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Modelling radiative heat transfer in packed beds
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Abstract—A comprehensive approach for modelling dependent radiative heat transfer in beds of large
(geometric range) spherical particles is presented. Such a system of large spheres lies in the dependent range
even for large porosities. We show that the dependent properties for a bed of opaque spheres can be
obtained from their independent properties by scaling the optical thickness while leaving the albedo and
the phase function unchanged. The scaling factor is found to depend mainly on the porosity and is almost
independent of the emissivity. We show that such a simple scaling for non-opaque particles is not feasible.
The transparent and semi-transparent particles are treated by allowing for the displacement across an
optical thickness (because of transmission through a particle) while solving the equation of radiative
transfer. When combined with the scaling approach, this results in a powerful method of solution called
the dependence included discrete ordinates method (DIDOM). The results obtained from the DIDOM
give good agreement with the results obtained from the Monte Carlo method.

1. INTRODUCTION

RADIATIVE heat transfer in participating media con-
sisting of large (geometric range) spheres is con-
sidered. The solution can either be obtained from
a direct (Monte Carlo) simulation or by following
a single continuum treatment and then solving the
equation of radiative transfer. The solution of the
equation of radiative transfer requires knowledge of
the radiative properties of the medium, ie. the
absorption and scattering coefficients {s,), {o,» and
the scattering phase function {®}. If the theory of
independent scattering is valid, then the radiative prop-
erties of the bed are obtained from the properties of
an individual particle [1]. However, the independent
theory fails when:

e the ratio of the interparticle distance to the wave-
length is small {1], or
e the porosity is small [2].

The first condition will generally be satisfied for
large particles. However, Singh and Kaviany [2] show
that the scattering and absorption of radiation in
media consisting of large spherical particles is depen-
dent even for porosities as high as 0.93. They compare
the results of a direct simulation (ray tracing by the
Monte Carlo method) to those based on a single con-
tinuum treatment using the properties obtained from
the theory of independent scattering. Two distinct
dependent scattering effects are identified. The first is
an increase in the cross-section due to the multiple
scattering in the representative elementary volume
(the local volume averaging for heat transfer in porous
media is discussed by Kaviany [3]). The second effect
occurs only in transparent and semi-transparent par-
ticles and is due to the ‘transportation’ of a ray across

a substantial optical thickness when it is transmitted
through the particle.

The Monte Carlo method often requires extensive
computation. Here, we model dependent scattering
and absorption with the aim of arriving at a simple
method of analyzing the heat transfer in packed and
fluidized beds.

One approach is to scale the independent properties
so that dependent computations can be carried out
using the equation of radiative transfer with these
scaled properties. However, since the deviations from
the independent theory are a function of the porosity
and the complex index of refraction, we will show that
a simple scaling of the extent of dependence is not
feasible. This will be done by examining the prob-
ability density functions for independent and depen-
dent scattering from both opaque and transparent
particles.

Then, a novel approach that separately accounts for
multiple scattering in the representative clementary
volume and the transportation of radiation through
a particle (across a substantial optical thickness) is
presented. Multiple scattering depends on the porosity
alone and is accounted for by scaling the optical thick-
ness using the porosity. The transmission through
semi-transparent particles is modelled by allowing for
the transportation effect while describing the intensity
field by the method of discrete ordinates. This is done
by taking into consideration the spatial difference
between the point where a ray first interacts with a
sphere and the point from which it finally leaves the
sphere. This spatial difference corresponds to an
optical thickness (for a given porosity) across which
the ray is transported while undergoing scattering by
a particle.

