THE HEAT CAPACITY AND DERIVED THERMOPHYSICAL PROPERTIES OF SOME ALKALINE EARTH SILICATES AND ZIRCONATES FROM 5 TO 1000 K—I. CRYSTALLINE SrSiO₃ AND Sr₂SiO₄

M. E. HUNTELAAR,[†] E. H. P. CORDFUNKE[†] and E. F. WESTRUM, JR[‡] [†]Netherlands Energy Research Foundation ECN, 1755 ZG Petten, The Netherlands [‡]Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, U.S.A.

(Received 8 October 1991; accepted 13 November 1991)

Abstract—The heat capacities of SrSiO₃ and Sr₂SiO₄ were measured from 5 to 350 K by adiabatic calorimetry, and the derived thermophysical properties, H° , S° , and $\{G^{\circ} - H^{\circ}(0)\}/T$ were calculated. For the standard molar entropies at 298.15 K the values (95.65 ± 0.21) J mol⁻¹ K⁻¹ and (155.44 ± 0.25) J mol⁻¹ K⁻¹, respectively were found, Enthalpy increments relative to 298.15 K were measured by drop calorimetry for SrSiO₃ from 503.0 to 886.4 K and for Sr₂SiO₄ from 503.0 to 886.2 K.

The thermodynamic functions including the formation properties $\Delta_t H^{\circ}(T)$ and $\Delta_t G^{\circ}(T)$, were derived for temperatures up to 1000 K.

Keywords: SrSiO₃, Sr₂SiO₄, heat capacity, entropy.

1. INTRODUCTION

The silicates of strontium are of particular interest in studies on nuclear reactor safety. During nuclear fission the radiologically hazardous fission product strontium is formed which will probably be present in the fuel as SrZrO₃ [1, 2]. In a severe nuclear accident the core of the reactor will melt, and may interact with the underlying concrete base-mat. At these high temperatures it is likely that new compounds are formed upon reaction with the concrete-in particular, with the main constitutent silica. To predict which strontium silicates may be formed under these conditions it is necessary to know their basic thermodynamic properties. Unfortunately, these properties are inaccurately known-possibly because they are of little geothermal interest. Weller and Kelley [3] measured the low-temperature heat capacities from 51 to 300 K, but high-temperature heat capacities have not been measured.

In this paper we present a combined study of the low- and high-temperature heat capacities of $SrSiO_3$ and Sr_2SiO_4 from which their thermochemical properties have been derived.

2. EXPERIMENTAL

2.1. Preparation

 $SrSiO_3(s)$ and $Sr_2SiO_4(s)$ were prepared by heating stoichiometric amounts of $Sr(NO_3)_2$, prepared from

SrCO₃ (Cerac, mass per cent 99.999), and TEOS (tetraethyl orthosilicate, Mcrck, mass per cent >98) after decomposition in a gold boat in oxygen at 975 K, according to Ueno *et al.* [4]. The reactions were completed at gradually increasing temperatures, up to 1775 K, in platinum boats, in a purified argon atmosphere. X-Ray powder diffraction (Guinier camera, Cu K_a) showed the samples to be phase-pure. Si was analyzed by Inductively Coupled Plasm Atomic Emission Spectroscopy (ICP-AES) with an internal standard as reference; Sr was determined by complexometric titration with EDTA (Table 1).

2.2. Calorimetric techniques

The low-temperature heat capacities of SrSiO₃ and Sr₂SiO₄ were measured in an adiabatic calorimetric cryostat [5] (laboratory designation Mark XIII) over the temperature range 5-350 K, and are listed in Tables 2(a) and (b), respectively. A goldplated, high-conductivity, oxygen free, copper calorimeter (laboratory designation W-99) was used. The calorimeter has a mass of 10.003 g and an internal volume of 10.0 cm³. The temperature of the calorimeter was measured with a Leeds & Northrup encapsulated platinum resistance thermometer in an entrant well. The thermometer was calibrated by the U.S. National Bureau of Standards (now designated NIST) against IPTS-48 [6], and is considered to reproduce the thermodynamic temperature scale within 0.03 K from 5 to 300 K.

