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Abstract-A comprehensive approach for modelling dependent radiative heat transfer in beds of large 
(geometric range) spherical particles is presented. Such a system of large spheres lies in the dependent range 
even for large porosities. We show that the dependent properties for a bed of opaque spheres can be 
obtained from their independent properties by scaling the optical thickness while leaving the albedo and 
the phase function unchanged. The scaling factor is found to depend mainly on the porosity and is almost 
independent of the emissivity. We show that such a simple scaling for non-opaque particles is not feasible. 
The transparent and semi-transparent particles are treated by allowing for the displacement across an 
optical thickness (because of transmission through a particle) while solving the equation of radiative 
transfer. When combined with the scaling approach, this results in a powerful method of solution called 
the dependence included discrete ordinates method (DIDOM). The results obtained from the DIDOM 

give good agreement with the results obtained from the Monte Carlo method. 

1. INTRODUCTION 

RADIATIVE heat transfer in participating media con- 
sisting of large (geometric range) spheres is con- 
sidered. The solution can either be obtained from 
a direct (Monte Carlo) simulation or by following 
a single continuum treatment and then solving the 
equation of radiative transfer. The solution of the 
equation of radiative transfer requires knowledge of 
the radiative properties of the medium, i.e. the 
absorption and scattering coefficients (a,), (gs) and 
the scattering phase function (Q). If the theory of 
independent scattering is valid, then the radiative prop- 
erties of the bed are obtained from the properties of 
an individual particle [l]. However, the independent 
theory fails when : 

l the ratio of the interparticle distance to the wave- 
length is small [ 11, or 

l the porosity is small [2]. 

The first condition will generally be satisfied for 
large particles. However, Singh and Kaviany [2] show 
that the scattering and absorption of radiation in 
media consisting of large spherical particles is depen- 
dent even for porosities as high as 0.93. They compare 
the results of a direct simulation (ray tracing by the 
Monte Carlo method) to those based on a single con- 
tinuum treatment using the properties obtained from 
the theory of independent scattering. Two distinct 
dependent scattering effects are identified. The first is 
an increase in the cross-section due to the multiple 
scattering in the representative elementary volume 
(the local volume averaging for heat transfer in porous 
media is discussed by Kaviany [3]). The second effect 
occurs only in transparent and semi-transparent par- 
ticles and is due to the ‘transportation’ of a ray across 

a substantial optical thickness when it is transmitted 

through the particle. 
The Monte Carlo method often requires extensive 

computation. Here, we model dependent scattering 
and absorption with the aim of arriving at a simple 
method of analyzing the heat transfer in packed and 
fluidized beds. 

One approach is to scale the independent properties 
so that dependent computations can be carried out 
using the equation of radiative transfer with these 
scaled properties. However, since the deviations from 
the independent theory are a function of the porosity 
and the complex index of refraction, we will show that 
a simple scaling of the extent of dependence is not 
feasible. This will be done by examining the prob- 
ability densitj functions for independent and depen- 
dent scattering from both opaque and transparent 
particles. 

Then, a novel approach that separately accounts for 
multiple scattering in the representative elementary 
volume and the transportation of radiation through 
a particle (across a substantial optical thickness) is 
presented. Multiple scattering depends on the porosity 
alone and is accounted for by scaling the optical thick- 
ness using the porosity. The transmission through 
semi-transparent particles is modelled by allowing for 
the transportation effect while describing the intensity 
field by the method of discrete ordinates. This is done 
by taking into consideration the spatial dzfirence 
between the point where a ray first interacts with a 
sphere and the point from which it finally leaves the 
sphere. This spatial difference corresponds to an 
optical thickness (for a given porosity) across which 
the ray is transported while undergoing scattering by 
a particle. 

The results of the application of this ‘dependence 
included discrete ordinates method’ are shown to be in 
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NOMENCLATURE 

cross-section [ml] 
average interparticle clearance [m] 
diameter [m] 
radiation intensity [WII-~] 
depth of the bed [m] 
index of refraction, or total number of 
grids in the DIDOM 

integer that defines reflected or refracted 
rays 
pro~bi~ity density function 

distance travelled [m] 
scaling factor 
radius [m] 
transmittance 
coordinate axis along the bed [m] 
coordinate axes with r’-axis along the 
incident radiation. 

