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Abstract-The transient convective-transport heat transfer equation is applicable to many manufacturing 
processes when analyzing their thermal behavior. The finite element formulation for such a problem on 
a process domain produces a system of ordinary differerential equations which is characterized to be 
‘stiff. Careful handling of the solution is required in order to avoid oscillatory and inaccurate results. 
This problem can be avoided by selecting a suitable recurrence scheme together with an efficient steplength 
control algorithm. In this paper an automatic steplength control algorithm has been developed and 
implemented in a finite element program for the transient convective-transport equation. The algorithm 
has been tested using an example representing a manufacturing process. 

1. INTRODUCTION 

The conv~tiv~trans~rt equation is applied to 
many manufacturing processes to determine the tran- 
sient temperature distribution [l-7]. It is applied to 
metal cutting, metal casting, forming, welding, etc. 
The analytical solution is found to be difficult and 
often not possible in such applications due to the 
complexity of the problem [4]. Therefore, numerical 
methods such as finite difference and finite element 
are usually employed. The finite element fo~ulation 
produces a system of first-order ordinary differential 
equations (ODES). The system of ODES is found to 
be, in most cases, very ‘stiff’ and produces oscillatory 
results when the time step is inadequate at the initial 
stages of the solution [8,9]. In order to avoid these 
problems, there is a need for an automatic time 
steplength control algorithm which can be used to 
automatically determine the time steps for a stable, 
accurate and economic solution [IO]. This paper pre- 
sents a new automatic steplength control algorithm 
that is used with suitable recurrence schemes in 
solving such systems of ODES. It also gives a dis- 
cussion for the formulation of the problem, and the 
selection of the recurrence schemes. 

2. PROBLEM DEFIN~ON 

The energy equation which governs the heat 
transfer mechanism in metal cutting and other 
manufacturing processes is the conductive-transport 
~uation in the form 

PC ( aT ar aT 
;5;+uz+vdy+ wg)=&g) 

+t(&$)+~(kf)+Q on fi, (1) 

where p is the density, C is the specific heat, and II, 
v, and w are the velocity components in x, y, and z 
directions, respectively. Similarly, k,, k,, and k, are 
the thermal conductivity components corresponding 
to the principal axes X, y, and z, respectively. T is the 
temperature and Q the rate of heat generation. 

Equation (1) is applied to the process domain $2) 
and subject to the boundary conditions describing the 
heat flow or temperature situation on the boundary 
of the domain. The part of the boundary on which the 
heat tiows by conduction or convection is referred 
to as ‘Cauchy’ boundary conditions (r,) and is 
represented mathematically as 

+h(T-T,)=O on r2 c I”, (2) 

where rrY, n,,, and n, are components of the normal 
vector, h is the total heat transfer coefficient, and T, 
is the temperature of the environment. 

The other boundary condition, where the tempera- 
ture is known, is referred to as Dirichlet boundary 
conditions or specified temperature boundary (r,) 
and is represented mathematically as 

T = T(x, y, z, t) on f, c r, t > 0. (3) 

The temperature distribution in the domain (Q) can 
be obtained from the solution of eqn (1) subject to 
the initiai condition at t = 0. It is mathematically 
represented by 

T = T,(x, y, z, t) on R, t = 0. (4) 

This is a time-dependent heat flow problem which can 
be solved to obtain the temperature distribution at 
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different time intervals. The analytical solution of 
this problem is complex. Therefore, the finite element 
method has been employed. 

Finite element formulation approaches, such as 
weighted residuals with Galerkin’s criterion or other 
fo~ulations [I I, 121, are used to derive a general 
element equation for the governing energy equation 
[eqn (I)] and the applicable boundary conditions 
[eqns (2) and (3)]. Then, the element equations can be 
explicitly evaluated for a particular element shape 
and an appropriate set of interpolation functions. 
Following the usual global assembly method, a 
system of first-order ordinary differential equations 
is obtained in the following form 