Table 1. Analytical results; molar mass and mass fraction w

		$10^2 w(S)$	Sr)	$10^2 w(Si)$			
Compound	$M/(g \operatorname{mol}^{-1})$	Found	Calc.	Found	Calc.		
SrSiO ₁	163.704	53.49 ± 0.05	53.52	17.15 ± 0.06	17.16		
Sr ₂ SiÓ ₄	267.323	65.67 ± 0.06	65.55	10.52 ± 0.33	10.51		

About 13.320 g of SrSiO₃ or 11.813 g of Sr₂SiO₄ were put into the calorimeter. The molar masses of SrSiO₃ and Sr₂SiO₄ are 163.70 and 267.32 gmol⁻¹, respectively, based on the 1987 atomic masses. To facilitate rapid thermal equilibration 4.0 kPa at 297 K of helium gas were introduced into the calorimeter after evacuation. The calorimeter containing the sample was sealed in the inert atmosphere and then reopened on the vacuum line for the introduction of helium. The calorimeter was then sealed, placed in

the cryostat, and cooled. The heat capacity of the empty calorimeter typically represented 70% of the total heat capacity at temperatures below 50 K, and decreased between 60.3 and 50% at higher temperatures.

The enthalpy increments above 298.15 K were measured in an isothermal diphenyl-ether calorimeter which has been described previously [7]. The sample is enclosed in a spherical (20 mm diameter, 4.2 cm^3 volume) high-purity silver ampoule with a 0.25 mm

Table	2.	The	molar	heat	capacities	of	SrSiO ₁	and	Sr	SiO	

	T	C_{n}°	Т	C_{2}°	T	C_n°	<i>T</i>	C _n °
	(K)	$(J \text{ mol}^{-1} K^{-1})$	(K)	$(J \text{ mol}^{-1} \mathbf{K}^{-1})$	(K)	$(\mathbf{J} \operatorname{mol}^{-1} \mathbf{K}^{-1})$	(K)	$(J \text{ mol}^{-1} K^{-1})$
(a) SrSiO ₃		······································						
())	6.50	0.051	43,33	11.309	114.23	45.92	232.27	78.64
	7.92	0.081	45.65	12.663	119.35	47.76	238.24	79.88
	9.15	0.114	48.00	13.964	124.48	49.57	244.21	80.96
	10.21	0.146	50.36	15.360	129.62	51.33	250.18	82.07
	11.26	0.185	52.74	16.70	134.77	53.07	256.08	83.13
	12.40	0.237	55.32	18.08	140.14	54.85	262.01	83.98
	13.64	0.314	58.11	19.59	145.73	56.51	268.06	85.13
	14.87	0.416	60.88	21.44	151.34	58.47	274.08	86.04
	16.09	0.552	63.69	22.64	156.86	60.19	280.10	87.32
	70.40	0.743	66.52	24.26	162.42	61.95	285.98	87.91
	18.84	1.012	69.65	25.90	167.99	63.52	292.91	88.85
	20.26	1.334	73.07	27.70	173.68	65.14	297.87	89.48
	21.68	1.709	76.50	29.49	179.36	66.68	303.81	90.50
	24.70	2.615	79.94	31.25	185.00	68.17	309.75	91.50
	26.36	3.161	83.40	32.95	190.64	69.57	315.68	92.59
	27.99	3.731	87.15	34.74	196.40	71.90	321.64	93.71
	29.65	4.347	91.43	36.71	202.41	72.35	327.62	94.96
	33.16	5.966	95.90	38.68	208.38	73.68	333.37	96.43
	35.14	6.985	100.39	40.56	214.34	74.68	339.92	97.67
	37.12	8.005	104.88	42.37	220.27	76.21	346.13	98.98
	39.12	9.082	109.41	44.12	226.28	77.60		
	41.15	10.065						
(b) Sr ₂ SiO ₄								
(0)24	6.76	0.160	38.93	16.51	109.14	72.20	220.06	117.99
	8.29	0.233	40.96	18.56	113.52	74.17	225.93	119.41
	9.22	0.280	43.16	20.38	118.41	77.36	231.84	120.90
	10.24	0.332	45.50	22.56	123.70	80.32	237.62	122.40
	11.36	0.401	47.85	24.88	129.04	82.95	249.35	125.76
	12.35	0.483	50.22	27.03	134.38	85.65	267.00	130.96
	13.55	0.626	52.61	29.29	139.73	88.33	272.91	132.46
	14.71	0.832	55.24	31.62	145.14	90.99	278.86	133.93
	15.84	1.065	58.11	34.46	150.70	93.70	284.91	135.14
	17.13	1.548	61.01	37.12	156.40	96.38	290.77	136.08
	18.55	2.163	63.92	39.73	162.12	99.01	296.54	136.81
	19.98	2.889	66.84	42.35	167.86	101.55	302.44	137.44
	21.41	3.679	70.02	44.97	173.57	103.93	308.34	138.06
	24.42	5.346	73.46	47.80	179.32	106.19	314.25	138.83
	26.07	6.251	80.35	53.20	185.06	108.27	320.13	139.85
	27.73	7.232	83.82	55.77	190.86	110.22	326.03	141.28
	29.42	8.391	87.42	58.37	196.61	111.96	331.94	143.15
	31.13	9.772	91.52	61.22	202.46	113.61	337.80	145.30
	32.94	11.368	95.91	64.13	208.30	115.23	343.70	147.48
	34.91	13.077	100.31	66.92	214.20	116.58	348.13	148.78
	36.91	14.735	104.70	69.61				

