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Abstract. Analytical and numerical solutions are presented for the steady flow of an inviscid fluid about 
symmetric lifting profiles at an angle of attack in a plane sheared onset  flow for which conformal mapping 
plays a critical role. For uniform shear  (i.e. the onset flow speed varies linearly with position) in two 
dimensions,  the disturbance field is potential and hence a solution based on the conformal transformation 
technique may be constructed. The  Moriya transformation, which employs a leading-term transformation 
coefficient that stretches and rotates the field at great distances from the foil (as distinct from other classical 
transformations which leave the far field unchanged)  is used and, with a limited number  of terms selected for 
the transformation, a simple elegant solution is obtained that may be easily evaluated at arbitrary points on the 
foil contour. An additional investigation is reported for the field solution - involving a locally similar but 
globally non-uniform sheared onset flow - about one of the foils for which a simple O-type grid is analytically 
generated from the mapping function. These data indicate that the uniform-shear  solution overpredicts the lift 
and surface speed on the suction side of the foil relative to the more realistic onset  flow: the numerical 
solution predicts surface speeds that generally lie between those for the uniform flow and the uniformly 
sheared flow solutions. 

1. Introduction 

Although many flow fields of practical interest are well represented by a potential 
disturbance to a uniform onset flow, a significant number of practical problems contain 
vorticity in the onset flow. For example, the classical turbomachinery problem of a rigid body 
rotating in a spatially non-uniform onset flow (e.g., rotor in a passage, multi-stage pumps and 
turbines, marine propeller in a hull wake) as well as airplanes and sailboats operating in the 
atmospheric boundary layer near the earth's surface cannot be accurately analyzed with 
potential theory alone. Treatment of these special flow problems requires complex numerical 
procedures to be applied and often accuracy is defined by comparisons with other numerical 
solutions or with simpler analytic flow fields. Even when the flow field is three-dimensional, a 
comparison with two-dimensional solutions is often presented for proof-of-concept validation. 
Here we present some simple results for the flow of an inviscid incompressible fluid about a 
symmetrical profile in a sheared onset flow. In general, the governing equations are the 
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Fig. 1. Flow field schematic for sheared onset flow. 

continuity and the Nav ie r -S tokes  (or vorticity t ransport)  equations. When  the fluid is 
incompressible and inviscid and the fields is two-dimensional ,  the vorticity equat ion is 

D o J / D t  = O, (1) 

where the substantial derivative is indicated with the capital letters and o~ is the scalar plane 
componen t  of  the vorticity vector, ~o = V × q = wk.  This vorticity equat ion states that the 
vorticity of  a particle is unchanged  as the particle is convected with the field velocity. For  the 
special case of  a linearly varying onset  flow, say one at an angle a relative to the nose- ta i l  
line with the f ree-s t ream velocity defined relative to a coordinate  system aligned with the 
nose- ta i l  line as (see sketch in fig. 1): 

q0 = [Uo + K(  y cos a - x  sin a ) ] e ~ ,  (2) 

where e~ = i '  = cos a i + sin a j ,  the vorticity is constant  

~o = w o k =  - K k  (3) 

and hence any dis turbance must be a potential  one since there can be no change in the value 
of  vorticity as a particle moves into a region where there is a velocity componen t  in addition 
to the onset flow. Thus  we may take the velocity vector  to be 

q = qo + Vchl = qo + Up, (4) 

where ~b~ is the dis turbance potential  (and Up = V4~I is the per turbat ion velocity) that  tends to 
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a constant value far from the profile. From the continuity equation, the disturbance potential  
is governed by the Laplace equation 

V • Up = A2G = 0. (5) 

Solution of this equation, subject to the boundary conditions, is our  first problem. Once the 
solution is found, the loads may be derived from a modified Bernoulli equation. As shown by 
Yih (1969), an appropriate integration of the governing dynamical equation gives: 

p / p +  ½q2 + to0~ F = constant everywhere, (6) 

where ~ = q% + ~b I is the streamfunction of the flow; i.e. q = V × ( ~ k ) .  On the profile 
contour, the value of ~ is fixed and hence the third term of the modified Bernoulli equation 
merely adds a constant to the pressure. For a lifting foil, the body (or dividing) streamline may 
be a closed loop within the field or may be displaced to a great distance from the body (as it 
may be in pure potential flow also because of a logarithmic component  in the perturbation 
streamfunction ~b 1 associated with the circulation). For our simple onset flow, the streamfunc- 
tion far from the body tends to 

1 2 qr 0 =/do( y cos a - x sin a )  + K(½Y 2 cos2a + ~x sin2a - xy sin a cos a )  + H ,  (7) 

where H is a constant. Thus when the body streamline extends to great distances from the 
body (for which the streamline position y may tend to _+ ~), there may be an ambiguity in the 
reference level of the pressure. This ambiguity has been discussed by Tsien (1943), Atassi 
(1984) and others and we do not repeat  their comments.  If we take the pressure and reference 
speed to be p= and U 0 and the streamfunction to be 0 at some far-upstream point along 
y = x tan a,  then the pressure coefficient is: 

p - p ~  2to0~ B q • q 
Cp 1 2 1 ( 8 )  <2 vd 

which, to within an additive constant - that is a multiple of the (perhaps infinite) value of the 
streamfunction on the body, ~B--  is the familiar Bernoulli equation: 

Cp = 1 - q"  q /U,? .  (9) 

A knowledge of this traditional pressure coefficient is sufficient to determine loads on the 
profile. 