[Cl(q+wl~q+~q=0, (5) 

where T(x, y, z, t) denotes the field variable, [K] is the 
convective-transport element matrix, ]C] is the heat 
capacitance matrix, and {F} is the global load vector. 
In order to obtain the temperature distribution, this 
system of ODES is to be solved using a suitable 
recurrence scheme subjected to initial conditions such 
as eqn (4). At this point it is important to mention 
that: 

(a) the coefficients of the [#I matrix in eqn (5) 
are non-symmetrical because of the first-order 
derivatives (the convective-transport part) in 

eqn (1); 
(b) the system of ODES [eqn (5)] is found to be 

‘stiff’ (the ratio of the highest to lowest eigen- 
values is very high) which necessitates very 
small steplengths at the initial phase of the 
numerical solution in order to avoid oscillatory 
results; 
the finite element solution of the steady state 
convective-transport problem gives oscillatory 
results if the mesh size exceeds a certain critical 
value [13], which may not be avoidable in many 
applications in manufacturing. 

(4 

In order to avoid the oscillatory results during 
the steady-state solution [problem stated in (c)] an 
‘upwind’ finite element scheme was adopted [13]. 
However, in order to avoid the problem stated 
above in (b) and (c) a suitable recurrence scheme 
and an automatic steplength control algorithm are 
needed to maintain the stability of the numerical 
solution. 

3. RECURRENCE SCHEME FOR 
SOLVING ODEa 

A recurrence scheme can be used to find a solution 
for eqn (5) in the time interval (0, t,), at times t = I,, 
$9.. f , t,, Ocr,<$,...,r,,,=r,,. Such a scheme 
transforms the system of ODES into a system of 
algebraic equations of the following form 

[H](T),+,=fb), n=0,1,2 ,..., m-l (6) 

in order to maintain the sparse (banded) character- 
istic matrices. Here [H] is the ~haracte~stic matrix of 
the scheme [S]. There are several recurrence schemes 
which can be employed such as two-point, three- 
point, and four-point recurrence schemes. High order 
recurrence schemes are more accurate but at the 
same time they require large memory computers and 
long computation times. In this work, a two-point 
recurrence scheme has been selected. It can be derived 
based on finite difference formulation [8] or finite 
element formulation [14]. The general form of the 
two-point recurrence scheme derived based on finite 
element formulation using the weighted residuals 
methods, takes the form 

+((I - @,ir’l, + @{&i+ I) = 0, 

n=0,1,2 )...) m-l. (7) 

Denoting 

and 

(74 

which yields eqn (6). This recurrence scheme is 
called B-method. setting 6 = 0 in eqn (7) yields the 
Euler forward difference scheme, while 8 = l/2 gives 
the Crank-Nicholson-Galerkin (trapezoidal rule) 
representation and fl = 1 .O yields the Euler backward 
difference scheme. 

The stability conditions for the solution of such a 
system of ODES using the above recurrence- scheme 
have been studied by several investigators [g-14]. 
These studies concluded that the use of l/2 c ~9 < 1 
is recommended to obtain a numerically stable sol- 
ution. However, the use of B = l/8 is found to be 
optima1 [13]. The stability of the solution of the 
system of ODES requires a small time steplength 
in the initial phase of the numerical solution. This 
restriction can be overcome by employing a time 
step control scheme to control the step size and 
solution stability. Therefore, there is a need for a 
steplength control algorithm which can automatically 
determine the time step for stable, accurate and 
economical solution. In the following section, an 
algorithm has been derived to automatically control 
the step length for the implicit two-point recurrence 
schemes (6 > I/2). 
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4. STEPLENGTH CONTROL ALGORITHM 

In general, the strategy of controlling the 
steplength for certain recurrence scheme is to choose 
the largest possible steplength (At) for which the 
local truncation error (ET) remains upper bounded 

Table 1. Error formulae for O-scheme 

e 6 Q3 ET 

L 2 I 
-Ti -8 T”‘(r) At3 

1 i-0 (; - 0) TC2’(r)At2 

by a certain specified maximum allowable error [9]. 
The local truncation error for the linear multistep 

the limits. Once ET is determined for the nth step, 

recurrence schemes can be expressed in the form 
the value of a and the new steplength can be 
approximated using the backward difference formula 