T	hermop	hysical	proper	ties of	some	alkaline	earth earth	silicates
---	--------	---------	--------	---------	------	----------	-------------	-----------

T	C°_{*}	$S^{\circ}(T) - S^{\circ}(0)$	$H^{\circ}(T)-H^{\circ}(0)$	$-\{G^{\circ}(T)-H^{\circ}(0)\}/T$
(K)	$(J \text{ mol}^{-1} \text{ K}^{-1})$	$(J \text{ mol}^{-1} \text{ K}^{-1})$	$(J mol^{-1})$	$(J \text{ mol}^{-1} \text{ K}^{-1})$
5	0.026	0.009	0.035	0.002
10	0.139	0.057	0.411	0.016
15	0.429	0.157	1.693	0.044
20	1.272	0.379	5.645	0.097
25	2.711	0.810	15.433	0.192
30	4.512	1.456	33.302	0.346
35	6.908	2.325	61.62	0.564
40	9.461	3.415	102.58	0.850
45	12.309	4.689	156.81	1.204
50	15.16	6.135	225.58	1.624
60	20.67	9.388	404.82	2.641
70	26.09	12.983	638.7	3.858
80	31.28	16.81	925.8	5.236
90	36.07	20.77	1262.9	6.741
100	40.40	24.80	1645.6	8.346
110	44.35	28.84	2069.7	10.026
120	48.00	32.86	2531.6	11.761
130	51.46	36.84	3029.0	13.537
140	54.81	40.77	3560.4	15.34
150	58.04	44.67	4124.8	17.17
160	61.15	48.51	4720.9	19.01
170	64.10	52.31	5347	20.85
180	66.86	56.05	6000	22.71
190	69.42	59.74	6684	24.56
200	71.80	63.36	7390	26.41
210	74.40	66.92	8119	28.25
220	76.16	70.41	8870	30.09
230	78.20	73.84	9642	31.92
240	80.17	77.21	10,434	33.73
250	82.04	80.52	11,245	35.54
260	83.81	83.77	12,075	37.33
270	85.44	86.97	12,921	39.11
280	86.95	90.10	13,783	40.88
290	88.40	93.18	16,660	42.63
298.15	89.61	95.65	15,385	44.04
300	89.90	96.20	15,551	44.36
325	94.46	103.57	17,853	48.64
350	99.80	110.76	20,281	52.82

