consistent, and the facts repre-
sented by E and V(E) satisfy the constraints stated in 0. (In fact, there is no
constraint to satisfy.) By Definition 2.4, (S, E, I/, 0)~ Cc. n

2.2. TRANSITIONS BETWEEN INTERNAL STATES OF A DATABASE

Database transitions at the system level are referred to as transitions
between internal states. Discussed first in the following are the transitions of an
internal state in general. We then define what constitutes a consistent transi-
tion. In particular, an important conclusion will be drawn stating that every
consistent transition can be represented by a series of consistent primitive
transitions.

Database transitions are initiated by requests for modifications. Correspond-
ing to each component of the internal state, we can first define a function that
only changes the specific component.

DEFINITION 2.5. The functions for the basic changes are:

&:Csx\ks-+Cs,

A,: CE x \k,-+ CE,

h,:C”x\k,+C.,

X,:X1x *,-+ Cl,

94 YUNG-CHIA LEE AND CHENG-HONG CHO

where \k,, \kE, 9”) and q1 are the four sets of basic functions that can lx
applied to the four components, respectively. In the table below, “4” indi-
cates the component to be modified:

IS E I’ Z) Modification request

9s J Add/delete relation schemes

‘kE J Add/delete tuples of relations

*‘v J Add/delete view definitions

91 J Add/delete integrity constraints

In general, a modification produces simultaneous changes in an arbitrary
number of components of the internal state. It has the total effect of a
combination of several basic changes. Thus, we can define a modification as

the following:

DEFINITION 2.6. A modification is a quadruple (gs, J’E, $“, $1), where

$sE‘ks, @*ET $+*‘v, and gicq,. The set of all modifications is denoted

by M.

DEFINITION 2.6a. A modification m = (qs, $E, 1c/ v, tiI) is said to be con-

tained in another modification m’ = ($A, rc/& $;, 4;) if and only if tis G &,

tiE~J/& VG;, and glG$j.

DEFINITION 2.7. A transition of an internal state is a transformation of a
database from an internal state to another. The transition function 6 : C X M
+ 1 is defined as follows:

where

An internal transition is thus formulated by applying this transition function
to an internal state and a modification. Of particular interest are the kind of
modifications below that are associated with special transition functions.

DEFINITION 2.8. A modification m = (tis, tiE, $ “, gI) is said to be a primi-
tive modification if and only if

(1) J/E = Ij/v = $1=0 9
(2) Gs = $” = 4$=021,

FLEXIBLE VIEW UPDATE 95

(3) $s=&=IC/I=07or
(4) $s=&=4&=0.

The set of all primitive modifications is denoted by M,. A primitive internal

transition is thus an internal transition through a primitive modification.

We are now ready to define a consistent (internal) transition and relate it to
primitive consistent transitions.

DEFINITION 2.9. An internal transition is said to be consistent if and only if
it transforms a database from a consistent state to another consistent state.

Let us first define an operator to concatenate primitive modifications.

DEFINITION 2.10. A concatenate operator, o, is defined as follows: Let

mo, ml, m,EM and SEC. Then m. = m,om2 if and only if S(s, m,) =

6(&s, m,), m,).

The theorem below follows immediately:

THEOREM 2.4. Let m,, m,, m2, - - *, m,EM and SE E. Then m, =

m,OmZo * - - om, if and on/y if 6(s, m,) = 6(6(a*- (6(&s, m,), m,),

m3) *a*), m,).

Proof. Let n = 2. By Definition 2.10, m, = m,om2 iff 6(s, mo) = 6(&s,

m,), m2). Assume it is true for n = k. Prove that it is also true for n = k + 1:
By Definition 2.10, m, = (m,0m20 - * * Omk)omk+, iff 6(s, m,) = 6(&s,

(m,om20 - - * om,)), m,,,). By the induction hypothesis, 6(s,
(m,0m20 - - - om,)) = 6(6(- * - (6(6(s, m,),m2), m,) - - -), mk). Therefore,
m, = (m,0m20 - - * omk)omk+, iff 6(s, mo) = 6(S(- - - (6(&s, m,), m,),
m,) * * -), m,,,). By induction, 6(s, m,)= 6(6(1.. (6(6(s, m,), m,),

m3) - * * 1, m,) n

The intent of introducing the above operator is to describe a complete set of
modifications that is small but sufficient to characterize all state transitions.