Greek symbols 

% size parameter, 2xR/1 
P inscattering term 
Ax- number of grids by which energy is 

transported on being scattered 

V efficiency 
E porosity 

8, emissivity 

(I polar angle [rad] 

0, angle between incident and scattered 

beam [rad] 
K index of extinction 

P cos 0 
i. wavelength [m] 

P reflectivity 

@R absorption coefficient [m ‘1 

*,, extinction coefficient, 0, + rr, [m ‘1 

fl, scattering coefficient [m- ‘1 

6 

optical thickness 

azimuthal angle [t-ad) 

ct, particle scattering phase function 

(‘?, scattering albedo, a,/(~, + crf,). 

Superscript 
directional quantity, or coordinate axes. 

Subscripts 

b 
absorption 
black body radiation 

d diffuse 
ex extinction 
i incident 
ind independent 
max maximum 
n normal 
r reflected or refracted or radiation 
S scattering or specular 
I axial (or longitudinal) component 

I/ lateral (or transverse) component. 

Other 

0 volume average. 

good agreement with those obtained from the Monte 
Carlo method. The correct modelling of the physics 
results in the applicability over the full range of 
porosity and optical properties and obviates the need 
for calculating and presenting scaling factors in a 
three-dimensional array (table). 

2. GOVERNING EQUATION 

The one-dimensional, steady-state equation of radi- 
ative transfer for an absorbing, emitting and scat- 
tering continuum is [4] 

where f is the intensity, S is the distance travelled. 
pcX_ rra and cr, are the absorption, extinction and scat- 
tering coefficients, I,, is the black body emission, and 
@(p,, ,u) is the phase function for scattering from a 
direction /ii to a direction p (cl = cos6). For sim- 
plicity, the properties are assumed to be wavelength in- 

dependent. ln general, because of the dependence of 
the optical properties on the wavelength, the spectral 

variation of the properties must be considered [2, 31. 
The calculation of independent radiative properties 

of the medium from the properties of a single particle 
can be done as discussed by refs. [l, 21. For large 
particles frs, > 100) the diffraction is focused in a 
highly forward direction and can thus be neglected. 
Then, the extinction cross-section is equal to the geo- 
metrical cross-section, i.e. the extinction ~~ciency is 
equal to one. 

At present, short of a Monte Carlo simulation, 
no satisfactory model of the dependent scattering 
for large particles is available. Kamiuto [5] has pro- 
posed a heuristic correlated scattering theory, which 
attempts to calculate the dependent properties of large 
particles from the independent properties. The extinc- 
tion coefficient and the albedo are scaled as 

and 

where 
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y= l+j(l--E)-{(l-&E)*, fore<0.921. (4) 

The phase function is left unchanged. 

3. SCALING 

In this section we attempt to find scaling factors so 
that the independent radiative properties can be scaled 
to give the dependent properties of the particulate 
media. The scaling factor S, is assumed to be scalar 
and scales the optical thickness leaving thephasefunc- 
tion and the albedo unchanged. 

3.1. S, for opaque spheres 
Consider a plane-parallel particulate medium sub- 

ject to d$iise incident radiation at one boundary. The 
medium contains particles that are non-emitting in 
the wavelength range of interest. For opaque particles 
with non-zero emissivity, the slopes of the trans- 
mission curve on a logarithmic scale approach a con- 
stant value away from the boundary. The scaling fac- 
tor S, is calculated by finding the ratio of the slopes 
calculated by the Monte Carlo method [2] and by 
the independent theory. Calculation of slopes should 
ideally be carried out away from the boundary in 
order to obtain the bulk properties of the bed. The 
calculations under the assumption of independent 
scattering were done by the method of discrete- 
ordinates. A distance of about six optical thicknesses 
from the boundary was found to be enough to obtain 
a constant slope. For the Monte Carlo method, the 
case of low porosities and high emissivities presents 
some problems. The intensity can be attenuated by as 
much as an order of magnitude for every layer of 
particles. Thus calculation at large depths becomes 
difficult because of the very small overall transmission. 
Then we are forced to determine the transmission 
close to the boundary. Also, because of the low overall 
transmission, the transmission from individual rays 
becomes important. Therefore, apart from the diffi- 
culty in determining the transmission, the bed may 
actually give different values of the scaling factor at 
different depths. This difficulty may be overcome by 
noting that transmissions of the order of lo-’ are so 
small that any change in the scaling factor at large 
distances from the source due to transmission result- 
ing from a small number of rays is of no significance. 
Thus, the value of S, obtained can be used for 
emitting, highly absorbing beds with low porosity but 
should not be used for non-emitting, highly absorbing 
beds with low porosity. 