Table 3a. Smoothed thermodynamic properties at selected temperatures for SrSiO₂

wall thickness. The ampoule is heated in a furnace the temperature of which is measured with calibrated Pt/(Pt + 10 mass per cent Rh) thermocouples to 0.1 K. After a reasonable thermal equilibration time, the ampule is dropped into the calorimeter; the energy of the ampoule plus sample now melts solid diphenyl-ether in equilibrium, with its liquid in a closed system. The resulting volume increment of ether is determined by weighing the displaced mercury. The ratio of the heat input to the mass of mercury making up the volume change, is a constant for the apparatus, (79.9903 ± 0.0649) Jg⁻¹, and is obtained by calibration with the NBS standard reference material No. 720, synthetic sapphire, Al₂O₃. Our results with sapphire all agree (within 0.2%) with the data given by NBS. The enthalpy contributions of the silver ampoule were determined separately [8].

For the present measurements $5.20487 \text{ g of SrSiO}_3$ and $4.72655 \text{ g Sr}_2 \text{SiO}_4$ were enclosed in ampoules of 4.60654 g and 4.62860 g, respectively. All weights were corrected for buoyancy in argon. The results of the measurements, 14 for $SrSiO_3$ and 11 for Sr_2SiO_4 , are listed in the Tables 3(a) and (b), respectively. A correction was made for the difference in enthalpy between the final calorimeter temperature (300.06 K) and the standard reference temperature, 298.15 K, using C_P° (298.15 K) from this study.

3. RESULTS

The low-temperature heat-capacity data are listed in Table 2 and are plotted in Fig. 1. No phase transitions of any order are observed for $SrSiO_3$ and Sr_2SiO_4 . Smoothed thermodynamic functions at selected temperatures were evaluated by extrapolating the experimental heat-capacity curve to 0 K and by integrating (Table 3). The computer programs

Τ	C_{p}°	$S^{\circ}(T) - S^{\circ}(0)$	$H^{\circ}(T) - H^{\circ}(0)$	$-\{G^{\circ}(T)-H^{\circ}(0)\}/T$
(K)	$(J \text{ mol}^{-1} \mathbf{K}^{-1})$	$(J \text{ mol}^{-1} \mathbf{K}^{-1})$	$(J \text{ mol}^{-1})$	$(J \text{ mol}^{-1} \text{ K}^{-1})$
5	0.033	0.009	0.038	0.001
10	0.263	0.086	0.650	0.021
15	1.001	0.306	3.488	0.073
20	2.749	0.805	12.374	0.186
25	5.574	1.706	32.799	0.394
30	8.920	3.021	69.14	0.717
35	13.166	4.709	124.15	1.162
40	17.73	6.763	201.32	1.730
45	22.39	9.120	301.61	2.417
50	27.04	11.720	425.20	3.216
60	36.05	17.45	741.0	5.103
70	44.65	23.66	1144.5	7.306
80	52.49	30.13	1630.2	9.752
90	59.84	36.74	2192.3	12.383
100	66.64	43.40	2825.2	15.15
110	72.93	50.05	3523.4	18.02
120	78.84	56.65	4282.4	20.97
130	84.12	63.17	5097	23.96
140	89.09	69.59	5963	26.99
150	93.70	75.89	6878	30.04
160	97.99	82.08	7836	33.10
170	101.98	88.14	8836	36.16
180	105.71	94.08	9875	39.22
190	109.20	99.89	10,950	42.26
200	112.49	105.57	12,058	45.28
210	115.58	111.14	13,199	48.29
220	118.50	116.58	14,369	51.27
230	121.28	121.91	15,568	54.22
240	123.91	127.13	16,794	57.15
250	126.42	132.24	18,046	60.05
260	128.81	137.24	19,322	62.93
270	131.09	142.15	20,622	65.77
280	133.25	146.96	21,944	68.58
290	135.30	151.67	23,287	71.37
298.15	136.89	155.44	24,396	73.62
300	137.24	156.29	24,649	74.12
325	141.53	167.45	28,136	80.88
350	144.88	178.07	31,718	87.44