DEFINITION 2.11. An arbitrary set of modifications M* is said to be a
complete modification set for a set of internal states C* if and only if for
every pair of states s, s’ E C* there is a series of modifications

m,, m2;-‘, m, E M* (n 2 0) which transforms the database from state s to
state s’. That is,

a(S, m,0m20 -a. Omn) = b(b(-a* (6(6(s, m,), m2), m3) ***), m,) =S’.

With the complete modification set so defined, we are ready to assert the
following:

96 YUNG-CHIA LEE AND CHENG-HONG CHO

LEMMA 2.1. Every consistent (internal) transition can be represented
by a series of consistent primitive transitions.

Proof. Let 6(s, m) = s’ be a consistent transition from state s =

(S, E, V, I) to state s’ = (S’, E’, V’, 1’). Let s, = (S, E, I/, 0), s2 =
(S, E, 0,0), s3 = (S, 0,0,0L s; = (S’, E’, v’, 0), s; = (S’, E’, 0 7 0h
and s; = (S’, 0, 0, 0). Since 6(s, m) = s’ is a consistent transition, s, s’ E
Cc. This implies s, s’ E 1. By Theorem 2.3, s,, s; E EC. The fact that s,
s’ E C also implies that E is a database extension defined on S, and E’ is a
database extension defined on S’. Evidently, an empty set of view definitions is
applicable to S and E, and an empty set of database extensions is considered
as being defined on any conceptual schema. Therefore, s2, s; , s3, s; E 1. By

Theorem 2.3, sz, s;, s3, S;E XC. By Definitions 2.8 and 2.9, 6(s, 171,) = s,,

6(s,,m,)= S2, 6(s,, m,)= s3, Ns,,m,)= $9 6(&m,)= $9 ws;, q)=
s; , and 6(s;, m ,) = s’ are consistent primitive database transitions. Therefore,

m = m,0m20 - - * om,. This implies that every consistent transition can be
decomposed into a series of consistent primitive transitions. n

In other words, the set of primitive modifications is the only set we have to
deal with when ensuring consistent transitions.

THEOREM 2.5. The set of all consistent primitive modifications, M+,, is a
complete modification set for 1 c.

Proof. By Lemma 2.1, every consistent transition can be decomposed into
a series of consistent primitive transitions. By Definition 2.9 the set of all

consistent primitive modifications, M,, is a complete modification set for Cc.

We have thus far formulated the database state at the system level and

defined the consistent transition for internal states. In particular, we have
identified the set of consistent primitive modifications and proved that it is the

only set we have to be concerned with while dealing with database transitions
at the system level. As mentioned in Section 1, database updates are initiated
by end users and realized at the system level. Of great importance now is how
the database state perceived by the end user should be formulated so that there
exists a clear picture of what components of the internal state should be
modified when realizing a database update at the end-user level.

2.3. PERCEPTIBLE STATES OF A DATABASE

A relational database is usually perceived by its end users as nothing but a
set of tables. Each table, called a relation, is associated with a relation scheme.
A perceptible state is therefore defined as the composite of a set of table

FLEXIBLE VIEW UPDATE 97

structures (relation schemes) and a set of table contents (relation contents)
defined accordingly.

Definition 2.12. A perceptible state of a database is denoted by (SO, C,)
where S, is the set of relation schemes of the database and C,, is the set of
relation contents. The set of all perceptible states is denoted by 63.

The purpose of the above definition is to describe the perceptible state in a
simple but, perhaps, more adequate way, as far as the end user is concerned.
Most database updates would be conceived and issued against it. However,
before discussing database updates and their realization at the system level, let
us clarify how the perceptible state is formed from the internal state. First,
assume that there is no view ever defined. The set of relation schemes and that
of relation contents will then be exactly the same as the conceptual schema and
the database extension (at the system level), respectively. Now, with a number
of views defined, additional tables are introduced into the perceptible state. In
other words, in addition to base relations that are formed by the conceptual
schema S and the database extension E, there are also relations in the
perceptible state that are derived by the set of view definitions V.

Furthermore, it is possible that the access to some information in the
database might be prohibited for unauthorized users. Therefore, we can define
a filter F for each group of end users. This filter masks or coalesces’ all the
relations and views that should be invisible to end users. The components in
the perceptible state (S,, C,) can be formulated as follows: 5’, = ,$ (S U V(S))
and C, = [(E U V(E)). Mathematically speaking, every relation perceived by
the end user is in fact a view. Let us suppose that the filter is rarely changed
and that the set of integrity constraints Z in the internal state is also rather
static.

DEFINITION 2.13. Let ,$ and Z be the given filter and the integrity constraint
set, respectively. An internal state (S, E, V, I) is said to model a perceptible
state (S,, C,), written (S, E, V, I) I= (S,, CO), if and only if S, = t(SU V(S))
and C, = ((EU I/(E)).

