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With the aid of the reduced graph expansion relating different order 
multiple interaction vertices and the exact spectral densities, we show 
that a strongly coupled Fermi system can allow solutions for the 
spectral density which scale under simultaneous scale changes in the 
energy and temperature. This implies a functional form for the spectral 
density which falls off as a power tz of frequency between 0 and -1 .  
The theory describes Zkr = 0 quasiparticles with a Fermi surface 
consistent with Luttinger's theorem while the spin and charge 
susceptibilities have imaginary parts of the form (w/T)T t+zu at low 
energies. The approach reproduces some features of both the Luttinger 
liquid and marginal Fermi liquid phenomenologies. 

ONE OF THE MOST important issues facing 
condensed matter theory today concerns the nature 
of the normal state of high temperature super- 
conductors. The peculiar properties of this normal 
state suggest that there exist solutions to the 
interacting electron problem that are drastically 
different from the Fermi liquid description. How- 
ever, there exists at present no general framework 
analogous to microscopic Fermi liquid theory within 
which such systems can be placed. In this paper we 
address this issue by examining the overall structure 
of pertur-bation theory for an interacting one band 
model at general order. We shall prove rigorously the 
existence of scale invariant solutions for the spectral 
density which dominate the single particle spectrum 
in the limit of strong coupling and are valid solutions 
regardless of the physical dimension. 

Our approach includes the two dominant schools 
of thought which bypass the conventional Fermi 
liquid description. One of these, the Luttinger liquid 
approach [1], proceeds by analogy with the one 
dimensional Hubbard-Heisenberg model, which 
through bosonization, the charge and spin fluctua- 
tions exhaust the spectrum near the Fermi surface. In 
the other approach, the "marginal Fermi liquid" 
picture, the width of the excitation spectrum is 
proportional to the temperature, or the frequency, 
whichever is larger. Moreover, the extremely broad 
nature of the quasiparticle damping is thought to 
arise from singularities in the three particle scattering 
amplitude [3]. 

In this paper we use the analytic properties of 

perturbation theory to discuss the properties of all 
intermediate states, with multiple electron-hole pairs, 
on an equal footing. Our approach derives ultimately 
from that developed in high energy theory in the 
1960s (the S-matrix approach) for treating the strong 
interactions [4]. In this pre-QCD era theorists used 
such general properties as unitarity and analyticity of 
the S-matrix to derive relations between the real and 
imaginary parts of scattering amplitudes and cross- 
sections. 

The underlying basis for such theoretical 
approaches was provided by the Landau-Cutkosky 
rules [5] whereby the imaginary part of a scattering 
amplitude was related, by making cuts across 
intermediate many-particle states, to products of 
higher order vertices [6]. Langer formulated the 
interacting electron problem in such terms [6] and 
the technique has been used to discuss impurity 
scattering [6] and the T 3 in T component of the 
specific heat of a Fermi liquid [7], amongst other 
problems. 

Our treatment of a general interacting one band 
model will follow that of Larsen [8] and Mattuck [9] 
who used the reduced graph expansion to show the 
presence of strong coupling scale-invariant solutions 
to the single impurity Kondo problem [10]. Being a 
two-fermion problem the Kondo problem possesses 
two different spectral densities and Mattuck's scale 
invariant ansatz assumed that the conduction 
electron spectrum scaled in a trivial fashion 
(connected with the fact that the conduction states 
are essentially unaffected by the local exchange 
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interaction). For a lattice two band model this can no 
longer be assumed and we therefore proceed with the 
one band case since the diagrammatic formu-lation is 
simpler and statements concerning scale invariance 
can be made more precise. 

We shall show that scale invariance in the strong 
coupling regime leads to a power law dependence of  
the spectral density on energy, on condition that the 
frequency and temperature scale together. The 
reduced graph expansion then links up the power 
law variation of the spectral density with higher order 
vertices, including the irreducible self energy. This in 
turn places bounds on the power law failoff of the 
spectral density which are consistent both with angle- 
resolved photoemission experiments (ARPES) [11] 
and exact results for the Hubbard-Heisenberg model 
in one dimension [1]. 