The results of the application of this ‘dependence
included discrete ordinates method’ are shown to be in
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NOMENCLATURE

A cross-section [m?} I cos
C average interparticle clearance {m] A wavelength [m]
d diameter [m] JZ reflectivity
I radiation intensity [Wm™?] o, absorption coefficient fm ']
L depth of the bed [m] ox extinction coefficient, o, + 0, [m ']
n index of refraction, or total number of g, scattering coefficient [m~']

grids in the DIDOM T optical thickness
P integer that defines reflected or refracted b azimuthal angle [rad}

rays e particle scattering phase function
pdf  probability density function w, scattering albedo, o,/(6,+05,).
AY distance travelled [m]
S, scaling factor Superscript
R radius [m]} directional quantity, or coordinate axes.
T, transmittance
X coordinate axis along the bed [m] Subscripts
X', y" coordinate axes with y’-axis along the a absorption

incident radiation. b black body radiation

d diffuse
Greek symbols ex extinction

A size paramcter, 2nR/A i incident
r inscattering term ind  independent
Ak number of grids by which energy 1s max maximum

transported on being scattered n normal
n cfficiency r reflected or refracted or radiation
; porosity ] scattering or specular
S emissivity L axial (or longitudinal) component
0 polar angle [rad} I lateral {or transverse} component.
0, angle between incident and scattered

beam [rad] Other
K index of extinction { > volume average.

good agreement with those obtained from the Monte
Carlo method. The correct modelling of the physics
results in the applicability over the full range of
porosity and optical properties and obviates the need
for calculating and presenting scaling factors in a
three-dimensional array {(table).

2. GOVERNING EQUATION

The one-dimensional, steady-state equation of radi-
ative transfer for an absorbing, emitting and scat-
tering continuum is [4]

~

ol ‘o
PS - <5;1>]{3(S)M<acx>1[«‘5)

+ @f SO b (1)

where [ is the intensity, S is the distance travelled,
0o.» 0, and o, are the absorption, extinction and scat-
tering coeflicients, 1, is the black body emission, and
D(y;, ) is the phase function for scattering from a
direction g, to a direction g (u = cos#). For sim-
plicity, the properties are assumed to be wavelength in-

dependent. In general, because of the dependence of
the optical properties on the wavelength, the spectral
variation of the properties must be considered [2, 3}.

The calculation of independent radiative properties
of the medium from the properties of a single particle
can be done as discussed by refs. {1, 2]. For large
particles (=, > 100) the diffraction is focused in a
highly forward direction and can thus be neglected.
Then, the extinction cross-section is equal to the geo-
metrical cross-section, i.e. the extinction efficiency is
equal to one.

At present, short of a Monte Carlo simulation,
no satisfactory model of the dependent scattering
for large particles is available. Kamiuto [5] has pro-
posed a heuristic correlated scattering theory, which
attempts to calculate the dependent properties of large
particles from the independent properties. The extinc-
tion coefficient and the albedo are scaled as

<ch> - Y<O'cx>md (3}
and
{w) = 1—(1—={@)ing)/¥ (3

where
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y=1+3(1-e)—3i(1-#)?

The phase function is left unchanged.

fore <0.921. (4)

3. SCALING

In this section we attempt to find scaling factors so
that the independent radiative properties can be scaled
to give the dependent properties of the particulate
media. The scaling factor S, is assumed to be scalar
and scales the optical thickness leaving the phase func-
tion and the albedo unchanged.

3.1. S, for opaque spheres

Consider a plane-parallel particulate medium sub-
Ject to diffuse incident radiation at one boundary. The
medium contains particles that are non-emitting in
the wavelength range of interest. For opaque particles
with non-zero emissivity, the slopes of the trans-
mission curve on a logarithmic scale approach a con-
stant value away from the boundary. The scaling fac-
tor S; is calculated by finding the ratio of the slopes
calculated by the Monte Carlo method [2] and by
the independent theory. Calculation of slopes should
ideally be carried out away from the boundary in
order to obtain the bulk properties of the bed. The
calculations under the assumption of independent
scattering were done by the method of discrete-
ordinates. A distance of about six optical thicknesses
from the boundary was found to be enough to obtain
a constant slope. For the Monte Carlo method, the
case of low porosities and high emissivities presents
some problems. The intensity can be attenuated by as
much as an order of magnitude for every layer of
particles. Thus calculation at large depths becomes
difficult because of the very small overall transmission.
Then we are forced to determine the transmission
close to the boundary. Also, because of the low overall
transmission, the transmission from individual rays
becomes important. Therefore, apart from the diffi-
culty in determining the transmission, the bed may
actually give different values of the scaling factor at
different depths. This difficulty may be overcome by
noting that transmissions of the order of 10~° are so
small that any change in the scaling factor at large
distances from the source due to transmission result-
ing from a small number of rays is of no significance.
Thus, the value of S, obtained can be used for
emitting, highly absorbing beds with low porosity but
should not be used for non-emitting, highly absorbing
beds with low porosity.