Note that, given ,$ and Z, there is a many-to-one relationship between
internal states and perceptible states. Given an internal state s = (S, E, V, I),
the corresponding perceptible state can be determined as perc(s) = ([(S U
v(S)), 4(E U V(E))). The reverse is not true, however.

Transitions of perceptible states are due to the change of C,, the perceptible
content, as most end users are to modify the content of the database only. Let

‘Obviously, a filter will mask information which is not to be seen. The situation where t
is required to coalesce relations will be discussed in Sections 3.1 and 3.3.

98 YUNG-CFIA LEE AND CHENG-HONG CHO

1, be the set of all perceptible states, and r be all the updates against
perceptible states, namely, those directly intended by the end user. The
transition function for perceptible states is thus a mapping 6, : X3, x r + Xp.
The transition function must be defined to portray the change precisely. Let
a,((S,, C,),r,) = (S,, Ci), where (S,, C,), (S,, C;)E C, and Y~EI’. Then CL
must not only completely demonstrate r,, the intention of the end user against
C,, but also reflect the necessary changes associated with 7,. An obvious
example is the change of the view extension propagated from that of the base
relation on which the view is defined.

2.4. UPDATE REALIZATION

From the user’s perspective, a database update is to modify the contents C,,
of the perceptible state. Update realization is therefore the process through
which database updates intended at the user level are realized at the system
level. Let us first examine the existing approaches for view update in terms of
our formulation established so far. Recall that C, is composed of two parts:
,$ (E) and 4 (V(E)). Updates against .$j (E) are usually performed by modifying
E directly. Updates against [(V(E)), namely, view updates, are translated
into underlying database updates, and thus are realized by changing E. This
practice, as a whole, only amounts to the primitive modification (Gs =a,
J/E, gV =a, 1c/1 =@a> we have defined earlier. So, if a database update is not
translatable, it must have been either illegitimate or so much more involved
that other primitive modifications are required.

In order to accommodate more flexible updates, i.e., to also accept non-
translatable but legitimate view updates, we propose to formulate the problem
of view update as in Figure 2. A database update, in terms of perceptible
states, is a transition 6,((S,, C,), 7,) = (S,, CL) such that there exist internal
states s I= (S,, C,), s’ E (S, , C;) with S, s’ E Cc. Of course, as mentioned
earlier, it is not necessarily true that CL is exactly what the user has intended
or foreseen. The change of view extension propagated from that of base
relations is an example. Nevertheless, it is clear that, to realize a database
update which is specified at the end-user level, a database system must
interpret such intention by the internal modifications defined earlier.

DEFINITION 2.14. Let I’, be a given set of (perceptible) database updates,
M be the set of all modifications, and M+ = M U {null}. An update realiza-
tion algorithm ~2 is a mapping _& : r, + M+. Let 6 be the internal transition
function, SE C be a given internal state, and YPErp be a perceptible database
update. A realization A(?,) properly reflects the intention of 7, if and only if

(1) a,(perc(s), r,) = perc(Ws, a(~,))).

FLEXIBLE VIEW UPDATE 99

(pareeptible state)
(arer’r intention)

intcpretation
functions

b

ta&zatioH
algorithm

1

(system st8te)
(modification)

Fig. 2. Update realization.

(2) &s, a(~~)@ Cc, and
(3) no other modification in M contained in a(~,) satisfied (1) and (2).

r, is said to be realized by d on s if d (Y~)E M and d (7,) properly reflects
7,. r, is not realized by d on s if d (7,) = null. For every Y,E~, , d (7,)
must either realize or not realize 7,.

DEFINITION 2.15. For any subset N of M+, the preimage of N for an
update realization algorithm d , denoted d + (N), is the set of (perceptible)
database updates {~,EI’, - &(y+N).

DEFINITION 2.16. An update realization algorithm A covers another update
realization algorithm d ‘, denoted & 1 d ‘, if and only if & *({null}) C
a’+({null)).

So an ideal update realization algorithm is an update realization algorithm
which is not covered by others.

3. A MECHANISM FOR FLEXIBLE VIEW UPDATES

The formulation established so far allows us to first describe the notion of a
generalized relation, which leads to a straightforward but rather naive ap-
proach. We then discuss the update anomalies associated with this approach
and set the tone for the next section on view normalization.