Figure 1 shows the scaling factor for opaque spheres 
as a function of porosity for different emissivities. The 
values of .S, for E, = 0. I can be curve fitted as 

S, = 1+1.84(1-s)-3.15(1-s)2+7.20(l-s)3 

fore > 0.3. (5) 

Since the effect of emissivity on S, is small, equation 
(5) can be used to obtain the value of S, for other 
emissivities. The value of S, obtained from equation 
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FIG. 1. Variation of scaling factors with porosity for different 
emissivities. 

(5) is accurate to within 2% for porosities greater than 
simple cubic (E > 0.476), but because of the difficulty 
of ascertaining S, at low porosities, up to 5% uncer- 
tainty is possible for lower porosities. 

3.2. The basis of scaling 
Figure 2 shows the probability density function 

(pdf) for a bed of specularly reflecting, opaque 
spheres of porosity 0.476. The area under this curve 
represents the probability that a radiation bundle 
(starting from a sphere surface) undergoes an inter- 
action before travelling the distance given by the inde- 
pendent axis. The pdf was obtained by a direct Monte 
Carlo simulation of a packed bed of spheres as dis- 
cussed in ref. [2]. A ray emitted in the middle of a bed 
of spheres was followed through successive reflections 
and the distances between each reflection were 
recorded. This information was used to calculate the 
pdf. Also plotted are the pdf calculated from the the- 
ory of independent scattering and the pdf for the 
scaled properties. The effect of increasing the emiss- 

2*o I 
E = 0.470 - Yom CARLO 
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FIG. 2. Probability density function for a bed of opaque 
particles (E = 0.476). 
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FIG. 3. Schematic of ray transmission through a particle. 

ivity is to increase the relative importance of the right- 
hand side of the curve. This is because multiple reflec- 
tions attenuate the energy of a ray undergoing a num- 
ber of interactions as a result of short path lengths. 
Thus the net contribution to transmittance will come 

from the rays that include a greater number of longer 
paths and are thus transmitted with a lesser number 
of interactions. If the scaled pdf and the Monte Carlo 
pdf have different shapes, the scaling factor will 
change greatly with the particle emissivity. However. 
since the scaled pdf is found to conform closely to the 
pdf from the Monte Carlo simulation, the effect of the 
emissivity on S, is small, as seen in Fig. 1. Therefore, 
the scaling can be carried out treating the scaling 
factor as a function of porosity alone. 

Figure 3 shows a schematic of the interaction of a 
ray with a transparent sphere. The ray is intercepted 
by the first sphere at point PO. Part of the energy is 
transmitted through the sphere and interacts with a 
second sphere at point Q,,. The distance P,Q,, is the 
distance that this energy travels after interaction at 
point P, and before its interaction with the next 

sphere. Other parts of the incident energy at P, travel 

different paths, as explained in detail in the next 
section. Figure 4 shows the pdf for a bed of trans- 

1.2 , I I I 
c = 0.476 - YONTE CARLO 

-. INOEPENOEN, 

pdf 

1 2 3 

L/d 

FIG. 4. Probability density function for a bed of transparent 
particles (C = 0.476, n = I .5). 

parent particles (n = 1.5). The pdf for semi-tranh- 
parent particles is similar except for the fact that the 
fraction of rays passing through the sphere has tr! 
be modified to account for the energy attenuated on 
passing through the sphere. It is clear that the pdt 
for non-opaque particles and that obtained from the 
independent theory are basicall> dissinzih. E\,en 
though scaling factors can still be found for a pre- 
scribed set of U, I< and E, a change in any one of the 
three parameters will change the pdf and thus affect S, 

Therefore, a scaling approach necessitates calculation 
and presentation of scaling factors in a three-dimcn- 
sional array and is not found to be suitable. 

4. DEPENDENCE INCLUDED DISCRETE 

ORDINATES METHOD (DIDOM) 

DIDOM models radiation heat transfer in a packed 
bed of semi-transparent spheres. As mentioned in the 
Introduction, the deviation from the independent 

theory takes place because of the following t&o 
distinct effects noted in a previous communication 

PI : 

l multiple scattering within a small elemental vol- 
ume ; 

l transportation across a substantial optical thick- 
ness. 

