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1. INTRODUCTION 

In the referenced paper [ 11, the author examines the stability of the planar, linear response 
of a suspended cable subjected to harmonic axial loading. The study is motivated by a 
desire to understand the dynamic stability of cables employed in structures such as cable- 
stayed bridges or guy-towers. In these applications, the harmonic axial load derives from 
the dynamic reaction of the structure at the connection with the cable. 

The problem of interest is illustrated in Figure 1, and consists of a uniform small-sag 
cable suspended in the vertical plane between two level supports separated by a distance 
1. In the absence of any excitation, the cable hangs under gravity by an amount f and a 
static horizontal load H, develops at both supports. In the author’s paper, the cable is 
then driven by a harmonic “longitudinal” load H, cos f2t which, in the context of the cited 
applications, is applied to the cable at one (or perhaps both) supports. 

2. DISCUSSION 

The author begins his analysis by proposing a model that is based on a result from the 
small-sag elastic cable theory of Irvine and Caughey [2]. The proposed model, however, 
represents an improper extension of results in reference [2] and leads to erroneous conclu- 
sions regarding dynamic stability. 

2.1. Author’s model 

The author [l] proposes the following equation of motion governing planar, linear 
response : 

s 

I 
(H,+H,cosRf)w,,-@./1*)*(EA/L,) wdx=mw,,,, =(O, 0, (1) 

0 

with ~(0, 1) ??= ~(1, t) =O. (The limits 0 and 1 on the integral term in equation (1) are omitted 
in reference [ 11.) Here, w is the dependent variable representing the vertical component of 
the cable displacement (from equilibrium) and x and t are independent space and time 
variables, respectively. EA is the cable cross-section stiffness and LE= I (1 + 8.*/r*) repre- 
sents the (approximate) equilibrium cable arc length. 

The equation of motion (1) is based on the free vibration theory of small-sag elastic 
cables developed by Irvine and Caughey [2]. In reference [2], Irvine and Caughey consider 
a cable suspended between two fixed supports and application of the resulting geometric 
boundary conditions ultimately leads to the integral (membrane or stretching) operator 
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Figure 1. Definition diagram for small-sag cable, reproduced from reference [I]. 

which also appears in equation (1). This operator captures the possible (quasi-static) 
stretching of the cable induced by dynamic cable response. However, as shown next, 
whether such “stetching” exists depends: (1) on the nature of the deflection w, and (2) on 
the nature of the boundary conditions. For the free response of cables with fixed supports, 
Irvine and Caughey [2] note from equation (2) that symmetric vibration modes do, while 
antisymmetric vibration modes do not, induce (first order) stretching. 

In developing his model, the author has overlooked the fact that the boundary conditions 
describing his problem differ from the geometric (fixed) conditions considered by Irvine 
and Caughey [2]. In particular, the condition describing the dynamic force transmitted to 
the cable is a natural boundary condition. Properly accounting for this boundary condition 
significantly alters the form of the equation of motion from equation (1) assumed by the 
author. Consider the following two cases. 

2.2. Case A : cable driven by harmonic end-load 
Using reference [3] as a convenient starting point, the non-linear equations of motion 

describing the planar response of an elastic cable about a planar equilibrium with arbitrary 
sag are, for the tangential component Ur , 

[EA&+(P+EA&)(UI,s-KU2)],s-K(P+EA&)(Uz,s+KUI)=mU,,,,, 

and for the normal component U;?, 

(3) 

[(P+EA&)(U2,S+KU,)],S+~(IEA&+(P+EA&)(U,,s-KU*)]=mU2,,,. (4) 

In this formulation, the planar response of the cable is resolved into the components 
U,(S, t) and Vz(S, t) aligned, respectively, with the tangential and normal directions 
defined by the equilibrium curve; see Figure 2. The arc length co-ordinate of the equilib- 
rium curve is denoted by SE(O, L,) and 

E= v,.,-KCI~+:[(U,.s-KU*)*+(U*.S+KU,)*] (5) 

is the dynamic component of the Lagrangian strain of the cable centerline. The (non- 
constant) coefficients P(S) and K(S) appearing in equations (3) and (4) denote the tension 

H, + n, cos .l2t 1 P 
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Figure 2. Small-sag cable subjected to harmonic end-load. The cable forms the equilibrium (dashed curve) 
under self-weight and static end-load If,. Dynamic end-load H, cos Rr leads to planar motion about equilibrium, 
which is resolved into tangential U,(S, r) and normal U,(S, t) displacement components. 
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and curvature distributions of the equilibrium cable. For cables with arbitrary sag, these 
are given by reference [3] : 

P(S) = [HZ + (mgs)2]“2, W) = ~gKIw3 + (mgW21, (6) 
where H, will again denote the horizontal component of the cable tension. The equilibrium 
solution (6) describes the classical catenary cable of elementary statics. 

Following references [4, 51, the general theory (3)-(6) may be specialized to linear small- 
sag cable theory [2] as follows. For small-sag cables, a parabolic approximation to the 
catenary is used and, to leading order, the coefficients (6) are constant [5] (this approxima- 
tion is based on the fact that, for small-sag cables, H, >> mgL,) : 

W)=:He, K(S)zmg/H,= K,. (7) 

K, is identified as a small (curvature) parameter which is used to order the terms in 
equations (3)-(5). For small-sag cables, the curvature K, is related to the sag f and span 
I through K,= 8f/l*. 