YUNG-CHIA LEE AND CHENG-HONG CHO

3.1. GENERALIZED RELATIONS FOR NATURAL NAMING

Our formulation implies that there is a perceptible state on which most user
updates are specified, while such updates will be realized on the internal state.
It also implies that a realization algorithm does not have to be limited by the
particular primitive modification which modifies only the database extension E
of the internal state.

For naming ease, as described in Section 1, the natural name for each
relation should be the only name an end user is concerned with; he/she
retrieves as well as updates a relation through this single name, be it a base
relation, a view, or both. In other words, a relation name in the perceptible
state should be general enough to stand for a real relation, a derived relation,
or both if needed. Let rrea, and rvima, denote the real relation and the virtual
relation, respectively. The relation name r now refers, in general, to

where n is the number of distinct definitions for the virtual part of this
relation; rvimal,, rvirtua12, - - *, and rvima, are derived relations; and rreal is the
collection of facts stated directly. Theie parts are referred to by different
names internally and are coalesced by the filter 4 into a single relation when
their common external name is queried. This filter also hides all the constituent
relations, if any, so that only the generalized relation is perceived by database
users. It thus relieves users of the burden in discriminating various parts of a
relation.

Now, in terms of database transitions, this notion of generalized relation
could imply the following. An update against the base relation r will be
performed, on rrea, , directly. Updates against any of the views, rvinua,, , if
translatable, will be realized by updates on the constituent base relations. And
a nontranslatable but legitimate view update against relation r will be handled
by modifying rreal. That is, even if r starts as a view, it is now a generalized
relation with the new rreal component added.

3.2. DIRECT VIEW UPDATES

What we are about to suggest is a straightforward approach as shown in
Figure 3. If the view update is translatable, it is realized by updates onto the
constituent base relations. For the very first nontranslatable view update, a
nonprimitive (internal) modification (Gs, GE, 0, 0) is performed: first, to

FLEXIBLE VIEW UPDATE 101

View

1 relations r

Fig. 3. View flock (a single real relation).

create a relation freti, and second, to insert the new view tuple into it.* The
creation of this additional relation is an internal transition through the primitive
modification ($s, Q , @ ,a), while the insertion of the view tuple becomes a
tranditional transition through (0, $E, 0, 0). In general, the possibility of a
modification (0, $E, @,a) for each update request should be examined first
and, if needed, followed by the nonprimitive modification ($s, #E, 0, 0).

The following example shows how this approach works.

EXAMPLE 3.1. Let p and q be the father-child relation and the husband-
wife relation, respectively. Let the instances of these two relations be

Let the father _ in _ law-daughter _ in _ law relation r be defined as

r = 6father, wife+ father_in_low,daughter_in_low’fother. wife (P [child = husband] q) .

‘The issues of deletion and modification will be discussed later.

102 YUNG-CHIA LEE AND CHENG-HONG CHO

where 6 is the operator that renames attributes. Thus, r can be derived as

r 1 father _ in_ law daughter _ in _ law
I

“ Carl” “Eva”
“Frank”
“Irvine”

“Helen”
“Karen”

Assuming that we know Adam is Barbara’s father-in-law, but we fail to know
the name of Adam’s son who is Barbara’s husband, the internal state can then
keep this information at

r rea, 1 father _ in _ law daughter _ in _ law

I “Adam” “Barbara”

Notice that the subscript “real” is to indicate that it is the additional real
relation defined by the primitive modification ($,, 0, @,a). When relation
r is queried, the union of tuples in rrea, and tuples derived from p and q will
be referred to. In this example, it is

r (father_ in-law daughter _ in _ law

“Adam”
“Carl”

“Frank”
“Irvine”

’ ’ Barbara”
“Eva”

“Helen”
“Karen”

From now on, whenever a nontranslatable father _ in _ law-daughter _ in _ law
tuple must be inserted, only a primitive modification (0, qE, a,@) needs to
be performed, since rrea, has become available.

As shown in the above example, in addition to translatable view updates,
this approach provides new facilities to accommodate nontranslatable view
updates. It is therefore a “better” realization algorithm, denoted ,pP, , which
covers the realization algorithm d, for translatable view updates. Let
the realization algorithm for simple relational databases be d,. Then the rela-
tionship among these three algorithms is ~4, E d, c z?~, as illustrated in
Figure 4.

3.3. VIEW-UPDATE ANOMALIES

There are problems with the approach just described. Its being straightfor-
ward makes it look somehow naive, but is not where the real problems are.

FLEXIBLE VIEW UPDATE 103

Legitimate
view updates

Translatable
view updates

Conventional updates
against base relations

AR

AT

AL
4

Fig. 4. Relationship of realization power among updating paradigms.