Multiple scattering is a function of porosity alone 
and is accounted for by scaling, as shown in the pre- 

vious section. The transportation effect is modelled 
by allowing for transmission through a sphcrc while 
solving the equation of radiative transfer. For this. 
the method of discrete ordinates has been found to be 
most suitable. The key to understanding and mod- 
elling the transportation effect is that a ray may be 
scattered by a particle from a point that is different 
from the point at which the ray first interacts with the 
particle. This is because of transmission through a 
particle. In highly porous media (c ---f I), this effect is 
of no consequence because the particle size is small ax 
compared to the inter-particle distance. However, in 
packed beds the ray may be transported through a 
distance that corresponds to a substantial optical 
thickness. Thus not only is it important to know the 
direction in which a particle scatters, it is also essential 
to know the displacement undergone by the ray as it 
passes through the particle. In this section. WC first 
examine the properties of a single particle. Then. the 
properties of beds are discussed. Finally. the DIDOM 
is presented. 

4. I Proptv-tie.~ qf’u Sillc+ pclrrick 
The theory of geometric scattering is used to cal- 

culate the properties of a single sphere. The details are 
discussed in van de Hulst [6]. Here a brief treatment 
is presented and the procedure for obtaining the direc- 
tion as well as the location of the scattered rays is 



FIG. 5. Ray tracing through a single particle. 

outlined. Figure 5 shows an incident ray ri that strikes 
a sphere at an angle 0, with the tangent at point P,. 
A fraction of the energy is reflected as the ray r0 while 
the rest is refracted as the ray rO,, which undergoes 
multiple internal reflections while some energy leaves 
the sphere as rays r,, r2, . . at points P,, PZ,. . The 
ray rO,, makes an angle 0, with the tangent to the 
surface at the point P,. 

Then, the energy carried by various rays is 

/S,, =p;, forP=O (6) 

and 

j,, = (1 -p;,)‘(p;,)‘-‘exp(-4icPct,sinO,) 

forP= 1,2,3,... (7) 

where P represents the number of internal reflections. 
For the other polarization, we replace 11 with 1. The 
total deviation from the original direction is 

8’ = 20, -2P9,. (8) 

The scattering angle in the interval (0, rc) is given by 

0, = k2n+qO’ (9) 

where k is an integer and q = + 1 or - 1. Differ- 
entiating and using the Sell law, we have 

d9 tan Oi 
- = 2-2Ptan 
dOi I 

(10) 

do 0 (11) 
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D= 
sin Oi cos Oi 

(13) 

The gain for non-polarized incident radiation is 

G = $(G,, +GJ. (14) 

The fraction of energy scattered, or the scattering 
eficiency, is calculated using 

1 
2n 

rls=&r 0 ss 
’ ; G(P,O,)dcosO,d4 

-IPzO 

= ;j;, p$oG(f’,~o)dc~s~o. (15) 

The angle Oi varies from 0 to n/2, and the calculation 
of the gain is carried out at 720 points at equal inter- 
vals. The integral over O0 is replaced by a summation 
for carrying out the calculation. The absorption 
ejjkiency is given by 

ra = 1 -vs. (16) 
For independent scattering, the sum of the gains in 

a particular direction resulting from various values of 
P gives the phase function @ for a non-absorbing 
sphere. For an absorbing sphere, the resulting values 
of the phase function must be divided by the scattering 
efficiency. 

However, for cases where the transportation effect 
is important, the addition of gains for different values 
of P is not permissible. This is because rays scattered 
in the same direction from different points (P, for 
P = 0, P, for P = 1) will not have the same effect on 
transmission in a packed bed. Therefore, along with 
the gain, information regarding the point from which 
the ray leaves the sphere must be mentioned. Thus, 
the phase function will be reported as a three col- 
umn array, i.e. [@(O,, P), Ax’, Ay’]. Here @(OO, P) = 
G(O,,, P)/qS, Ax’ = xlp-xb and Ay’ = yip-yb repre- 
sent the displacement undergone by the ray in a direc- 
tion perpendicular and parallel to the incident ray 
respectively. Thus, A, = v],nR*, A, = q5xR2 and 
[@(O,, P), Ax’, Ay’] are determined. Ax’ and Ay’ are 
given by 

and 

Ax’=O, Ay’=O forP=O (17) 

Ax’ = dsin 0, i sin [(2P’ - l)O, -Oil 
Y=I 

Ay’ = dsin0, 2 cos[(2P’- 1)0,--O,], 
Y= I 

Then following the steps given by ref. [6], the gain 
G of a ray relative to isotropic scattering can be written 
as 

for P = 1,2,. . . . 