Figure 1 shows the scaling factor for opaque spheres
as a function of porosity for different emissivities. The
values of S; for ¢, = 0.1 can be curve fitted as

S, =1+1.84(1—¢) —3.15(1 —&)2+7.20(1 —¢)
fore > 0.3. %)

Since the effect of emissivity on S, is small, equation
(5) can be used to obtain the value of S, for other
emissivities. The value of S, obtained from equation
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FiG. 1. Variation of scaling factors with porosity for different
emissivities.

(5) is accurate to within 2% for porosities greater than
simple cubic (¢ > 0.476), but because of the difficulty
of ascertaining S, at low porosities, up to 5% uncer-
tainty is possible for lower porosities.

3.2. The basis of scaling

Figure 2 shows the probability density function
(pdf) for a bed of specularly reflecting, opaque
spheres of porosity 0.476. The area under this curve
represents the probability that a radiation bundle
(starting from a sphere surface) undergoes an inter-
action before travelling the distance given by the inde-
pendent axis. The pdf was obtained by a direct Monte
Carlo simulation of a packed bed of spheres as dis-
cussed in ref. [2]. A ray emitted in the middle of a bed
of spheres was followed through successive reflections
and the distances between each reflection were
recorded. This information was used to calculate the
pdf. Also plotted are the pdf calculated from the the-
ory of independent scattering and the pdf for the
scaled properties. The effect of increasing the emiss-

2.0 T T
£=0.476 — MONTE CARLO
- - INDEPENDENT

1.5 & - SCALED e
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FiG. 2. Probability density function for a bed of opaque
particles (¢ = 0.476).
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F1G. 3. Schematic of ray transmission through a particle.

ivity is to increase the relative importance of the right-
hand side of the curve. This is because multiple reflec-
tions attenuate the energy of a ray undergoing a num-
ber of interactions as a result of short path lengths.
Thus the net contribution to transmittance will come
from the rays that include a greater number of longer
paths and are thus transmitted with a lesser number
of interactions. If the scaled pdf and the Monte Carlo
pdf have different shapes, the scaling factor will
change greatly with the particle emissivity. However,
since the scaled pdf is found to conform closely to the
pdf from the Monte Carlo simulation, the effect of the
emissivity on S, is small, as seen in Fig. 1. Therefore,
the scaling can be carried out treating the scaling
factor as a function of porosity alone.

Figure 3 shows a schematic of the interaction of a
ray with a transparent sphere. The ray is intercepted
by the first sphere at point P,. Part of the energy is
transmitted through the sphere and interacts with a
second sphere at point Q,. The distance P,Q, is the
distance that this energy travels after interaction at
point P, and before its interaction with the next
sphere. Other parts of the incident energy at P, travel
different paths, as explained in detail in the next
section. Figure 4 shows the pdf for a bed of trans-

1.2 T . .
£ = 0.476 — MONTE CARLO
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L/d

F1G. 4. Probability density function for a bed of transparent
particles (¢ = 0.476, n = 1.5).
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parent particles (n = 1.5). The pdf for semi-trans-
parent particles is similar except for the fact that the
fraction of rays passing through the sphere has to
be modified to account for the energy attenuated on
passing through the sphere. It is clcar that the pdf
for non-opaque particles and that obtained from the
independent theory are basically dissimilar. Even
though scaling factors can still be found for a pre-
scribed set of #, x and ¢, a change in any one of the
three parameters will change the pdf and thus affect S,.
Therefore, a scaling approach necessitates calculation
and presentation of scaling factors in a three-dimen-
sional array and is not found to be suitable.