The problem just defined is one addressed by Tsien (1943) using the Joukowsky (1910) 
transformation. Tsien found a significant shift in the angle of zero lift that varies almost 
linearly with the gradient of the onset flow. One limit of our family of profiles is similar to his 
shape and our results for it are quite similar in trend. However our solution encompasses a 
family of profiles and is in a form readily accessible at arbitrary points. 

The basic procedure in 'a conformal transformation is to map the flow about a simple body 
into that about a more complex shape. One shape for which a solution can be readily defined 
is the circular cylinder. When the solution field is potential, a conformal mapping or 
transformation will provide the solution about another body. This process is addressed in 
many books on aerodynamics (e.g., Ashley and Landahl, 1965). One such transformation is 
that proposed by Moriya (1938, 1941), which has recently been revisited by Brockett (1989a). 
In the Moriya mapping, the region at great distances from the foil is stretched and rotated by 
taking the leading term in the mapping to have a complex-constant multiple. This additional 
feature is useful when the mapping is restricted to only a few terms, in which case an 
additional condition can be met with this leading coefficient. In particular, the chord of the 
transformed foil can be set to a fixed value (Brockett, 1989a), rather  than being dependent  on 
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the mapping parameters.  A simple relation is also found for stations on the two fields 
(cylinder and foil). This simplicity in point specification is desirable when making quantitative 
comparisons between numerical and analytical solutions. 

Although these data provide information for comparison with numerical methods and on 
the general influence of onset shear on surface speeds and loads, the analytic results may be 
somewhat different than the solution for locally similar non-uniform onset profiles. Murray 
and Mitchell (1957) have shown that the uniform shear results are not an adequate represen- 
tation for the non-uniform shear flow about a non-lifting circular cylinder. Also Payne and 
Nelson (1985) have experimentally evaluated an 18% thick profile in a wind tunnel with a 
non-dimensional shear gradient that is about K = 0.6 but with limited vertical extent of the 
field. They found the shape of the pressure coefficient curves was not altered greatly (and 
argued that the velocity gradient had a negligible effect on the aerodynamic load coefficients) 
but the magnitude of the absolute pressure was changed. The Reynolds number  of their tests 
was from 0.75 to 2 × 105 and hence together with severe adverse gradients associated with the 
aft end of the thick foil may have not produced results that are similar to fully attached 
turbulent flow. However, in combination with the analysis of Murray and Mitchell (1957) 
these experiments do suggest that an unbounded uniform shear flow may not be an adequate 
representation of real-flow situations. Hence a numerical solution has been undertaken to 
define the flow about one of the symmetrical profiles previously defined with the Moriya 
transformation. For this investigation, the conformal transformation of the flow field provides 
a simple procedure for defining a grid mesh for a finite-element field solution. A simple grid 
is specified in the circle plane and then mapped to one appropriate for the field about the 
foil. The simple grid may be a H-type grid if we select a set of irrotational streamlines and 
potential lines in the circle plane or may be an O-type grid if we select concentric circles and 
rays as the grid in the circle plane. Here  we select the O-type grid but believe the H-type will 
work as well. Our solution procedure is one that subdivides the perturbation velocity 
component  that arises in the flow with non-uniform shear into two components: one potential 
and one rotational. Specifically we define the three components of the total velocity vector: 

q =qo + Up + u S, (10) 

where q0 is the specified non-uniform onset velocity vector, Up is the (potential) perturbation 
response when the velocity vector (q~ + u S) is known #~, and u S is the velocity term associated 
with the vorticity dynamics of the problem. In this case, eq. (1) is used to define the vorticity 
field vector w S associated with the perturbation velocity component  u S (i.e, w = o~ 0 + cos). This 
approach has been proposed by Brockett (1986) for three-dimensional problems and is herein 
evaluated for two-dimensional flows. We use the fundamental  vector identity to define the 
perturbation velocity u(x) = up(x) + u~(x) 

1¢c,( x - s  ,,(x) = ~ [n(s) x.(s)] + - -  

1 w s k X ( x - s  ) 
+ 2~ ffs i;--~7 dS, 

x-s) 
ix_sl2 + n ( s ) . u ( S ) l x _ x l  2 dis 

(11) 

where n points into the field and the third (area) integral specifically defines the velocity 
component  u S as an improper  integral with integrable singularity at x. The vorticity vector ~o S 
is obtained from eq. (1) by iteration for a known u v. Once the total velocity vector is known, 
the pressure can be defined on the body contour to within an additive constant by eq. (9). We 

#1 The  combina t ion  q0 + u~ is somet imes  def ined  as the effective onset  flow since if it can be de f ined  or es t imated ,  
only poten t ia l  analysis  is r equ i red  to find a solut ion.  
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select a finite-volume time-marching scheme to solve eq. (1) using an initial condition u s = 0, 
with occasional updates of the total perturbation velocity to include a computation of u s from 
the area integral. We note that once a stable solution approach has been found based on this 
vorticity-velocity equation it can be directly extended to a non-inertial reference frame 
(Speziale, 1987). Herein, we outline our solution procedure and refer to Sub (1990) for 
further details. 