Table 3b. Smoothed thermodynamic properties at selected temperatures for Sr₂SiO₄

FIFTAB2 and C_p -fit were used for all integrations and evaluations of thermodynamic functions [9, 10], yielding at room temperature for SrSiO₃:

 $C_{\rm p}^{\circ}(298.15 \text{ K}) = (89.61 \pm 0.25) \text{ J mol}^{-1} \text{ K}^{-1},$

 $S^{\circ}(298.15 \text{ K}) = (95.65 \pm 0.21) \text{ J mol}^{-1} \text{ K}^{-1},$

Fig. 1. The molar heat capacity of SrSiO₃ and Sr₂SiO₄.

and for Sr_2SiO_4 :

 $C_{p}^{\circ}(298.15 \text{ K}) = (136.89 \pm 0.30) \text{ J mol}^{-1} \text{ K}^{-1},$

 $S^{\circ}(298.15 \text{ K}) = (155.44 \pm 0.25) \text{ J mol}^{-1} \text{ K}^{-1}.$

The high-temperature enthalpy increments of SrSiO₃ are listed in Table 4, and were fitted to polynomials using as the boundary conditions $\{H^{\circ}(T) - H^{\circ}(298.15 \text{ K}\} = 0 \text{ at } 298.15 \text{ K}, \text{ and } C_{p}^{\circ}(298.15 \text{ K} = (89.61 \pm 0.25) \text{ J mol}^{-1} \text{ K}^{-1}.$ For SrSiO₃ we thus obtain (503.0–886.4 K):

$${H^{\circ}(T) - H^{\circ}(298.15 \text{ K})}/{\text{J mol}^{-1}}$$

= 98.30627(T K⁻¹) + 16.27781 × 10⁻³(T K⁻¹)²
+ 16.35881 × 10⁵(T K⁻¹)⁻¹ - 36243.8.

The high-temperature enthalpy increments of Sr_2SiO_4 are also given in Table 4. In the literature two

Thermophysical properties of some alkaline earth silicates

	4. Enthalpy mereme		5104
T (K)	${H^{\circ}(T)-H^{\circ}(298)}$	$3.15 \text{ K}) / (J \text{ mol}^{-1})$	δ%
	Exp.	Calc.	
(a) SrSiO ₃			
503.0	20,413	20,575	-0.79
552.8	25,882	26,033	-0.59
577.9	28,746	28,834	-0.31
603.7	31,688	31,746	-0.18
629.4	34,628	34,677	-0.14
655.1	37,504	37,639	-0.36
667.3	39,151	39,056	0.24
680.7	40,805	40,619	0.46
706.2	43,738	43,615	0.28
731.2	46,742	46,578	0.35
784.4	53,034	52,969	0.12
808.5	55,866	55,901	-0.06
835.3	59,202	59,187	0.02
886.4	65,384	65,530	-0.22
(b) Sr_2SiO_4			
503.0	30,676	30,892	-0.70
527.9	34,618	34,856	-0.69
552.9	38,676	38,882	-0.53
603.7	47,150	47,203	-0.11
629.7	51,440	51,536	-0.19
654.8	55,965	55,766	0.36
705.9	64,854	64,518	0.52
731.7	69,182	69,010	0.25
784.5	78,525	78,355	0.22
834.0	87,508	87,301	0.24
886.2	96.459	96.929	-0.49

Table 4. Enthalpy increments of SrSiO₂ and Sr₂SiO₂

phase transitions for $\text{Sr}_2 \text{SiO}_4$ have been reported. At 355 K monoclinic β -Sr_2SiO₄ (space group $P2_1/n$) transforms reversibly to α' -Sr_2SiO₄ (space group *Pnmb*) with an enthalpy of transition of 213 J mol⁻¹ [11]. At about 775 K another reversible transition to the α phase is reported to occur [12]. This has been confirmed by high-temperature X-ray diffraction in this study. However, the enthalpy of this transition is too small to be measured in our DTA apparatus and will therefore be neglected in the calculations.