4. DEPENDENCE INCLUDED DISCRETE
ORDINATES METHOD (DIDOM)

DIDOM models radiation heat transfer in a packed
bed of semi-transparent spheres. As mentioned in the
Introduction, the deviation from the independent
theory takes place because of the following two
distinct effects noted in a previous communication

[2]:

e multiple scattering within a small elemental vol-
ume ;

e (ransportation across a substantial optical thick-
ness.

Multiple scattering is a function of porosity alone
and is accounted for by scaling, as shown in the pre-
vious section. The transportation effect is modelled
by allowing for transmission through a sphere while
solving the equation of radiative transfer. For this,
the method of discrete ordinates has been found to be
most suitable. The key to understanding and mod-
elling the transportation effect is that a ray may be
scattered by a particle from a point that is different
from the point at which the ray first interacts with the
particle. This is because of transmission through a
particle. In highly porous media (¢ — [), this effect is
of no consequence because the particle size is small as
compared to the inter-particle distance. However, in
packed beds the ray may be transported through a
distance that corresponds to a substantial optical
thickness. Thus not only is it important to know the
direction in which a particle scatters, it is also essential
to know the displacement undergone by the ray as it
passes through the particle. In this section, we first
examine the properties of a single particle. Then, the
properties of beds are discussed. Finally, the DIDOM
is presented.

4.1. Properties of a single particle

The theory of geometric scattering is used to cal-
culate the properties of a single sphere. The details are
discussed in van de Hulst [6]. Here a brief treatment
is presented and the procedure for obtaining the direc-
tion as well as the location of the scattered rays is



Radiative heat transfer in packed beds

-

FiG. 5. Ray tracing through a single particle.

outlined. Figure 5 shows an incident ray r; that strikes
a sphere at an angle 6, with the tangent at point P,.
A fraction of the energy is reflected as the ray r, while
the rest is refracted as the ray ry, which undergoes
multiple internal reflections while some energy leaves
the sphere as rays r,, r,, ... at points P,, P,,... The
ray r,, makes an angle 0, with the tangent to the
surface at the point P,.
Then, the energy carried by various rays is

pi=py forP=0 ()
and
By =(1—p)(p))° " exp (—4KPa,sinb,)
forP=1,2,3,... N

where P represents the number of internal reflections.
For the other polarization, we replace || with L. The
total deviation from the original direction is

0 =20,—2P0.. ®)
The scattering angle in the interval (0, =) is given by
0y = k2n+ gt )

where k is an integer and ¢ = +1 or —1. Differ-
entiating and using the Snell law, we have

de’ tan 6,
4= 2P an. (10)
do’
do, = 1?& de,. (11)

Then following the steps given by ref. [6], the gain
G of a ray relative to isotropic scattering can be written
as

G(0) =4p,D (12)

where

sin 6; cos b,

il (13)
sinf, d_H,
The gain for non-polarized incident radiation is
G =3(G,+G)). (14)

The fraction of energy scattered, or the scattering
efficiency, is calculated using

1 21 1 Proan
L '[ Y. G(P,0,)dcosb,d¢

’15=Z‘; -1p=0

=1j1 S G(P,0g) deos 0. (15)

2 ) P=0
The angle 6; varies from 0 to n/2, and the calculation
of the gain is carried out at 720 points at equal inter-
vals. The integral over 6, is replaced by a summation
for carrying out the calculation. The absorption
efficiency is given by

(16)

For independent scattering, the sum of the gains in
a particular direction resulting from various values of
P gives the phase function ® for a non-absorbing
sphere. For an absorbing sphere, the resulting values
of the phase function must be divided by the scattering
efficiency.