Our starting point is the reduced graph expansion 
rules as given by Langer [6] or in the appendix of  
Mattuck [9] whereby the imaginary part of a 
scattering amplitude involving n fermion lines can 
be written in terms of higher and lower order 
endpiece vertices for a given number of  intermediate 
particle or hole states. Each of these intermediate 
states involves merely the spectral function A(x, T) 
multiplied by the Fermi function for particles or holes 
(in the following {x} denotes the set of internal 
frequencies, and the set of  external frequencies is 
denoted by {y}), integrated over the internal fre- 
quency. The endpieces which themselves are made up 
of lower order Feynman diagrams are denoted by 
R. A F~,m where n denotes the number of lines entering 
and m denotes the number of lines leaving, and R(A) 
denote retarded (advanced) vertices. 

The spectral densities and vertex endpieces are 
themselves momentum dependent - however since 
this is not germane to our analysis we do not make 
these dependencies explicit. Finally, energy conserva- 
tion is ensured with the aid of a delta function, and an 
overall inverse Fermi or Bose function whose 
argument as the sum of all external energies is also 
included. The resulting expression for the imaginary 
part of an nth order endpiece shown in Fig. 1 is 

zT l lml-'~{yzn} = ~-~A/j exp + (-1)  p-I ( -1)  h 
"" 6,p L 

P 
J H dxr A(Yr, T)f[("l-Xr)]~(x I -~X 2 -~ x p -  Z y )  R 

x r,_6.p{y- ne, xr}AI'p.,+~{Xp, Yn+6}, (1) 

where the factor Ai4 refers to the sign of a particular 
combination of endpieces (themselves labeled by i 
and j). The symbol p is the number of intermediate 
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Fig. 1. The diagrammatic relation between a general 
vertex with n fermion lines entering and leaving, and 
other endpiece vertices with n -  6 and n + 6 lines 
entering and leaving the graph. Of the p internal lines, 
h of  these are hole lines. 

states and h is the number of  hole propagators. It is 
particularly important to note the role played by the 
Fermi functions since these dictate that, under 
scaling, both energy and temperature have to be 
scaled together. Another point to notice is that the 
spectral functions in the reduced graph expansions 
are the exact ones, and the expression (1) holds 
regardless of the model (Hubbard, extended 
Hubbard) invoked. 

The crucial aspect of  equation (1) is that it is 
invariant under a simultaneous rescaling of  all the 
energy variables and the temperature by a scaling 
factor b as long as the endpieces and spectral density 
scale are as follows 

r .  {y.} = b~+~"r.{y./b}, (2) 

A(x, 73 = b"A(x/b, T/b), (3) 
and the components are determined from the balance 
of the right and left hand sides. This in turn requires 
the coefficient of p in the exponent to be zero. 
Consequently the nth order vertex scales as follows: 

F,{y,} = b'-"I'+")F,{y,/b}, (4) 

which leaves only the parameter # undetermined. 
Note that such scaling of  the endpiece vertices implies 
that all Feynman diagrams with a specified number 
of lines entering and leaving scale in the same 
manner. The scaling (3) requires that A(x, T) take 
the form 

A(x, T)=]- (x /T)T  u (5) 

and jT(0) is non zero, and homogeneity in x and T 
requires that for large arguments f(y)~_ yU . The 
exponent # can be bounded if we realize that the 
power law decay of the self energy is simply related to 
the lowest order irreducible vertex Fl(y, T). This is 
found from equation (2) to be Fl(y ) ~ y-U in the 
limit of zero temperature. To be consistent with the 
above expression for the spectral density it is 
necessary that the self energy wins out over the 
linear term and the band energy ek in the expression 
for the single particle Greens function 
G(k, w) = [ w - e k - E ( w ) ]  -1 in the limit of low 
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Fig. 2. Reduced graph for the two particle vertex 
involving only two particle intermediate states. 

energy (relative to a cutoff energy scale to be 
determined below). This then requires that # lies 
between zero and minus one. Of course at low enough 
frequencies the band term will become important and 
scale invariance breaks down but we shall show that 
this regime becomes arbitrarily small relative to the 
scaling region as the strong coupling regime is 
approached. 