One of them is due to the transitivity of functional dependencies; there might
be inconsistencies between tuples derived from view definitions and those
directly stored. For example:

EXAMPLE 3.2. Let R,[_AB], R,[_BC], R,[_CD], and R,[_DE] be schemes
of base relations that are in 3NF with respect to the set of FDs F = { A + B,
B-C, C+ D, D-* E}. A view is defined as V[ACE]=
T~~~(R,MR,~~R,~R,). Let ~~={(a: Ab:B)}, r,={(b:Bc:C)), r3=
{(c: Cd: D)}, and r, = {(d: De: E)} be single-tuple relations over R,, R,,
R,, and R,, respectively. Note that the view u(V) = {(a: AC: Ce: E)) can
be derived. Now insert a new tuple ((I, : AC : Ce, : E) into view u(V). Since it
cannot be properly realized by inserting corresponding tuples to r, , r2, r3, and
r,, it is instead stored as a real tuple in u(V). However, F I= { A ---) CE,
C + E} , and { A --t CE, C + E} is a set of FDs which must be satisfied by all
tuples in the database, including u(V). Accordingly, the request to insert the
tuple (a, : A c : Ce, : E) to view u(V) should have been rejected, because
C* E would otherwise be violated.

The example above resembles a common problem in database design,
update anomaly [4-6, 12, 15, 161, which is usually handled by normaliza-
tion. The difference here is that, instead of the database scheme, it is the view
scheme that needs to be normalized.

104 YUNG-CHIA LEE AND CHENG-HONG CHO

So the approach above must be modified to store information in a cluster of
normalized relations, called the view flock in Figure 5, rather than a single
view relation. Let us again examine this modified mechanism in terms of
internal state transitions. Originally, without the view flock, the nontranslat-
able but legitimate view update was realized by introducing an additional real
relation through the internal transition (S, E, V, Z) + ((S U R,), (E U
rJ, V, I). Assuming that S is in 3NF (the third normal form), R, is,
however, not necessarily in 3NF. As a view to begin with, R, is of course not
a scheme on which the entire set of FDs in Z should, or could, be enforced.

It is meaningful to decompose R, into a 3NF view flock with respect to
only those FDs that are enforceable on R ". Thereby, the relations in the 3NF
view flock can preclude most of the update anomalies stated above. Once
decomposed, this “view relation” R, is no longer a real relation. Instead, it is
a virtual relation derived from those decomposed relations in the view flock. In
other words, not only will S and E be modified to include relations in the
view flock, V will also be changed by adding a view definition for R,. Such
transitions are associated with internal modifications of type (tis, $E, J/ “, 02,
where $,, qE, and J/” are nonempty. Meanwhile, the filter f will be modified
to hide from the perceptible state all the real relations in the view flock. As
indicated earlier, the filter E is indeed used to coalesce all the constituents of a
relation and to hide all of them. Since the view flock in its entirety is referred

View L-4

Fig. 5. View flock decomposed into 3NF subschemes.

FLEXIBLE VIEW UPDATE 105

to as an rvirtua, rather than rr_, , additional masks should be used to hide all the
decomposed relations in the view flock. In the next section, we shall discuss
how to form a view flock as well as other related issues.

4. VIEW FLOCKS AND NORMALIZATION

To decompose a view scheme into a view flock is an interesting problem.
Two key algorithms are required: first, an efficient algorithm to extract the FD
set enforceable by the view scheme, and second, an efficient algorithm to
synthesize the view flock. We will first discuss the second algorithm briefly,
because it is already available. We will then discuss the first algorithm which is
the main focus of this section. The algorithm proposed here is in fact quite
subtle; it finds a set of FDs that is equivalent to the set of all FDs applicable to
the view scheme. A couple of related issues will also be discussed.

Given a relation scheme R and an FD set F over R, the Synthesis
algorithm3 [131 produces a set of subschemes S = { R, , R, , * * *, RP} over R
and a set of designated keys K, for each subscheme R,ES. This set of
subschemes has the following four properties:

(1) F={Kij-tRi(K,j~KiARi~S}.
(2) Every subscheme R,ES is in 3NF with respect to F.
(3) There is no set of subschemes satisfying properties (1) and (2) with

fewer subschemes than S.
(4) For any relation r(R) that satisfies F, r = r,,(r)w

?T@)w - - * Da7r,p(‘).