However, for cases where the transportation effect
is important, the addition of gains for different values
of P is not permissible. This is because rays scattered
in the same direction from different points (P, for
P =0, P, for P = 1) will not have the same effect on
transmission in a packed bed. Therefore, along with
the gain, information regarding the point from which
the ray leaves the sphere must be mentioned. Thus,
the phase function will be reported as a three col-
uman array, i.e. [®(f,, P), Ax’, Ay’]. Here ®(0,, P) =
G0, P)/n,, Ax" = xp—x{ and Ay’ = y,—y,, repre-
sent the displacement undergone by the ray in a direc-
tion perpendicular and parallel to the incident ray
respectively. Thus, 4, =n,nR>, A,=nnR?> and
[®(0,, P), AX', Ay’] are determined. Ax” and Ay’ are
given by

fa=1—n,.

Ax' =0, Ay =0 forP=0 an
and
P
Ax'=dsin6, Y sin[2P' —1)8,—6]
P=1
P
Ay =dsinf, Y cos[(2P’'—1)6,-8)),
P=1
forP=1,2,.... (18)

4.2. Properties of beds

In this section, we will relate the radiative properties
of a single particle determined in the previous section
to the radiative properties of the particulate medium.
We assume a one-dimensional plane-parallel slab
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geometry. The required properties are {a,>, {o,> and
[K®>(u; — u;), Ak]. The last one represents the phase
function from a direction y; to a direction y,, and Ak
represents the number of grids through which it is
transported in the direction perpendicular to the slab
boundaries.

For mono-sized scatterers of porosity ¢, we have

(o) = NS (19

Similarly, {o,> = N,4,S,.
The procedure for computing [{®>(y; — 1), Ak} is
outlined below.

(i) To find the phase function for scattering into a
direction y, from a direction y;, we must integrate over
the azimuthal angle ¢. For this purpose we employ
a Gaussian quadrature and find discrete values of
¢,— ¢, between 0 and 7 at 24 points.

(ii) At every point, we find 0, = cos™’
JA =) (=) cos (§,— )],

(ii1) Up to this point, the treatment is similar to
that used when employing a standard DOM with the
phase function available at discrete values of 0,
except that each value of P has its own phase function
for every #,. However, here the numerical integration
over ¢ to evaluate

[ppae

1 n
D> (p; — ) = nL PRCD
(Bl &, =y, @), PYd(d;— @)

is not performed. This is because we cannot add
{DX[0o( 1 @;— pir $,), P) terms unless they have the
same Ak.

(iv) For every {®>[0o(y;, ¢, — i, $:). P), we find
Ak = Integer {Ak, -+ Ak, } where Ak, and Ak, are
the contributions of Ax” and Ay’ ' to Ak. Ak is rounded-
off to the nearest integer. Figure 6 shows how Ax” and
Ay’ contribute to Ak. Equations for Ak, and Ak,. are
written as

(20)

l‘/

Ak, = A’C’(',‘A\/(l ]1, l Ak‘ = Ay, (2D
!
where
, radius of sphere 0 75(1—¢) - S
= distance between two gnds At
(22)

{v) We calculate {®)>{(u, - u,, Ak), i.c. the phase

x'/\\y'

"‘xﬁ—
. = se~—~—-——\> w<o
} :
1 P"i
FiG. 6. Sketch of transportation effect in a particulate
medium.
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function from g, to g that is transported by Ak
number of grid points. Note that

(= 1) = 3 (DX, » p, Ak).  (23)
Ak

4.3. DIDOM
The one-dimensional radiative transfer equation at
x and in direction g, can be written as
dI{x) < .7
tige = ~ Ol F o h(x) + Ii(x)
—M. -M+1,. . M i#0

fori = (24)

where the I'; term represents the in-scattering term
and accounts for in-scattering into the direction g, at
location x from all directions at x as well as from all
directions at other x locations. After discretization,
by evaluating equation (24) at the mid-point between
two nodes (k and £+ 1) as in Fiveland [7], the in-
scattering terim can be written as