Normalization of the spectral function is then 
only possible if a high energy cutoff A is imposed on 
the spectrum, beyond which the spectral function is 
taken to be zero. As a result the spectral function and 
self energy take the form 

2 1 (w/A)~ ' (6) 
,,l(,,,, O) = (1 + U) -j 

~-~(~, 0) = A(o~ + in)(~,lA)", (7)  

where a and fl are constants and the KramersZ 
Kronig relation has been used to show that the real 
and imaginary parts of the self energy have the same 
energy dependence. As a result the condition that E 
be larger than w -  ek in the single particle Greens 
function requires that A >> ok. This scale can only be 
determined in principle by solving completely but we 
can estimate A for a particular model by truncating 
equation (1) at the two particle level and seeing over 
what energy range the scaling form for the two 
particle vertex remains valid. As equation (1) 
describes the strong coupling limit correctly all the 
intermediate state contributions are equally impor- 
tant and should all contain the same energy 
dependence. Hence the two particle state at least 
represents qualitatively the energy dependence of the 
full solution to equation (1). 

We therefore turn to the one band Hubbard 
model and examine the two particle graphs shown in 
Fig. 2 for which the Landau-Cutkosky rules give 

ImF2(w, r ) =  (e ~ " -  1 ) l F 2 ( w  , T)I2JdlA(1)f(I) 
J d2A(2)f(-2)6(w+ - 2). (8) l 

Fig. 3. Self-energy contribution from the two particle 
vertices. 

Fig. 4. Graphs contributing to the dynamic spin 
susceptibility. Wiggly lines denote the external field. 

At large energies the bare interaction U has to be 
recovered and the usual parquet type solution ensues 

F2(w) = U/[1- Ux(w)], (9) 

where X(w) denotes the Lindhard function calculated 
using the spectral densities given by equation (6). This 
is readily evaluated and at T = 0 the low energy form 
of this expression is 

x (~) ~ ( 1 / a )  ( ~ / a )  '+2~. 

Inserting this back into equation (9) we find that for 
w >> A the scaling form (4) is recovered. However, as 
the energy is increased the first term in the 
denominator becomes more important and the 
scaling behavior breaks down. If this energy is to 
correspond to the cutoff A then we can see how this 
determines the limits of the scaling behavior by 
examining the lowest order contribution to the self 
energy Z (shown in Fig. 3) which involves three 
internal lines and the endpieces given by equation (9). 
For small values of the external energy w the scaling 
behavior given by equations (4) and (7) holds. 
On increasing w to energies of the order of 
A(U/A) 1/0+2~), the endpiece I' 2 approaches a 
constant and from Fig. 3 this puts an end to the 
w -~ scaling behavior of Z(w). Since this energy is by 
definition equal to A this implies that A ~ U. Hence 
the interaction strength determines the magnitude of 
the cutoff and the limit to scaling. From our earlier 
argument regarding the validity of the scaling 
approach to be A >> E k we see that the scaling 
behavior in equations (4) and (7) is valid in the 
strong coupling limit of the Hubbard model. 

We now explore further the consequences of the 
scaling behavior of the spectral density and self 
energy. F o r  small band energies relative to the 
temperature a peak is expected at low frequency 
whose width is proportional to temperature. At band 
energies much larger than the temperature (as is the 
case for ARPES measurements) the peak width has 
more of a quasiparticle character marking the low 
frequency limit to the scaling behavior, and should 
track with the band energy ek. However the most 
important consequences of our analysis concern the 
frequency dependence in the "incoherent" region at 
higher frequencies. There we naturally reproduce the 
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exponent falloff observed in the ARPES measure- 
ments. Furthermore we require that the exponent be 
between zero and minus one. 