The first property ensures that F is enforceable on S. Since Ki is the set of
designated keys of subscheme Ri, the instance of the subscheme must always
satisfy the key dependencies Ki, j --t Ri for all Ki, j~Ki. That is, all the
functional dependencies can be enforced by simply checking the designated key
dependencies. The last property guarantees the lossless decomposition [131.

4.1. EXTRACTING AN ENFORCEABLE FD SET

Normalizing a view into 3NF requires first the enforceable set of FDs.
The FD set enforceable by a view is the set of FDs among the attributes of the
view scheme. The definition of the enforceable set is as follows:

DEFINITION 4.1. Let U be the universal scheme of a database. Given a set
of FDs F over U and a scheme R E U, a set of FDs, FR, is said to be an

3Throughout this paper, we refer to the refined Synthesis algorithm as the Synthesis
algorithm.

106 YUNG-CHIA LEE AND CHENG-HONG CHO

enforceable set of FDs, with respect to F, on the scheme R if and only if the
following condition is satisfied:

ForeveryFD, X-Y, F~X+y,and XYCRifandonlyifF,hX+
Y.

Once an enforceable set is obtained, the task of normalizing the underlying
view is similar to that of normalizing a database scheme. A given view will be
normalized by applying the same Synthesis algorithm on the view scheme and
its enforceable set. Thus, the only problem that remains unsolved is the
extraction of an enforceable set from the FD set over the entire database
scheme.

Finding the enforceable set of a given FD set on a subscheme appears to be
inherently exponential, since the number of FDs in the enforceable set could be
an exponential function of the number of FDs in the given set. For example:

EXAMPLE 4.1. Let U={A,, A,;**,A,, B,, B2;**,B,,, C, X,,

X2,+**, Xn-,}, R={A,, A2;**,A,, B,, B2;**,B,,, C},and F={A,
--‘X,3 4-,X,, X,4-‘&, X,B,-‘X,, x,x,A,+X,, X,X,&-t
X,;*+, X,X,*** X,,_,A,,+C, X,X,*** X,_,B,+C}. The enforceable
set is F,={A,A,**.A._,A.-+C, A,A,***A._,B,-+C, A,A,**.
B,_,A,,+C, A,A,..* B,_,B,+C;**, B,B,.** A._,A,-rC, B,B,
. . .) F~;$;C9 44 *** B,-,A.+C, 44 *** 4-14 + C}, and

In this example, since all the FDs in FR have different LHS attribute sets
but identical RHS attribute sets, FR cannot be further reduced or minimized to
any smaller but equivalent FD set. This example shows how an enforceable set
can grow exponentially from a particular set of FDs. In reality, such extreme
cases hardly happen. Therefore, an efficient algorithm for extracting the
enforceable set remains highly desirable.

The method proposed in the following is based on an inferential approach,
although an algorithm with a similar flavor but based on resolution has recently
been developed elsewhere for different purposes. Gottlob proposed the ap-
proach called “reduction by resolution” (RBR) [8], which reduces the given
FD set to an enforceable set (called the embedded FD set in [8]) by reducing
unnecessary attributes. It resolves the given FD set by each attribute which is
not in the designated subscheme. On the contrary, our approach is to derive the
enforceable set based on the inference axioms available in database theory.

The algorithm, Get-Enforceable-Set, presented below enrolls one particu-
lar inference axiom. Among the fundamental inference axioms listed in [131,
axioms Reflexivity (Fl), Augmentation (F2), and pseudotransitivity (F6)
form a set called Armstrong axioms which has been proven to be fimction-
ally complete. Since axioms Fl and F2 produce only trivial FDs, F6 alone is

FLEXIBLE VIEW UPDATE 107

sufficient for deriving the enforceable set. However, for efftciency purposes,
additivity (F3) and projectivity (F4) have been implemented in functions
COMBINE and SPLIT, respectivley. Since the method for finding the
minimum cover is available as part of the Syntheses algorithm, this algorithm
assumes that the input set of FDs F is already a minimum set of FDs [131.

In this algorithm, step 1 converts the given set of FDs to an equivalent set
F, in which every FD contains only one attribute on the RHS. Steps 2 and 6
extract the FDs in F that apply to the scheme V. Steps 3, 4, and 5 eliminate
the FDs which appear to be useless as far as deriving the enforceable set is
concerned. Steps 7 and 8 apply pseudotransitivity (F6) repeatedly to extract the
remaining FDs of the enforceable set (Figure 6).

The complete algorithm is as follows:

Algorithm Get-Enforceable-Set:
Function SPLIT (F: set of FDs):

Convert the given FD set into an equivalent FD set which contains
only the FDs with singleton on the right-hand side of “ 4”.