"

M
F(’.A 12 = Z Z

Kool jo My 0

forAk = k—k'

Atujll,kﬂl« |,’3<®>(#, > s Ak)

(25)

where Ay, are the quadrature weights corresponding
to the direction g, and

M
Y A= (26)
= M40
The boundary conditions are
M
L=el+pd i +2ps Y, Audy,
i
i=1,..., M atx=0 (27)
M
l = & [}’x+ps ~1+2pd Z A}u) iﬂ
e PO —M atx=L. (28)

In the case of incident radiation on a transparent
boundary, the above equation is used with £ = 1,
p. = 0 and p, = 0. The intensity at the boundary, in
a direction g, is equal to the intensity of the incident
radiation in that direction.

4.4, Solution procedure

As a first step, the values of (@D [0, (y;, @, — w;, 0,
P] are calculated at discrete values of (¢, —¢,) for all
combinations of g, and g, and the corresponding Ak
values are calculated to obtain (®){(y; — u,, Ak). For
;> 0, the intensities at x = 0 (k = 1) are known from
the boundary conditions. /(i > 0) is evaluated at
k=1,....n Similarly, I(u;<0) is cvaluated at
k=mn,...,L

The in-scattering term T, (.. is stored in a two-
dimensional array, which is updated at every point,
e.g. while calculating the scattering phase function
from direction j to direction 7 at point k41/2 for
#;>0
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Cikr yaeme = Dikg yzean F AT oy 12D () — i, AK).
(29)
This calculation is carried out for scattering into other
directions, i.e. for different values of i. It is then
repeated for all positive values of u;. Then, the I, ,
(u; > 0) are calculated and updated and T,
(¢; > 0) [used to calculate [, , . , (u; > 0)] is set to zero.
This procedure is carried out fork = 1,...,n.
After the sweep for ;> 0 is complete, the cal-
culation for J; (4; < 0) is carried out atk = n,...,1in
a similar manner.

5. RESULTS AND DISCUSSION

Figures 7(a) and (b) show the transmittance
through a bed of specularly reflecting opaque spheres
as a function of the bed thickness. The particles are
assumed to have a constant reflectivity. Figure 7(a) is
plotted for a porosity of 0.476 and Fig. 7(b) for a
porosity of 0.732. As expected, the scaled results show
the same bulk behavior as the Monte Carlo results.
However, the results are offset by ‘a difference that

YT

YTy

L4

FiG. 7(a). Transmittance through a medium of specularly
reflecting, opaque particles (¢ = 0.476).
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FiG. 7(b). Transmittance through a medium of specularly
reflecting, opaque particles (¢ = 0.732).
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Fi1G. 8. Transmittance through a medium of opaque particles
with a diffuse phase function (¢ = 0.476).

occurs at the boundaries, where the bulk properties
are no longer valid. The difference is more pronounced
for ¢ = 0.1 than for ¢ = 0.4. This is because for
& = 0.1 a large amount of energy is reflected at the
surface of the bed (before the continuum treatment
becomes applicable). The results obtained from the
Kamiuto correlated theory are found to overpredict
the transmission.

Figure 8 is plotted for diffusely reflecting particles
(e = 0.476). The results are similar to Fig. 7(a) except
that the transmittances are lower because the diffuse
phase function is more backscattering. The scaling
factor was calculated from equation (5). Again, the
results obtained from the Kamiuto correlated theory
are found to overpredict the transmission while the
scaled solution shows good agreement with the Monte
Carlo solution. Thus, the scaling factors obtained
from equation (5) can be used for different phase
functions as long as the particles are opaque.