ET = D6T(6+‘)(t)(Af)6+’ + @AQ6+‘, (8) 
as follows: 

where 6 is the scheme order, T@+ ‘1 (7) denotes 
T’(t, - At) = T’(r) -AC’(t) + o(At). (12) 

the (6 + 1)th derivatives of the solution T(r) at 
t =7 and t,,<r <,,+,, and D, is the error constant 

Hence, 

that depends on the order of the scheme. The values T;- T;_, 

of D6, 6 and error formulae are given in Table 1 
T; = 

At, ’ 
(13) 

for the two-point recurrence schemes (B-method) of 
eqn (7). Assuming that the allowable truncation error Similarly, Th and TA_ , can be determined from the 

per step is E, then for a steplength At used with first- following equations 

order schemes, we have 

(ET1 = ID,T’*‘(r)(At)*j < E. 

T’ = T,- C-1 

(9) 
n 

A tn 
(14) 

Let the steplength be changed to AI, = adr, then 

) ET, I = ID, T’2’(7)(At,)21 = 1 D6 T(*‘(r)(aAr)*( 

T:_, = 
Tn-, - Tn-2 

At,-, ’ 

Substituting (14) and (15) in (13), we get 

(1% 

= a21 ET1 < E (10) T,,= Tn-(1 +an)Tn-,+@,Tn-2 
n A tT, (16) 

and a can be determined from the relation 

c( =J(G&)~ 

If we consider T,” (7) = Ti , i.e., taking 7 = tn, then we 

(11) 
can write the formula to estimate ET, for the n th time 
step, for the two-point recurrence schemes of 0 > l/2 
as follows: 

where SF is taken as a factor of safety, which can be 
determined experimentally to keep the error below ET=(f-O)(Tn-(1+a,)Tn_,+a,T,,_2). (17) 

Fig. 1. Mesh and thermal boundaries. 
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Table 2. Boundary data and properties of the chip material 

Boundary data 
Shear plane temperature (r,) 703.91 K 
Strength of friction heat source (qf) 42.94 W/mm* 
Heat transfer coefficient (h) 0.00248 W/mm* K 

Properties of the chip material (carbon steel grade 1035) 
Thermal conductivity (K) 0.052338 W/mm K 
Volumetric specific heat (C) 0.0034757 J/mm’ K 

Estimating the error ET at the starting point is 
not an easy task because three values of T (T,, T, _ , , 
and T,, _ 2) are required. Therefore, a starting routine 
should be established to begin the iteration. The 
starting procedure is to choose any steplength At 
and move two steps, then estimate ET. If 1 ET 1 < E, 

determine the new steplength and the solution can be 
proceeded. But, if 1 ET 1 z=- E, determine (a) and a new 
starting steplength and repeat the starting steps until 
(ET1 becomes less than E. 

For a system of equations, the error is equal to the 
L, Euclidean norm of the individual elements of ET, 

which is defined by 

800 

700 --r 
Iy,, , ,Iy 

0.000 0.001 0.002 0.003 0.004 0 

II ET I/ L> = &ETIT{ET)). (18) 

The relative error is usually used with ‘stiff system of 
ODES instead of the absolute error. The relative error 
is defined as 

IlET =+= 
” 

where {T}, are the values of the function at the nth 
step. The above algorithm has been implemented in 
the finite element program which has been developed 
for a three node triangular element and tested with 
0 = 2/3, 7/8, and 1. The next section provides a 
practical example for testing the above algorithm 
along with presentation of the results. 

5. TESTING THE ALGORITHM 

In order to test the algorithm, the chip flow in 
metal cutting has been selected since the transient 
convective-transport equation [eqn (I)] is applicable 
on the chip domain. The chip domain, together with 
the thermal boundaries, is shown in Fig. 1. The shear 
plane (AB) temperature (T,) is taken as the average 
temperature of the shear plane heat source and con- 
sidered as the prescribed temperature boundary, i.e. 

WA Y) = To x =o,o<y <II,, (20) 

where h, is the chip thickness. The tool/chip inter- 
face zone (AC) is a conductive boundary which is 
assumed to be a plane heat source with uniform 
strength (q,), i.e. 