1. For each FD X+A,A,** * A ,,EF, where the A i’s are single at-
tributes, split it into
X-+ A,, X-, A,;.., X-, A,,.

2. Return the obtained FD set.
Function COMBINE (F: set of FDs):

Convert the given FD set into an equivalent FD set in which every
FD contains distinct set of attributes on the left-hand side of
“ -+)‘*

the view scheme

Fig. 6. Enforceable FD set.

108 YUNG-CHIA LEE AND CHENG-HONG CHO

1. Withdraw all the FDs which have identical left-hand-side attribute set,

X-, A,, X-r A,; * *, X -+ An, from F, and insert the combined

FD, X+ A,A, - - * A,, into F.
2. Repeat step 1 until no FD pair in F have the same left-hand side

attribute set.

3. Return F.
Function SUBSTITUTE (F: set of FDs, S: set of sets of attributes, A:

attribute):
Apply pseudotransitivity to obtain new FDs.

1. For every FD in F with attribute A on the left-hand side, XA + Y;
(la) withdraw it from F, and
(1 b) for every set of attributes W ES, insert X W + Y into F.

2. Return F.
Procedure:

input: F, the minimum set of FDs.
I/, the scheme of view, a set of attributes.

output: F,, a set of FDs.
begin:
step 1: P: = SPLIT (F).
step 2: Divide F into three disjoint sets,

~~={X-,AIX~AE~AAEVAXCI/},

lJ={X-+A)X-,A~FAA~VAX~V},and
F,={X-+A(X+AEFAA#V}.

step 3: Collect all the right-hand-side attributes of FDs in F, to form an

attribute set S,.
Eliminate FD X, X, - - - X, --) A from F,, if there exists Xi4 S, ,
l<i<k.
Eliminate FD X, X, * - - X, -+ A from F., if there exists Xj# S,
UV, l<i<k.

step 4: Collect all the left-hand-side attributes of FDs in F, and F, to

form an attribute set S,.
For every FD X,X, - - - X, + AEF,, if A$S, then eliminate
this FD from F2.

step 5: Repeat steps 3 and 4 until there is no further FD that can be
eliminated.

step 6: F, := COMBINE(&).
F, := COM_INE(F,).
G :=F,UF,.

step 7: Withdraw an attribute A from S,.

Withdraw all the FDs with A on the right-hand side, X, -+ A,
X2+A,---, X,+ A, from G.

FLEXIBLE VIEW UPDATE 109

Collect all the left-hand-side attributes of these FDs to form an
attribute set S=(X,,X,;**,X,}.
G := SUBSTITUTE(G, S, A).

step 8: Repeat step 7 until S, = 0.
step 9: F, := COMBINE (F, U G).
end.

4.2. OTHER RELATED ISSUES

The now available Get-Enforceable-Set algorithm together with the Sun-
thesis algorithm provides a systematic method to normalize a view scheme into
a 3NF view flock. We can apply the Get-Enforceable-Set algorithm to the
view scheme so as to obtain the enforceable FD set. We can then apply the
Synthesis algorithm to the enforceable FD set to generate the 3NF view flock.
Nevertheless, there remain a couple of interesting issues.

Overlap between Normalized View Flocks and Existing Relations

Some of the schemes in the 3NF view flock may coincide or overlap with
the schemes of some base relations (Figure 7). Practically, these subschemes
need not be added as new real relations. Instead, information that should be
stored in them can be forwarded to the corresponding base relations. In other
words, this indicates the situations where, although the view update as a whole
is not translatable, the updates on some subschemes might be translatable.
Therefore, the view flock must keep track of the linkage to the translatable
portion of the update while storing only the nontranslatable portion directly.
Since there are various ways that two relation schemes can overlap with each
other, further study of this issue is needed.

View Deletion and Modification

In this paper, we have focused on view insertion only. Our rationale draws
from mathematical logic, which happens to be the theoretical foundation of
relational databases. A view tuple is considered as a predicate derived by a rule
(view definition) from a pair of arbitrary premises (tuples). Inserting a tuple
into a view is considered as stating a predicate, which happens to be the goal of
a rule, with constant terms. For instance, if a rule, equivalent to the view

110 YUNG-CHIA LEE AND CHENG-HONG CHO

View

II I View
definition

Fig. 7. Duplicated relations in view flock and base relations.

definition for r in Example 3.1, is specified as

futher(x,y)Ahusband(y,z)+futher_in_luw(x,z)

then the predicate father _ in _ luw(“ Adam”, “Barbara”) should be able to
be stated even though the son of Adam and the husband of Barbara are
unknown.