Figures 9(a) and (b) illustrate the change in the
transmittance as a function of bed thickness for trans-
parent and semi-transparent particles. Figure 9(a) is
plotted for a porosity of 0.476 and Fig. 9(b) for a
porosity of 0.732. The spheres have a refractive index,
n = 1.5. Three different absorptivities are considered,
ie. ko, =0, ko, = 0.05 and xe, = 0.2, giving 7, = 0,
1, = 0.158 and #, = 0.479, respectively. The results of
the DIDOM are in good agreement with those of the
Monte Carlo method for all these cases and for both
of the porosities considered. The results from the
Kamiuto correlated theory underpredict the trans-
mission for transparent particles. As the absorption
of the particle is increased, the results become closer
to the Monte Carlo resuits. In the limiting case of
opaque particles, the correlated theory overpredicts
the transmittance.

6. CONCLUSIONS

A method for modelling dependent radiative heat
transfer through beds of large spherical particles is
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F1G. 9(a). Transmittance through a medium of semi-trans-
parent particles (¢ = 0.476, n = 1.5).
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F1G. 9(b). Transmittance through a medium of semi-trans-
parent particles (e = 0.732, n = 1.5).

developed. The dependent properties for opaque par-
ticles are obtained by scaling the optical thickness
obtained from the independent theory. Radiative
transfer through semi-transparent particles is mod-
elled by allowing for the transmission through the
particle while solving the equation of radiative trans-
fer, thus resulting in the dependence included discrete
ordinates method (DIDOM). The main conclusions
obtained from this study are given below.

B. P. SiNGH and M. KAviaNy

o The scaling factor for opague spheres is primarily
a function of the porosity and is almost independent
of the emissivity and the phase function. Thus the
optical thickness obtained from the theory of inde-
pendent scattering can be scaled by the scaling factor
(S,) leaving the albedo and the phase function
unchanged.

e The transportation of rays through an optical
thickness while passing through a semi-transparent
particle can be modelled by allowing for this phenom-
cnon while solving the equation of radiative transfer.

e The DIDOM allows for the transportation effect
and is found to be in good agreement with the results
obtained from the Monte Carlo method.

#The results obtained from the Kamiuto correlated
scattering theory do not in general show good agree-
ment with the results obtained from the Monte Carlo
method.

[t must be noted that radiative heat transfer in
packed beds is influenced by the solid conductivity
because radiation absorbed at one face of the particic
may be emitted from the other face. Therefore the
DIDOM as described here should not be used to
predict radiative heat transfer in packed beds when
the solid conductivity is large. The eflect of solid con-
ductivity on radiative heat transfer is currently being
modelled and will be the subject of a forthcoming
communication.
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MODELISATION DU TRANSFERT THERMIQUE RADIATIF DANS DES LITS FIXES

Résumé—On présente une approche par modélisation du transfert thermique radiatif dans des lits fixes a
grosses particules sphériques (domaine géométrique). Pour un tet systéme de grosses sphéres opaques, les
propri¢tés dépendantes peuvent étre obtenues 4 partir des grandeurs indépendantes par une analyse
d’échelle sur 'épaisseur optique en laissant inchangés I’albedo et la fonction de phase. Le facteur d’échelle
dépend principalement de la porosité et il est plutdt indépendant de 'émissivité. On montre qu’une telle
approche pour les particules semi-transparentes n’est pas possible. Celles-ci sont traitées en considérant un
déplacement a travers une épaisseur optique (& cause de la transmission 4 travers une particule) pendant
la résolution de 'équation du transfert radiatif. Ceci conduit 4 une méthode puissante de résolution appelée
méthode de dépendance incluse dans les ordonnées discrétes (DIDOM). Les résultats obtenus par DIDOM
sont en bon accord avec ceux donnés par la méthode Monte Carlo.