05 

Time (SW) 

Fig. 2. Transient nodal temperature for node 37. 

At a distance far from the heat generation zone, 
the chip temperature is assumed to be uniform. Thus, 
no heat is conducted and the boundary is considered 
insulated. Similarly, for the remaining boundaries, 
the convection and radiation to air are neglected, and 
therefore, the chip is considered insulated, i.e. 

aT(x, Y, 0 
ih 

=o, lccx~51c,y=o 

and O<x < 51,,y =h,. (22) 

The boundary data and the properties of the chip 
material are given in Table 2. The initial condition is 
assumed to be the room temperature, i.e. 

T(x, y, 0) = 293 K. (23) 

200$ . I 1 I . I . 

0.000 0.001 0.002 0.003 0.004 0. 

limo (SW) 

105 

k Wx, 0) + Wx, 0) 
- ax aY > 

=q,, o<x< 1,. (21) 
Fig. 3. Transient nodal temperature for Node 60. 
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2004 . I . I . I I . I 
0.000 0.001 0.002 0.003 0.004 0.005 

Time (SW) 

Fig. 4. Transient nodal temperature for Node 96. 

The transient temperature distribution in the chip 
was obtained for three different values of (0 = 2/3, 
7/8, and l), and a time span of 4msec where it is 
expected to reach steady-state. The truncation error 
is assumed to be bounded with E = 0.001. The tran- 
sient temperatures at time points with the solution 
using f7 = 2/3, 7/8, and 1 are plotted in Figs 2-4 for 
node 37, node 60, and node 96, respectively. It is seen 
that the instantaneous nodal temperatures obtained 
with the three values of 0 coincide (the differences 
indicated on the graph are from the plotting routine 
where it connects the points with straight lines), 
and no oscillation has been detected. The time step is 
very small at the start and increases as the solution 
progresses. The number of time steps to reach a span 
of 4 msec is 26, 17, and 22 for 0 = 213, 718, and 1, 
respectively. This indicates that 0 = 7/8 is optimal 

Table 3. Steady-state nodal temperatures 

Steady-state 
Node formulation e=1 0 = 718 0 = 213 

10 
37 
50 
56 
67 
80 
85 
82 
91 
96 

120 
130 
135 
137 
146 
150 
152 
157 
160 
166 
177 
180 

737.58859 737.5886 
780.03191 780.0319 
714.23343 714.2334 
766.89163 766.8916 
733.48651 733.4865 
109.41445 
744.05193 
820.396 
810.75347 
724.20741 
162.53476 
751.9697 
124.60535 
761.52496 
158.34968 
738.98989 
73 1.62899 
749.07478 
736.46429 
148.26782 
741.8936 

709.4144 
744.0519 
820.3959 820.396 820.396 
810.7533 810.7535 810.7535 
124.2013 
762.5316 
751.962 
724.5985 
761.5038 
758.3017 
7389454 
731.5868 
748.0438 749.068 
736.3306 736.4571 
748.0204 148.2559 
741.1884 741.8364 

737.5886 
780.0319 
714.2334 
766.8916 
733.4865 
709.4145 
744.0519 

724.2074 724.2074 
762.5341 762.5347 
75 I .9696 751.9695 
724.6053 724.605 1 
761.5244 
758.3585 
138.989 
73 1.6284 

737.5886 
780.0319 
713.2334 
766.8916 
733.4865 
709.4145 
744.0519 

761.5246 
758.348 
738.9878 
731.6265 
749.0744 
736.4646 
748.2629 
741.9227 

736.54605 736.8256 737.4881 737.5823 

since it requires the least computational effort. This 
result is in agreement with that obtained by other 
investigators [9, 131. 

The steady-state solution of the above problem, 
based on the finite element formulation for the steady 
convective-transport energy equation, has been ob- 
tained. The results obtained were, then, compared to 
the steady-state conditions for the three values of 8. 
Table 3 shows the steady-state temperatures for 
selected nodes on the chip domain. The nodal tem- 
peratures obtained with the four solutions are exactly 
the same. Hence, it is concluded that the steplength 
control algorithm is successfully working and 6 = 7/8 
is optimal. 
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