Experimentally the long tails appearing in 
ARPES measurements suggest there is some evi- 
dence for a power law behavior with I/z] < 1 in 
Bi2Sr2BaCu208 [1, I1, 12] In fact, careful fits of  
normal and marginal Fermi liquid line shapes (Liu 
et al. [12]) require a subtraction o f  an immense 
inelastic background. Preliminary fits of a power law 
indicate that/~ ,-~ 0.7 [12]. 

Theoretical support for the validity of the present 
approach can be found in one dimension where a 
combination of  exact results and orthogonality 
catastrophe arguments for the infinite U Hubbard 
model imply that the spectral function decays with a 
power law of -7 /8  [1, 11]. Our results are 
independent of dimension, and therefore suggest 
that the Luttinger liquid phenomenology may well 
be valid in two dimensions. A simple consequence of  
the self energy (7) is that the Fermi surface (obtained 
by setting w = Ek = 0 in G(k, w)) is the same as in 
the non-interacting system, while the weight factor 
Zk = 1--(OE/Ow)I~=Ek vanishes at the Fermi sur- 
face. The momentum distribution near the Fermi 
surface varies as a power law nk - nk, ~ Ik - kF] l+~' 
again in a manner consistent with Luttinger liquid 
results [1, 13]. 

A further consequence of the Landau-Cutkosky 
rules relates to the dynamic spin and charge 
susceptibilities, which couple external fields to pairs 
of incoming and outgoing fermion lines. The lowest 
order insertion to these lines is the graph in Fig. 3, 
which from equation (8) leads to the appearance of 
an overall inverse Bose factor, since only a two 
particle intermediate state is involved. Although 
higher order insertions involve intermediate states 
with odd numbers of lines, in order that they should 
contribute to the susceptibilities the ends of these 
lines have to be tied together. The result of tying the 
incoming and outgoing lines to the external field is 
that overall, cuts can only be made across even 
numbers of fermion lines (see for example Fig. 4). 
The result is that all graphs yield an overall inverse 
Bose factor whose argument is the external fre- 
quency. Thus the imaginary parts of the spin and 
charge susceptibilities have the following linear 
dependence on frequency at finite temperatures 

Im Xsp, Xch ~ (w/T)  Tl+21', 

which is obtained by expanding the inverse Bose 
factor to leading order in the frequency. The 
remaining factors in the expressions for X,.h and X~ 
obtained from the Landau-Cutkosky rules have a 

finite limit as w ~ 0. This result is consistent with the 
large background Raman intensities [14] and shows 
linearity in frequency on a scale proportional to 
temperature as in the marginal Fermi liquid hypoth- 
esis [2]. The overall prefactor, however, is itself a 
power of  temperature. It would be interesting to test 
this overall scaling factor by measuring the tempera- 
ture dependence of the Raman background intensity 
and linking it with the ARPES data. 

In conclusion, we have shown from general 
considerations, independent of dimensionality about 
the structure of perturbation theory at general order 
that the simple observation that the strong coupling 
regime allows scale invariant solutions leads to a 
spectral density with a power law falloff as a function 
of energy. The scaling form of the spectral density 
extends as far as a cutoff of  order of the interaction 
strength and in the limit of strong coupling should 
dominate the single particle spectrum. The scale 
invariant solutions are homogeneous in frequency 
and temperature and to that extent are consistent 
with the marginal Fermi liquid hypothesis. Further- 
more, the Landau-Cutkosky rules imply that the 
imaginary parts of the spin and charge susceptibilities 
are initially linear in frequency on a scale determined 
by the temperature with a temperature dependent 
prefactor that determines the variation of the Raman 
background intensity. Overall, this approach 
provides a general framework within which the 
strongly interacting electron problem can be 
studied. Work is currently in progress on incorporat- 
ing momentum dependent corrections into the above 
treatment, with the hope of understanding the effects 
of dimensionality. 
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