Radiative heat transfer in packed beds

MODELLIERUNG DES STRAHLUNGSWARMEAUSTAUSCHS IN SCHUTTUNGEN

Zusammenfassung—Es wird eine weithin giiltige Anndherung fiir den modellabhingigen Strah-
lungswirmeaustausch in Schiittungen mit geometrisch groBen kugelfdrmigen Partikeln vorgelegt. Solch
ein System groBer Kugeln liegt selbst fiir groBe Porositdten im abhéngigen Bereich. Es wird gezeigt, daB die
abhingigen Stoffeigenschaften einer Schiittung opaker Kugeln aus ihren unabhéingigen Stoffeigenschaften
gewonnen werden kénnen, indem die optische Dicke skaliert wird. Dabei bleiben das Albedo und die
Phasenfunktion unverdndert. Der Skalierungsfaktor erwiest sich als primidr von der Porositit abhingig
und ist fast unabhingig von der Emissivitit. In der Arbeit wird gezeigt, daB solch ein einfaches Ska-
lierungsverfahren fiir nicht-opake Partikel nicht durchfiihrbar ist. Transparente und halbtransparente
Partikel werden behandelt, indem die Verschiebung parallel zu einer optischen Dicke (wegen der Trans-
mission durch ein Partikel) bei der Losung der Gleichung fiir den Strahlungswirmeaustausch beriicksichtigt
wird. In Kombination mit der Skalierungsanndherung ergibt dies eine iiberzeugende Losungsmethode,
deren Ergebnisse gut mit Resultaten aufgrund des Monte-Carlo-Verfahrens iibereinstimmen.

MOJETMPOBAHHUE PAIUAILIMOHHOI'O TEIIJIOITEPEHOCA B YITAKOBAHHBIX CJIOSIX

Anmnorams—OnKCHIBAeTCA CNIOCO6 MOJEINPOBAHAS PaAHALHOHHOTO TEILIONEPEHOCA C YYETOM KOJLIEK-
THBHOTO DAcCesHHs B CJIOAX KPYMHBIX CEPHUYECKHX HACTHL (NPHOJIMXEHME reOMETPHYECKOH ONTHKH).
Takas cucTeMa KpYIHBIX cep HOJDKHA PacCMATPHBATBCA ¢ YYETOM KOJUIEKTHBHOTO PACCESHHA Haxe
npu Gosabimx noposxoctsax. IlokaszaHo, ¥To npu 3TOM CBOMCTBA CIOA HENPO3pAYHBIX chep MOXKHO
ONpeJefuTh 0 MX XapaKTEPHCTHKAM HE3aBHCHMOIO PAacCesiHMs MOCPEACTBOM MNEPECYETa ONTHYECKOM
TonmuHel Ge3 u3MmeneHns anbbeno m dasoBoil ynkumn. Haiineno, 4to kospduumenT mepecuera
3aBHCHT NPEHMYIIECTBEHHO OT NOPO3HOCTH M MOYTH HE 3aBHCHUT OT CTeNeHH YepHoThHL. ITokasaHo, 4To
TaKo# NPOCTOH MEPECYET HEBO3MOXKCEH [UIA Npo3pavHbix 4acTdu. IIpo3payHbie H MOJMYNpPO3padHbie
HACTHIB! HCCIEAYIOTCS ¢ YYETOM CMEILICHHA MO ONTHYECKOH TONMIMHE (06YCIOBIEHHOrO MPOIYCKAHHEM
Yepe3 YacTHIly) MPH PEICHHM yPAaBHEHHS PaJHAalHOHHOrO mepeHoca. Takoil moaxon npu ero komM6uHa-
UMM C METOJOM NiepecyeTa JaeT ymaobHyro MORHGHKALMIO METOAa AMCKPeTHbIX opmuHaT (DIDOM).
Pesynbratel, nonydennsle merofoM DIDOM, XOpowIO COrnacyroTcsi ¢ pe3y/ibTaTaMH, HaiaeHHBIMH
meroaoM Monre Kapio.
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