We present as results the analytical solution for the flow field about a class of symmetrical 
profiles derived from the Moriya transformation applied to the solution for a uniformly 
sheared onset flow about a circular cylinder. The surface speeds as well as the loads are 
derived. Selected streamline patterns are presented. In addition, numerical data for a field 
solution about one of these foils in non-uniform shear (using the O-type grid described 
previously) are presented to illustrate the difference between the uniformly sheared onset and 
a non-linear sheared one that is locally similar. In fig. 1 the general orientation and 
coordinate systems for the flow about the foil are shown. Two onset profiles are illustrated, 
one with a uniform gradient (q~= U0(1 + y ' ) )  and the other (q0 = U0(1 -  tanh y ' ))  with a 
similar local gradient but tending to constant values far to the sides of the foil. This second 
onset profile does not meet the conditions for a potential disturbance and the numerical field 
solution procedure just outlined must be applied. A feature of our solution for non-uniform 
shear is a reduction in the maximum value of the surface speed and a reduced lift compared 
to a locally similar uniformly sheared onset flow. 

2. Solution for uniform shear by conformal transformation 

The general Moriya transformation is specified as 

z = x + i y = C  l ( / a + C o +  Y'. C, ,a"/ (" ,  (12) 
n - I  

where z = x  + iy is the complex coordinate of a point in the physical plane (z-plane), 
( = s ~ + i~7 is the complex coordinate in the circle plane ((-plane), a is a characteristic length 
dimension (taken as the radius of a circle that is set to 1 for non-dimensionalization), and 
C,, =A,,  + iB,, are complex mapping constants. We consider only the case that a circle of 
radius a is t ransformed into a family of symmetric profiles (for which all B~ are zero). The 
coefficients A,,(n < 2) may be expressed in terms of a two-parameter  family (E, 8) be invoking 
both closure and that the profile chordlength extent between the leading edge, LE, and the 
trailing edge, TE, be unity (Brockett, 1989a): 

A l = ( 1  + 2 e ) / 4 ,  A , , = - e S ,  A 1 = ( 1 - 2 e ) / 4 ,  A 2 = e 6 .  (13) 

Then the coordinates (x, y) of an arbitrary point in the physical plane can be written in terms 
of the polar coordinates (r,  0) in the circle plane as: 

x( r, O) = A  o + ( A _ i r + A I / r  ) cos 0 + A 2 / r  2 cos 20, 

y ( r ,  O) = ( A ~ r - A , / r ) s i n O - A 2 / r Z s i n 2 0 ,  (14) 

for which the profile shape (r = a) is 
I x ( a ,  O) =-x(O) = 2  cos0 + E S ( c o s 2 0 -  1), 

y ( a ,  0) --y(O) = e ( s i n 0 - S s i n 2 0 ) .  (15) 

The coordinates of the TE and LE correspond, respectively, to (0.5, 0) and ( - 0 . 5 ,  0) in the 
physical plane, and (1, 0) and ( -  1, 0) in the circle plane. For 6 = 0, the profile shape is an 
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ellipse with thickness ratio r = 2e. A profile with a cusped trailing edge similar to a 
Joukowsky foil can be obtained by taking 6 = 0.5, otherwise (i.e. 0 < 6 < 0.5) the trailing edge 
has a round shape. The thickness ratio is given by (if 6 4= 0) 

3" ~ ) 1 / 2  [e(3 + ~ +  3262 )/166](3262- 2 + 2 1 / 1 -  3262 (16) 

at the location x = [(1 + e) - (1 - (1 + 3262)1/2]/166 - e6. The parameter  • is associated 
predominantly with the thickness of profiles and 6 predominately with the trailing-edge 
shape. The coordinates and surface speed are readily determined at arbitrary chordwise 
stations since the relation between x and 0 can be inverted (Brockett, 1989a): 

O(x)=cos- ' (  ¢1+166•(2x +4E6) - 1 )  
86e " (17) 

The complex (disturbance) potential F~(~') can be assumed in a form that satisfies the Laplace 
equation and the required far-field behavior: 

F I ( ~ )  = q~l + i4', = - i ( F B / 2 w  ) In ~" + c l~ ' - '  + C2~ "-2 + " ' ' ,  (18) 

where &l is the disturbance potential and 4'1 is the disturbance stream function. Here  the 
(disturbance) bound circulation is F B (with positive direction counterclockwise) and the 
complex coefficients c n = an + i/3n of the potential function F l ( ( )  are to be selected such that 
the kinematic body boundary condition and the Kutta condition at the TE  are met. 