Next, the inertia term on the right side of equation (3) is dropped on the assumption 
that the cable stretches in a quasi-static manner. This assumption is based on the fact that 
EAs H,. After doing so, and linearizing, equation (3) becomes, to leading order, 

EA&>s=O, (8) 

where, again, EA >> H, is used. Upon integration, this result states that the dynamic compo- 
nent of the cable tension Td is a function of time alone, 

Td(f) = EA( U,,s- KeU2). (9) 

Indeed, for Case A, Td(t) is prescribed by the (natural) boundary condition governing the 
transmitted load at the left support: 

TAO=EA(ULS - K, U,) = H, cos Rt. (10) 

Integration of equation (10) and application of the remaining geometric boundary condi- 
tion Ur(L,, t) =0 leads to 

[f 

s 

s 

4 
U,(S, T) =K, u2(tl, 0 dq - U2(rj, t) dq + (S- L,)(H,/EA) cos Rt (11) 

0 0 I 

and the tangential co-ordinate is eliminated from the formulation. Linearizing the remain- 
ing equation for transverse motion (4) about the solution (10) and retaining terms to order 
K, leads to the final result: 

[H,+H,cosRt]U2,SS+K,H,cosRt=mU2,trr (12) 

with U2(0, t) = U2( L,, t) = 0. 
The equation of motion (12) reveals that the tangential end-loading creates simultaneous 

parametric and external excitation for the transverse response. The excitation in the normal 
direction derives from the tangential end-load due to the non-zero equilibrium cable curva- 
ture. The same effect also arises when the tangential motion of the left support is a 
prescribed function of time [6]. Furthermore, the dynamic cable tension is determined 
solely by the applied tangential end-load and the integral (stretching) term in equation (1) 
is now absent in equation (12). Indeed, under conditions of free response (H,=O), the left 
support is free to move along the tangent direction (under the action of the static support 
load H,). In the case of constrained supports considered by Irvine and Caughey, the 
integral (stretching) term is present, as demonstrated next. 
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2.3. Case B: cable with jixed supports 
The same procedure as above is followed to re-derive the linear cable theory of Irvine 

and Caughey [2], in order to illustrate the key role played by the boundary conditions. 
Integrating equation (9) again and replacing the natural boundary condition (10) with the 
geometric boundary condition U, (0, t) = 0, and again using Ui (L,, t) = 0, leads to 

s 

L, 
Tdf) = -K&U/L,) U2(tl, 0 dtl, (13) 

0 

and 

[S 
s s L. 

WS, 0 = Ke uz(r7,0 dq - (S/L) U2(tl, 0 drl . 1 (14) 
0 0 

Thus, for case B, the dynamic cable tension develops from first order cable stretching. 
Linearizing equation (4) about equation (13) and retaining terms to order K, leads to the 
final result : 

s 

L 
HeU2.s~ - K,zW/L) 

0 

with U2(0, t) = U2(L,, t) = 0. The associated 

udtl, 0 drl =mb, 

eigenvalue problem 
response [5] is the same as that derived by Irvine and Caughey [2]. 

(19 

governing the free 

3. OBSERVATIONS ON DYNAMIC STABILITY 

In his paper [ 11, the author employs the symmetric eigenfunctions for a cable with 
fixed supports [2] as the basis for an eigenfunction expansion to equation (1). These 
eigenfunctions, however, do not satisfy the natural boundary condition (10) for the prob- 
lem of interest. In addition, they are not orthogonal with respect to the operator 
(H, cos nt)w, appearing in equation (1). As a result, the author obtains a set of coupled 
Mathieu-Hill equations governing the response of each “mode”; refer to equation (6) of 
reference [I]. The author proceeds to determine the stability boundaries employing the 
harmonic balance method and, from the particular coupling, concludes that sum-type 
combination resonances exist. 

The opposite conclusion is reached upon considering an eigenfunction expansion solu- 
tion to equation (12). For Case A, the associated eigenfunctions, which are those of a 
simple taut string, are orthogonal with respect to all operators in equation (12) and lead 
to the decoupled equations 

di, + o: 
( 

I+ 2 cos Rr 
) 

a, + 6,K,H, cos Rt = 0, n=l,2,.... (16) 
c 

Here, a,(r) governs the response of the nth mode having natural frequency on= (nrc/ 
LN&Im)“2, and for which 

&CL 
rlk J 

x [(-l)“- 11. (17) 

Thus, no combination resonances exist. Moreover, for antisymmetric modes (n= 
2,436, . . .), the external excitation vanishes (Q,=O) and equation (16) reduces to the 
classical Mathieu equation. For symmetric modes (n= 1, 3,5, . . .), however, the constant 
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C,, does not vanish and these modes experience simultaneous parametric and external 
excitation. The combined effect of these two excitations is the subject of numerous studies; 
see, for example, references [7, 81. 
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