The enthalpy increment for the intermediate temperature region from 298.15 to 355 K, has been calculated by extrapolating and integrating the fit of the low-temperature heat capacity data. As usual the highest experimental points (above 325 K) have relatively large errors, and have therefore been omitted in

Table 5. The smoothed high-temperature thermodynamic properties of $SrSiO_3$ and Sr_2SiO_4 from 298.15 to 1000 K

	T	C_{n}°	S ° -	$-(G^\circ - H^\circ(298))/T$	$H^{\circ} - H^{\circ}(298)$	$\frac{1}{\Delta_{\rm f} H^{\circ}}$	$\Delta_r G^\circ$
	(K)	$(J \text{ mol}^{-1} \text{ K}^{-1})$	$(J \text{ mol}^{-1} \text{ K}^{-1})$	$(J \text{ mol}^{-1} \mathbf{K}^{-1})$	(J mol ⁻ⁱ)	(J mol ⁻¹)	(J mol ⁻¹)
(a) SrSiO ₃							
., ,	298.15	89.610	95.650	95.650	0	-1,635,300	-1,549,903
	300	89.897	96.205	95.652	166	-1,635,302	-1,549,373
	400	101.104	123.766	99.333	9773	-1,635,003	-1,520,757
	500	108.041	147.117	106.616	20,251	-1,634,242	-1,492,276
	600	113.296	167.296	115.086	31,326	-1,633,243	-1,463,975
	700	117.757	185.103	123.841	42,884	-1,632,084	
	800	121.795	201.095	132.515	54,864	-1,630,791	-1,407,908
	900	125.587	215.661	140.956	67,235	-1,629,995	-1,380,061
	1000	129.226	229.082	149.106	79,976	-1,628,115	-1,352,388
(b) Sr ₂ SiO₄							
., .	298.15	136.889	155.440	155.440	0	-2,305,700	-2,190,955
	300	137.239	156.288	155.443	254	-2,305,692	-2,190,244
	355.0	145.410	180.124	157.454	8048	-2,305,332	-2,169,593
	355.0	147.465	180.724	157.454	8261	-2,305,119	-2.169.593
	400	150.760	198.516	161.089	14,971	-2,304,495	-2,151,912
	500	158.082	232.944	172.118	30,413	-2,303,128	-2,113,920
	600	165.404	262.413	184.767	46,587	-2,301,540	-2,076,225
	700	172.727	288.460	197.754	63,494	-2,299,694	-2,038,816
	800	180.049	312.003	210.587	81,133	-2,297,551	-2,001,692
	900	187.372	333.632	223.072	99,504	-2,296,332	-1,964,712
	1000	194.694	353.753	235.146	118,607	-2,292,855	-1,928,045

the calculations. Thus, for β -Sr₂SiO₄ we obtain for 298.15–355 K:

$$\{H^{\circ}(T) - H^{\circ}(298.15 \text{ K})\}/\text{J mol}^{-1}$$

= -37.3652(T K⁻¹) + 75.6378 × 10⁻²(T K⁻¹)²
-1.99360 × 10⁻³(T K⁻¹)³
+3.30362 × 10⁻⁶(T K⁻¹)⁴
-2.41484 × 10⁻⁹(T K⁻¹)⁵
-53.4461 × 10²(T K⁻¹)⁻¹ - 23657.1.

Using this polynomial the boundary condition for the high-temperature enthalpy increment of α' -Sr₂SiO₄ is calculated to be 8261 J at 355 K. We thus obtain, for the α' (and α) phase in the temperature range 503–886.2 K:

$${H^{\circ}(T) - H^{\circ}(298.15 \text{ K})}/\text{J mol}^{-1}$$

= 121.4700(T K⁻¹) + 36.61196 × 10⁻³(T K⁻¹)²
- 39474.9.