The kinematic boundary condition (q • n [boay = 0) transformed to the circle in the g'-plane 
becomes #2 

r - '  1 O 4 ' l / i ) 0 ] r =  1 = - - q 0  " n  [ d z / d ( 1 )  [¢_e,O, (19) 

where the undisturbed (sheared onset) velocity qo in the z-plane is given by eq. (2). From eq. 
(19) the unknown coefficients c n in the potential, a n and /3n (made non-dimensional by the 
chordlength c, the radius of the circle a and the reference speed /2o), are determined; the 
coefficients with n greater than 4 in eq. (18) being zero: 

0/1 = ( A - 1  - A 1 )  c°s a + 12K(A-lA2 - A o A  1 +AoA1)sin2a, 
/31 = ( A - I  + A I )  sin a 

+ ½K[A2(A_I - A i )  c o s 2 a -  ( A _  l + A 1 ) ( 2 A 0  +A2) sin2a],  

a 2 = - A z c o s  a -  ¼K(A 2_1 - A ~ -  2AoA2)sin2a , 

/32=A 2 s i n a + ¼ K { ( A  l -A1 )  2 c o s 2 a - [ ( A  l + A l ) 2 + 4 A o A 2 ] s i n Z a } ,  

= 1 a 3 5KA1A2sin2a ,  /33=½K(AiA2cos2a-A IAz), 
1 2 • 1 2 a4 = gKA2 s ln2a ,  / 34  = aKA2 cos2a"  (20) 

Now, to find Fu, a stagnation point should be imposed at the TE (i.e. the Kutta condition is 
invoked): 

( - a4',/ar + qo" t l dz /dg I)Ir ,.0-0 = 0. (21) 

Inserting (20) for the coefficients a n and /3,, into (21) and solving for F B (non-dimensional- 
ized by U 0 and c), we find 

F B / 2 r r = - ( ~ n / 3 " + ( A - ' - A I - 2 A 2 ) ( 1 - ½ K s i n a ) s i n a )  (22) 

#2 Note that because of the rhs of eq. (19), the solution in the ~'-plane contains information about the profile rather 
than being a universal field as in full potential flow. 
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The total surface speed qs = q "t [body in the direction of increasing 0 is 

0~bl/0r 
q~(O) = q0" g Ibody 

I d z / d (  It_ i 

which can be expressed in terms of profile parameters (e, S) as: 

q J U  o = (d o + d 1 sin 0 + dzcos 0 + d 3 sin 20 + d 4cos20 + d 5 cos 30) 

× [(½ sin 0 + 2E8 sin 20)2 + E2(COS 0 -- 2S cos 20) 2] 1/2, 

where 

(23) 

(24) 

do=  - (½ + E) sin ~ + K [ E 2 ( S -  ½ ) -  ¼e + (~ + ½E- %6 + ½e2 -- E28) sin2~], 

1 ) COS O/sin a,  d,= +  )cos + :  

d2 = (½ +E)sino~ + g e s [ (  ¼ - wE' )COS2~ + (21-E + ] ) s in2a] ,  

d 3 = K ( I  s + ½e + ½e2)cos c~sin a ,  

d 4 = K[(¼e + ½E2) cos20/ -  (1 + ¼e) sin2a], 

To easily obtain a closed form expression for loads, we use expressions obtained from the 
momentum relations for the field, which produce integrals over only the contour bounding the 
field at a large radius (R), as in Tsien (1943) (see fig. 1). The force components F~ and Fy (in 
the x- and y-direction of the coordinate system fixed on the foil) and the moment M 0 acting 
on the foil (about the origin or foil midchord) are expressed as integrals of the pressure and 
velocity distribution on the circle C n enclosing the field. The following integrals express the 
conservation theorem for momentum and angular momentum: 

 :qxtq d, q, dxt, 

Fv= f ( .~pdx -  fcRPq,.(q~ d y - q y d x ) ,  

M,,= fc p ( x d x  + y d y )  - ~ p(xq , , -  yq~)(qx dy - q , . d x ) ,  (25) 

where qx and qy are, respectively, the x- and y-component of the total velocity on the 
contour C R in the physical plane. To apply this equation, the complex (disturbance) velocity 
potential should be expressed in terms of z instead of ( using an inverse of the mapping 
function. The inversion of the Moriya transformation (eqs. 12, 14) given herein is readily 
found as a power series of z. We need terms up to only 1/z ? because the contribution from 
terms greater than this second (negative) power to the integrals in (25) will vanish as the 
radius of the enclosing circle (R) tends to infinity. The inverse mapping in turn allows us to 
express the complex (disturbance) velocity potential (eq. 18) as a power series z: 

F~(z) = -- i (Fn/2av)log(z/A 1) + [i(FB/Raz)Ao + (a l  + i/31)A 1] Z-I  

1 2 + [i(FB/Zrc)(A_IA 1 + 2Ao) + A _ l A 0 ( a  I + i13,) 

+A2~ 1(c~2 + i/32)] z-2 + "'" (26) 
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Now using (26), together with the coefficients from (20), for the velocity components and (6) 
for the pressure, we find the lift and moment  coefficients (about the midchord point): 

• I 2 C L = ( F~, cos a + F,- sm a)/~pU(, c = 4 7 ( a  o - Kb, ), (27) 

2 2 + Kb2) (28) C M=Mo/TpU oc = - 4 r r ( a  l 

whcre (recall that F u, A n, a , ,  and ft. have been non-dimensionalized by U o, c and a): 

ao= - F u / 2 w ,  

a 1 = [ ( / ' B / 2 3 T ) A 0 - } - A  1/~1] COS o / - / _ l a l  sin a ,  

b, = - [( F ~ / 2 v )  A o + A _ , f l l ]  sin a - A _ , a ,  cos a ,  

b? = - ( A _ l A o a l  + A  2 1 a 2 ) c o s 2 a  

1 2 - - [ (FB/2Tr) (A  ,A ~ + S A o ) + A  ,A0/3 ,+A=_, /3z]s in2a .  