4.2. Properties of be& 

(18) 

where 

G,, (0) = 48,, D (12) 

In this section, we will relate the radiative properties 
of a single particle determined in the previous section 
to the radiative properties of the particulate medium. 
We assume a one-dimensional plane-parallel slab 
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geometry. The required properties are (cJ:,,), (cJ and 
[(@)(p, --t pi), Ak]. The last one represents the phase 
function from a direction ,LL, to a direction p,. and Ak 

represents the number of grids through which it is 
transported in the direction perpendicular to the slab 
boundaries. 

For mono-sized scatterers of porosity E, we have 

(~3) = NJ,.&. 

Similarly, (CT,) = N,A,S,. 

(19) 

The procedure for computing [{Q)(p, + pi), ilk] is 
outlined below. 

(i) To find the phase function for scattering into a 
direction p, from a direction /.L,, we must integrate over 

the azimuthal angle 4. For this purpose we employ 
a Gaussian quadrature and find discrete values of 
#, - 4, between 0 and z at 24 points. 

(ii) At every point. we find O. = COSC! fp,bc,+ 

J(l -&)J(l-,$) cos (45-d,)& 
(iii) Up to this point, the treatment is similar to 

that used when employing a standard DOM with the 
phase function available at discrete values of OCr. 
except that each value of P has its own phase function 
for every 0,. However, here the numerical integration 

over fj to evaluate 

X ff’,(tQs #; + pi> #*I> f’)d(#j-#,I (20) 

is not performed. This is because we cannot add 

(@)[Q,(~j, 4j -+ p,, &), P] terms unless they have the 
same Ak. 

(iv) For every (@>[Q&,, 4, -+ p,, cb,), PI, we find 
Ak = Integer { Ak,,, + Ak,..) where Ak_,, and Ak,. are 

the contributions of Ax’ and Ay’ to ilk. Ak is rounded- 
off to the nearest integer. Figure 6 shows how AX’ and 
A?’ contribute to Ak. Equations for Ak,, and Ak,.. are 

written as 

Ak,, = AX&/( 1 -/I;)~;:, , Ak,. = A&/L, (21) 

where 

Y 
radius of sphere 0.75(1-@-S, 

___.- ____.-- = - 
ii = distance between two grids Alz 

(22) 

(v) We calculate <@,i(~~ + pi, Ak), is. the phase 

FIG. 6. Sketch of transportation effect in a particulate 
medium. 

function from p, to p, that is transported by AX 
number of grid points. Note that 

The one-dimensional radiative transfer equation at 
I and in direction p, can be written as 

fori= -.~.-ll;l+l,_...l W.i#O (24) 

where the I‘, term represents the in-scattering term 
and accounts for in-scattering into the direction /L, at 
location .Y from all directions at x as well as from all 

directions at other x locations. After discretization. 
by evaluating equation (24) at the mid-point between 

two nodes (k and k + 1) as in Fiveland [7], the in- 
scattering term can be written as 

r,.i +_ , ,z = i 
.!vI 
C W,,i, .,. ,,.‘(@XP, + /ii.Ak) 

i I I ,- -mM.,+” 

forAk = k-k’ (25) 

where A/t, are the quadrature weights corresponding 

to the direction I*, and 

,A, 

1 A,u, = 2. (26) 
I- b/.Ji 0 

The boundary conditions are 

i= l,....M at.r=o 127) 

j=: -_1 . . . . -izI at .Y = L. (2X1 

In the case of incident radiation on a transparent 
boundary, the above equation is used with 8, = I, 
ps = 0 and pd = 0. The intensity at the boundary, in 
a direction pi, is equal to the intensity of the incidenl 
radiation in that direction. 

4.4. Solution procedure 

As a first step, the values of (@)(O,(~i, 4, -+ p,, @,), 
P] are calculated at discrete values of (#i-#,) for all 
combinations of TV, and pi, and the tori-esponding Ak 
values are calculated to obtain (@)(p, + /Q, Ak). For 
p, > 0, the intensities at x = 0 (k = I) are known from 
the boundary conditions. [,(/I, > 0) is evaluated a~ 
k = 1, . w. Similarly, I,(/L, < 0) is evaluated at 
k=n,...,l. 