The standard deviations are $127 \text{ J} \text{ mol}^{-1}$ for Sr-SiO₃, and 100 J mol⁻¹ and 252 J mol⁻¹ for the intermediate and high-temperature region of Sr₂SiO₄, respectively. The smoothed higher temperature thermodynamic quantities of SrSiO₃ and Sr₂SiO₄ are listed in Table 5. They have been calculated using the previously reported values for the enthalpies of formation of SrSiO₃ and Sr₂SiO₄, -(1635.3 ± 1.8) and -(2305.7 ± 2.2) kJ mol⁻¹, respectively [13].

4. DISCUSSION

The low-temperature heat capacities and the hightemperature enthalpy increments have been measured using the same samples. As can be seen in Fig. 2 the

Fig. 2. The reduced enthalpy increments functions of $SrSiO_3$ and Sr_2SiO_4 .

two sets of data join smoothly at 298.15 K for SrSiO₃ as well as for Sr₂SiO₄. The low-temperature heat capacities measured by Weller and Kelly [3], in the temperature region 51–300 K are somewhat lower for SrSiO₃ and Sr₂SiO₄, the discrepancies increasing with temperature. The entropies calculated by these authors, S° (298.15 K) = (96.48 ± 0.85) J mol⁻¹ K⁻¹ for SrSiO₃ and (153.34 ± 1.26) J mol⁻¹ K⁻¹ for Sr₂SiO₄, are in reasonable agreement with the present results, being 0.9% higher and 1.4% lower, respectively. The slightly higher value for the entropy of SrSiO₃, compared with our value, can be explained by their estimated value for $S^{\circ}(51 \text{ K})$ which is about 20% higher than our measured value.

High-temperature enthalpy increments of these compounds have not been measured before, and only estimations by Spencer (quoted by Barin *et al.* [14]) are available in literature. These estimates are in good agreement with our measurements. For SrSiO₃ the estimated values in the temperature region 500-900 K are approximately 1.5% higher and for Sr₂SiO₄ approximately 0.7% lower than the values measured by us.

Acknowledgements—The authors wish to thank Mr A. S. Booÿ and Mr W. Ouweltjes for preparing the samples, and Mr R. R. van der Laan for measuring the high-temperature enthalpy increments.

REFERENCES

- 1. Kleykamp H. J. Nucl. Mat. 131, 221 (1985).
- 2. Kleykamp H. Nucl. Techn. 80, 412 (1988).
- 3. Weller W. W. and Kelley K. K., U.S. Bureau of Mines Rep. Invest. 6556, (1964).
- Ueno A., Hayashi S., Okada K. and Otsuka N., J. Mat. Sci. Letters. 9, 9 (1990).
- Westrum E. F. Jr., Furuka G. T. and McCullough J. P., in *Experimental Thermodynamics* (Edited by J. P. McCullough and D. W. Scott), Vol. I, p. 133. Butterworth, New York (1968); Komada N. and Westrum E. F. Jr., J. Chem. Thermodynamics (scapolite) (submitted).
- 6. Stimson H. F., J. Res. Natl. Bur. Stand. 65A, 39 (1965).
- 7. Cordfunke E. H. P., Muis R. P. and Prins G., J. Chem. Thermodynamics 11, 819 (1979).
- Cordfunke E. H. P., Konings R. J. M. and van der Laan R. R. Thermochimica Acta 157, 315 (1990).
- 9. Justice B. H. Thermal data fitting with orthogonal functions and combined table generation. The FITAB Program Project Report COO-1149-143. Department of Chemistry, The University of Michigan, Ann Arbor (1969).
- 10. University of Utrecht, General Chemistry, Thermodynamics Group.
- 11. Pieper G., Eysel W. and Hahn Th. J. Amer. Cer. Soc. 55, 619 (1972).
- Withers R. L., Hyde B. G. and Thompson J. G., J. Phys. C: Solid State Phys. 20, 1653 (1987).
- Huntelaar M. E., Cordfunke E. H. P. and Ouweltjes W. V., J. Chem. Thermodynamics 24, 139 (1992).
- Barin I., Knacke O. and Kubaschewski O. Thermodynamic Properties of Inorganic Substances, Supplement. Springer-Verlag, Berlin (1977).