For an ellipse of thickness ratio r = 2e (i.e., 6 = 0), the quantities q~, C L and CM0 can be 
expressed simply in terms of 

q~ e 0 + e~ s in 0 

K~ a ,  T a s :  

+ e ecosO + e 3sin20 + e 4cos20 

Uo Csin20 + r 2 cos20 ' 

Cc= ' r r [2 (1  + r ) s i n a  + K r ( r c o s 2 a - s i n 2 a  + ½)], 

CM0 = ~'rr(1 -- r 2) s in2a[16  + 8K(1 + r )  sin a 

where 

From 

(29) 

(30) 

+K2(1  + 3 r ) ( r c o s e a -  sin2a)] ,  (31) 

e o = - ( l + r ) [ s i n a + ¼ K ( r c o s : a - s i n 2 a ) ] ,  e , = - ( l + r ) c o s a ,  

e 2 = ( l + r ) s i n a ,  e 3 = ¼ K ( l + r ) 2 c o s a s i n a ,  

e 4 = ¼K(1 + r ) ( r  c o s 2 a -  sin2a). 

eq. (30), the increment in lift coefficient due to the sheared onset flow becomes 
1 2 ~rKr(½ + r - (1 + 5r)a + " "  ). It follows that the lift force increment increases with both 

increasing shear gradient and thickness of the ellipse but decreases slightly as the angle of 
attack departs from zero. From (30), the angle of attack at zero-lift for an ellipse in uniform 
shear flow is given by 

[ ( )1 a ( , = s i n  ' ( 1 / K r )  1 -  + ( K r ) 2 ( 2 r + l ) / 2 ( r +  1) , (32) 

which becomes approximately - K r / 4  (in radians) for small values of r. Thus there is a shift 
of the zero-lift angle of attack due to shear flow that is nearly linearly proportional to both K 
and r. The shear flow terms in the moment  coefficient (eq. 31) are small for normal a and r 
values. 

Another  feature due to shear flow is changes in the streamline patterns and velocity 
components. The shape of streamlines can be obtained by fixing the value of the stream 
function• Typically, the non-dimensional value of the stream function (qt = qt ° + ~ ,  the sum 
of the stream function of the onset and disturbed flow) is assigned a constant value C~, 

= 1 C,  ( Y v C O S a - X v S i n a )  + 5 K ( y v c o s a - x v s i n a )  2 -  (Fu/2Tr) Inrv  

4 

+ ~ ( - a n  sin nO v +/3,, cos nov) /# ' ,  (33) 
n 1 
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~ = 0.05,  6 = 0 . 1  
( b ) . <  . . ,  

co) C_. ¢ = 0.05, 6 = 0 . 3  

¢ = 0.05, 6 - - 0 . 5  

( ¢ )  L 
e = 0.01, 6 = 0 . 4  

( f )  c 
~ = 0.04, 6 = 0 . 4  

, = 0.07, 6 = 0.4 

( h )  - = O.lO, 6=0.4 

Fig. 2. Typical profiles specified by the Moriya transformation. 

• ° ° • • • • . •  • • • o ° 

° ° ° ° ° ° . ° ° . ° • ° ° ° • 4 • 

° 

(a) (b) . . . . . . . . . . . . . . . . . .  - 

Fig.  3. Streamline shape and velocity distribution about a Moriya foil (e - 0.075, 6 = 0.4) in steady shear flow (K = l). 
The angle of attack ~ is 10 °. (a) Streamlines, (b) velocity. 
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,...-Tong. veloci ty  

,,,,Oividing s t r e ~ l i n e  

~ . . . . . . . . . . . . . . . . .  

C ' - - - -  

0'. I'. ~'. 3'. ~'. L e. 
x'/c 

Fig. 4. Dividing trailing edge streamline and tangential velocity component  along it for Moriya foils in uniform shear  
flow ( K = 1). The foils are the same in order  (from top to bot tom) as ones in fig. 2. The angle of attack a is 10 ° for all 

cases. 

where (rv, 0 v) are the polar coordinates of a point (~'v = ~v + i%)  on the streamline in the 
circle plane and (x v, yv) are Cartesian coordinates of the corresponding point in the physical 
plane. The disturbance velocity vector up in the field is 

d F J d (  ~ "=r ei° u x -  i u y -  d z / d ~  ' (34) 

which can be obtained in terms of the polar coordinates (r,  0) of a point on a streamline by 
using (18) and (33). Adding the undisturbed velocity components we obtain the total resultant 
velocity. Figure 3 illustrates these calculated results for streamlines and velocity components. 
As expected, significant changes in the streamline shape and velocity components relative to 
those of uniform flow (although not shown here) are found near the region where the velocity 
reverses direction (see the "swirl" in fig. 3). For each of the foil sections show in fig. 2, the 
dividing (trailing-edge) streamline and tangential velocity component along it are presented in 
fig. 4. All tangential velocity distributions are smooth along the downstream dividing stream- 
lines except for a rapid change near the TE where the flow recovers from a stagnation point. 
Also the dividing streamline in the field and the tangential velocity distribution along it are 
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Fig .  5. C o m p a r i s o n  o f  d i v i d i n g  t r a i l i n g - e d g e  s t r e a m l i n e s  a n d  t a n g e n t i a l  v e l o c i t y  d i s t r i b u t i o n s  a l o n g  it f o r  v a r i o u s  f l ow  

c o n d i t i o n s  a b o u t  a 1 0 %  e l l ip se .  (a )  a = 12 °, K = 1; (b )  a = 12 °, K = 1.6; (c )  a = 16 °, K = 1; (d )  a = 20 °, K = 1. 