However, to delete or modify a view tuple is quite different. If predicates
futher(“Curl”, “ David”) and husbund(“Duvid”, “Eva”) exist, the predi-
cate futher_in_luw(“Curl”, “ Eva”) will be derived by the rule stated
above. Deleting the predicate father _ in_ fuw(“Curl”, “Eva”) will conflict
with the fact futher(“Curl”, “David”‘) husbund(“Duvid”, “Eva”) and
futher(x, y)l\ husbund(y, z) * father _ in _ luw(x, z). Similarly, to modify,
rather than delete, this predicate will cause the same conflict, since
father_ in_ luw(“CurI”, ” Eva”) will no longer exist regardless of the exact
modification. This is the main reason why we have not been able to support
view deletion and modification.

FLEXIBLE VIEW UPDATE 111

5. CONCLUSION

In order to deal with nontranslatable but legitimate view updates, we have
suggested a more comprehensive formulation for the problem of view updates.
Two distinct database states have been identified: the internal state denotes the
system level where view updates are realized, while the perceptible state
denotes the end-user level where view updates are usually specified. By
formulating it as the more general problem of update realization, we are able to
state more comfortably what types of internal transition and modification are
involved in realizing each view update by each different update mechanism.
We first introduced a straightforward update mechanism, which is further
modified by view normalizations based on normalization theory. The problem
of extracting enforceable FD sets for view schemes has been defined and
solved.

In addition to issues discussed earlier, there remain a number of interesting
problems. For instance, we are yet to take into account view definitions in
order to identify the implication for update verification of each relational
operation such as selection. The integrity constraint is also an important issue
along the direction of the proposed approach. In order to retain the consistency
of the database, more integrity constraints are required when additional real
relations associated with views are created. There is a need to identify and
minimize the required integrity constraints. Needless to say, view definitions
again play an important role in identifying the required integrity constraints.

Many thanks to the referees for their useful suggestions.

REFERENCES

1. F. Bancilhon and N. Spyratos, Update semantics of relational views, ACM Trans.
Database Systems 6(4):557-575 (Dec. 1981).

2. S. S. Cosmadakis and C. H. Papadimitriou, Updates of relational views, J. Assoc.
Comput. Math. 31(4):742-760 (Oct. 1984).

3. U. Dayal and P. A. Bernstein, On the updatability of relational views, in Proceedings
of the 4th VLDB Conference, West Berlin, 13- 15 Sept. 1978, pp. 368-377.

4. C. J. Date, An Introduction to Database Systems, Addison-Wesley, vol. 12, Read-
ing, Mass. 1983.

5. C. J. Date, Relational Databases, Addition-Wesley, 1986.
6. R. A. Frost, Introduction to Knowledge Base Systems, Macmillan, New York, 1986.
7. A. L. Furtado, K. C. Sevcik, and C. S. DOS Santos, Permitting updates through views

of databases, Inform. Systems 4:269-283 (1979).
8. G. Gotiob, Computing covers for embedded functional dependencies, in ACM Sympo-

sium on Principies of Database Systems, Mar. 1987, pp. 58-69.

112 YUNG-CHIA LEE AND CHENG-HONG CHO

9. T. Imielinski, Query processing in deductive databases with incomplete information, in
Proceedings of the ACM-SIGMOD Conference on Management of Data, Washing-
ton, May 1986, pp. 268-280.

10. A. M. Keller, The role of semantics in translating view updates, IEEE Computer
19(1):63-73 (Jan. 1986).

11. A. M. Keller and M. W. Wilkins, On the use of an extended relational model to handle
changing incomplete information, IEEE Trans. Software Engrg. 11(7):620-633 (July
1985).

12. H. F. Korth and A. Silberschatz, Database System Concepts, McGraw-Hill, 1986.
13. D. Maier, Theory of Relational Databases, Computer Science Press, Rockville, Md.,

1983.
14. N. Spyratos, Translation structures of relational views, in Proceedings of the 6 th

VLDB Conference, Montreal, l-3 Oct. 1980, pp. 411-416.
15. T. J. Teorey and J. P. Fry, Design of Database Structures, Prentice-Hall, Englewood

Cliffs, N.J., 1982.
16. J. D. Ulhnan, Principfes of Database Systems, 2nd ed., Computer Science Press,

Rockville, Md., 1983.
17. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1, Com-

puter Science Press, Rockville, Md., 1988.

Received 10 August 1989; revised 10 November 1989, 20 March 1990