likely to be little influenced by foil section shape (but are influenced by the parameters  of the 
onset flow such as a velocity gradient and angle of attack as illustrated in fig. 5). The 
trailing-edge dividing streamlines in fig. 5 show that in some cases the "swirl" region of fig. 3 
encompasses the foil within a closed streamline of finite extent. 

In fig. 6 the disturbance potential on the surface of an ellipse of 10% thickness ratio at an 
angle of attack of 10 ° is given for both uniform potential flow (K  = 0) and uniformly sheared 
onset flow ( K =  1). Differentiation of the potentials plus the addition of an appropriate  
component  of the onset flow produces the surface speeds of figure 7. These speed distribu- 
tions are generally similar but the maximum surface speed is greater  for sheared onset flow as 
is the lift coefficient (with nearly the same moment  coefficient for the present  case) as shown 
in fig. 8. These results are similar to those found by Tsien (1943) for the Joukowsky 
transformation but are more easily computed. 

3.  S o l u t i o n  f o r  n o n - u n i f o r m  s h e a r  b y  f i e l d  a n a l y s i s  

For a non-uniform sheared onset flow, the condition that the disturbance be potential is 
invalid and eq. (1) governing the vorticity field must be explicitly solved. There  are no elegant 



66 T. Brockett, J.-C. Suh / Steady flow of inL'iscid fluid 

0.1 

0.0 

o 

~ - 0 . 1  
c 

o 
o.. 

- 0 . 2  
c 
o 

- 0 . 3  

I c - 0 . 4  
o 
Z 

- 0 . 5  

LE 

U p p e r  s u r f e c e  

l = O ~ ~ L o w e r  surfoc~.~ e 

- 0 . 6  ~ I a I , 1 J 1 ~ I 

- 0 . 6  -0 4 -0 .2  0.0 0.2 0.4 

TE 

TE 

0. 

N o n - D i m .  C h o r d  P o s i t i o n ,  x / c  

Fig.  6. D i s t u r b a n c e  p o t e n t i a l  on  an  e l l ipse  ( r  = O.10) in u n i f o r m  ( k  = O; b r o k e n  l ine)  a n d  s h e a r  ( K  = 1; solid l ine)  f low 

at  a = 10 °. 

procedures available for defining solutions to this equation as there are in potential flow. A 
popular solution technique is a finite-difference or finite-element/finite-volume algorithm 
iterated over a field grid. There are two (near ly) independent  aspects of this solution 
procedure: the specification of a grid and the solution of the field equations upon it. Herein 
we select a simple algebraic grid that is a mapping (using the Moriya transformation) of an 
easily defined grid in the circle plane (we will define this grid in detail in a following 
paragraph) and use a time-marching procedure to solve the field equations on this grid. The 
solution of eq. (1) and an accompanying determination of velocity components is called the 
vorticity-velocity approach. Alternatives are the velocity-pressure (or primitive variable) 
approach and the vorticity-streamfunction approach (see Chow et al., 1970, and Vooren, 
1974, for similar problems with an alternative approach). Since we expect to eventually 
address the three-dimensional case, our interest is in only the first two approaches. We select 
the vorticity-velocity approach as the preferred procedure since it may be applied to 
non-inertial reference frames by simply adding terms to the boundary conditions for an 
algorithm that is proven for an inertial frame (Speziale, 1987; Suh, 1990). 
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The vorticity transport equation (1) is derived by taking the curl of  both sides of  the Euler 
equation governing the flow of an inviscid fluid. For two-dimensional flow the stretching term 
is eliminated and the simple-appearing expression results: 

OoJ/Ot + V ' ( q w )  = O. (35) 

The velocity field is determined by solving the kinematic relation w k  = V x q .  This solution is 
indicated in eq. (11) and is a form of  the Biot-Savart relation. 

Since up and u~ are coupled in eq. (1) or (35), an iterative procedure results when each 
term is solved by separate numerical schemes,  assuming that the other term is known or is 
already updated. The term u is determined uniquely by specified values of  its normal 
component  on the foil surface together with the tangential component  of  u~ on the foil while 
the other boundary conditions are met by the assumed form of the solution in eq. (11). From 
the no-penetration condition the normal component  of  u must equal - q o  "n and we assume 
u S to be known or use its updated value during an iteration process. An integral equation 
similar to that of  conventional boundary-element methods is found by taking the tangential 
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in uniform flow. 

component  of the following equation 

1 Xo--S fc[n(s) x u ( s ) ]  x u(xo)  ~ ixo_sl2dl~ 

x,,s ,SS<,,x xos  
= n ( s ) . u ( S ) l x o _ s l 2 d l , +  - -  • "rr IXo - s ~  dS, ( 3 6 )  

where x 0 is a point on the closed contour c and a doubling of the value on the surface results 
from the limiting process to define the Cauchy principal value (e.g., Brockett et al., 1989b). In 
the first iteration loop, we apply the no-penetrat ion boundary condition expressed by the 
normal component  of only the local undisturbed velocity and employ a potential-based 
boundary-element (panel) method approximation for up (Suh, 1990). 

The rotational component  u S can be determined from the numerical algorithms for free 
vorticity governed by the vorticity transport  equation (1) or (35). Once this distribution of 
disturbance vorticity w S is determined, Us associated with w S (i.e. wsk = V x u S) is computed 
from the Biot-Savart  integral: 

1 . . ~ s ( S )  X ( x - s )  
Us(X)=  - ~  JJs i-x---s-[ 2 dS, (37) 

where the surface integral is taken over the region occupied by the fluid. 
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In two-dimensional flow, the vorticity associated with a material  element is constant. The 
vorticity change is due to only convection by the fluid. The vorticity transport equation given 
by (35) is a conservative form of a partial differential equation which makes it possible to use 
a finite-volume formulation. In the finite-volume formulation, the steady state is achieved 
when the net flux into a finite volume cell is equal to zero. After  integrating the vorticity 
transport equation (35) over an arbitrary but stationary cell A with a cell boundary ~A and 
then applying the divergence theorem one obtains the desired conservative form: 

a 

-- f fA °J d + fOA q " n°J dl  = O' (38) 

where q • nw is the outward flux of oJ across the cell boundary. We approximate the vorticity 
transport  equation as a discrete difference (actually volume) form for both time and space 
coordinates, by replacing the boundary integral by the sum over the four cell sides of a 
quadrilateral and using an explicit scheme for time marching: 

4 

"+ '  atiJ E F,, (39) 
09ii = O')inj -- Ai----J l = 1  

where w~ is considered the average value of w over cell Aij at  the nth time step and F 1 
represents the value of the flux outgoing throughout the lth side of each cell, i.e. F t = 
(q • n)t~otL z where n z is the outward unit normal vector on the /th side of the cell which has 
an arc length L z. Choosing among a variety of  expressions for the flux value, in the present 
work we take it to be the average along the side. The subscripts ij refer to the (ith, j th)  cell 
and ~t,j  is the local time increment for the cell ij. An O-type mesh is constructed with points 
in the physical plane corresponding to the intersection of constant angular lines and concen- 
tric circles in the mapping (circle) plane, by using the Moriya transformation as previously 
specified, similar to Shen (1977). A regular pattern of quadrilateral cells that divides the fluid 
region about the Moriya foil is illustrated in fig. 9. The grid in the circle plane is a series of 
radial lines and circles: 

Oj N , - 1  ' r j = l + ( R c - 1 )  1 - c o s  2 - ~ j - - 1 - )  ' 

where N I is the number  of grid lines in the circumeferential direction, Nj in the radial 
direction, and R c is the radius in the mapping plane corresponding to the outer boundary of 
the computational domain (at nearly constant radius R0). Since the first and last /-index 
coincide, a periodic boundary condition is applied along the interface corresponding to that 
index. Also on the foil surface j = 1 (i.e. r = 1 in the mapping plane), we set the vorticity 
convection, (q • n)tw/, equal to zero from the no-penetration boundary condition. The far-field 
condition is applied simply by setting the vorticity on R 0 to that of the undisturbed flow. 

The computation of the numerical fluxes F t in eq. (39) is expressed with an upwind 
first-order accurate scheme. The flux E~ depends on the sign of the normal velocity conponent  
at the interface between two neighboring cells, designated by I (inside) and O (outside) 
respectively, as follows (Roache, 1972): 

F t = (q"  n ) tLzw  x, 

wX=oJi if (q . n) ,  > 0, w x = w o  i f ( q ' n ) , < 0 .  (40) 

The net mass flux ( E 4 ~ ( q ' n ) l L ~ )  at each cell should be zero to satisfy the continuity 
equation. In a discrete numerical version, the value of this divergence may not exactly zero at 
each cell, especially near the LE and the TE of the foil where this non-zero value (even if very 
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Fig. 9. An O-type grid gene ra t i on  about  a Moriya  foil (e = 0.1, 6 = 0.4) at 10 ° angle  of a t t ack  wi th  mesh 7 3 × 6 1 ;  

R o = 4.0. 

small) may cause significant error in solving the vorticity transport equation for a large time 
step. To use the divergence-free condition to reduce this error, the mass fluxes through four 
sides of a cell are adjusted by adding (or subtracting) a part of the non-zero value to each side 
(with a weighting factor proportional to the magnitude of each flux). A practical local stability 
criterion (CFL condition) for the upwind scheme we use is deduced approximately from von 
Neumann stability analysis (Anderson et al., 1984): 

(Atij/dij)~/(q2 +q2) lij< 1, (41) 

where dij is the characteristic length equal to (the cell a rea) / ( the  longer diagonal of the cell). 
Near the stagnation points where the local time increment becomes exceptionally large, the 
above criterion is replaced by a cruder one (i.e. At i j /d i j  ~ 1).  The reason we use this local 
CFL condition is to reduce the computing time necessary to obtain a converged steady-state 
solution. 

Next the velocity distribution is computed by evaluating the Biot-Savart  integral (eq. 37) 
for the vorticity distribution obtained at the current iterative stage. The vorticity values given 
at the cell centers can be interpolated to those at the cell vertices (or extrapolated to 
boundaries so as to specify the values along the foil surface). Then the vorticity change 
o~sk = V × u S due to the foil disturbance is obtained by subtracting the undisturbed compo- 
nent (w 0) from the total vorticity magnitude (oJ). If we approximate this disturbance vorticity 
distribution over a triangular element composed of three cell vertices (one of two triangular 
elements obtained by dividing each cell by its diagonal) as a bilinearly varying distribution, the 
Biot-Savart  integral is evaluated by using an explicit closed-form equation similar to results 
presented by Webster (1975). The lengthy expressions employed are given by Suh (1990). 
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To achieve fast convergence of the iteration, it is also necessary to employ a relaxation 
technique for the convection velocity q according to: 

qN = qO + rq(qU _ qO). (42) 

Here,  qN is the value calculated from the numerical procedure at the present iteration, q0 is 
the value obtained by application of this formula at the previous iteration, qU is the formally 
predicted value of the convection velocity at the present iteration loop, and rq is the 
relaxation parameter .  The convergence of the iteration process of the velocity and vorticity 
calculation is measured with the difference of surface speed between two successive itera- 
tions. The tolerance of the local maximum difference (i.e. the infinite norm) for the iteration 
was typically set at 0.01. The first iteration results correspond to those of conventional 
potential-flow calculation for the disturbance velocity, namely neglecting, Us, the rotational 
term of the disturbance velocity. We find a significant change in the velocity distribution when 
including the rotational term. Figure 10 presents the numerical results obtained by applying 
the present method to a Moriya foil (e = 0.1 and 6 = 0.4) in what we call a more realistic flow 
condition. The undisturbed velocity is specified as q0 = (1 + tanh y ' ) i '  with an angle of attack 
a = 10 °. Its vorticity magnitude at the midchord is 1, similar to the uniformly sheared case 
with K = 1. The Kutta condition is applied for this calculation, including the rotational 
disturbance component  when the panel-method approximation is employed. The desired 
tolerance is obtained after 8 iterations with a mesh 73 × 61 (72 by 60 cells, as shown in fig. 9) 
and the relaxation parameter  rq = 0.25. A field with R 0 equal to about half that of fig. 9 and 
with about half the contours encircling the foil produced nearly identical results. The 
difference between the uniform-shear calculation (denoted by a solid line) and the numerical 
shear-flow field calculation (denoted by the small circles) is the influence of the variable 
vorticity. The non-uniform shear-flow solution indicates surface speeds generally similar in 
shape to the potential-flow case, as well as generally similar to the uniformly sheared onset 
flow case, which is also shown in fig. 10. The non-linear (more realistic) sheared onset flow 
produces a non-dimensional surface speed that has a peak value (reducing by 0.04 relative to 
the uniform-shear case) about midway between the uniform-onset and uniform-shear case. On 
the pressure or lower side of the foil, the numerical solution is nearly identical with the 
uniform-shear case. The lift is also about midway between the two analytic cases. Greater  
details of this solution as well as other  examples are available in Suh (1990). These numerical 
results tend to support the experimental data of Payne and Nelson (1985) for a foil 
experiment in a tunnel for which the shear flow influences the pressure but with a reduced 
effect on the loads. In particular, the results in fig. 10 show a reduced lift coefficient with a 
locally sheared onset field. 

4. Summary 

For uniform shear, the disturbance to the onset flow is potential and an exact solution can 
be defined by a conformal mapping of the flow about a lifting circular cylinder. The Moriya 
transformation with terms to order 1/z  2 is chosen as it has a paramete r  in the transformation 
that can be used to set a fixed chordlength and produce equations for the flow speed on the 
profile that can be readily computed at specified points. The trends for lift and surface speed 
are similar to results found previously by others: generally a shift in angle of zero lift and an 
increase in surface speed on the side of the profile with increased local onset speed. The body 
streamline may be a closed contour within the field. The results obtained reveal general 
trends and also provide easily accessible quantitative values of surface speed and loads useful 
in validating numerical solutions. 
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For non-linear shear, a numerical solution of the field equations for the vorticity-velocity 
formulation has been undertaken using a field grid derived with the conformal transformation 
of concentric circles and rays in the circle plane. An iterative time-marching approach has 
been selected and a solution is marched from an initial potential representation of the 
disturbance velocity (i.e. Up(X, t) and o~(x, t)) to a time-invariant solution for the disturbance 
(i.e. up(x, oo) + us(x ' ~), to+(x, ~)) for which the velocity field consists of appropriate potential 
and rotational components. A numerical example is presented that is locally similar to one of 
the solutions from the uniform shear case: the profile shape is identical and the onset flow 
gradient is identical along the onset flow line that passes through the midchord point but the 
onset shear flow tends to constant values away from the profile. The lift increment due to 
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shear is reduced to about half that for the uniform-shear case and the maximum surface-speed 
shear increment is also reduced to about half the increment for the uniform-shear case. 

These results suggest that the uniform-shear solution will overest imate the influence of 
shear in practical cases for which only a limited region of the onset flow field is sheared. 
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