The in-scattering term T,,n + ,, Z is stored in a two- 
dimensional array, which is updated at every point, 
e.g. while calculating the scattering phase function 
from direction ,j to direction i at point kf 112 fat 

Pi'0 
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This calculation is carried out for scattering into other 
directions, i.e. for different values of i. It is then 
repeated for all positive values of pj. Then, the Zj,k+, 
(pj > 0) are calculated and updated and I,,k, ,,* 
01, > 0) [used to calculate tj,&+ , (pj > 0)] is set to zero. 
This procedure is carried out for k = 1,. . . , n. 

After the sweep for ZJ, > 0 is complete, the cal- 
culation for Z, (bj < 0) is carried out at k = n, . . , 1 in 
a similar manner. 

5. RESULTS AND DISCUSSION 

Figures 7(a) and (b) show the transmittance 
through a bed of specularly reflecting opaque spheres 
as a function of the bed thickness. The particles are 
assumed to have a constant reflectivity. Figure 7(a) is 
plotted for a porosity of 0.476 and Fig. 7(b) for a 
porosity of 0.732. As expected, the scaled results show 
the same bulk behavior as the Monte Carlo results. 
However, the results are offset by .a difference that 

,o-s I . I . I . I .‘.. I . 

0 2 4 6 6 10 
L/d 

FIG. 7(a). Transmittance through a medium of specularly 
reflecting, opaque particles (E = 0.476). 

to-+’ . ’ . ’ . ’ . J 
0 4 

Li 
12 16 

FIG. 7(b). Transmittance through a medium of specularly 
reflecting, opaque particles (E = 0.732). 

T, 

10” . ’ * ’ ’ . ’ ’ 
0 2 4 6 6 10 

L/d 
FIG. 8. Transmittance through a medium of opaque particles 

with a diffuse phase function (E = 0.476). 

occurs at the boundaries, where the bulk properties 
are no longer valid. The difference is more pronounced 
for E, = 0.1 than for E, = 0.4. This is because for 
a, = 0.1 a large amount of energy is reflected at the 
surface of the bed (before the continuum treatment 
becomes applicable). The results obtained from the 
Kamiuto correlated theory are found to overpredict 
the transmission. 

Figure 8 is plotted for diffusely reflecting particles 
(a = 0.476). The results are similar to Fig. 7(a) except 
that the transmittances are lower because the diffuse 
phase function is more backscattering. The scaling 
factor was calculated from equation (5). Again, the 
results obtained from the Kamiuto correlated theory 
are found to overpredict the transmission while the 
scaled solution shows good agreement with the Monte 
Carlo solution. Thus, the scaling factors obtained 
from equation (5) can be used for different phase 
functions as long as the particles are opaque. 

Figures 9(a) and (b) illustrate the change in the 
transmittance as a function of bed thickness for truns- 
parent and semi-transparent particles. Figure 9(a) is 
plotted for a porosity of 0.476 and Fig. 9(b) for a 
porosity of 0.732. The spheres have a refractive index, 
n = 1.5. Three different absorptivities are considered, 
i.e. JCC(, = 0, KC(, = 0.05 and KCI, = 0.2, giving q, = 0, 
q, = 0.158 and r~, = 0.479, respectively. The results of 
the DIDOM are in good agreement with those of the 
Monte Carlo method for all these cases and for both 
of the porosities considered. The results from the 
Kamiuto correlated theory underpredict the trans- 
mission for transparent particles. As the absorption 
of the particle is increased, the results become closer 
to the Monte Carlo results. In the limiting case of 
opaque particles, the correlated theory overpredicts 
the transmittance. 

6. CONCLUSIONS 

A method for modelling dependent radiative heat 
transfer through beds of large spherical particles is 
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FIG. 9(a). Transmittance through a medium of semi-trans- 
parent particles (c = 0.476, n = 1.5). 

0 8 ; 24 32 

FIG. 9(b). Transmittance through a medium of semi-trans- 
parent particles (a = 0.732, n = 1.5). 

developed. The dependent properties for opaque par- 
ticles are obtained by scaling the optical thickness 
obtained from the independent theory. Radiative 
transfer through semi-transparent particles is mod- 
elled by allowing for the transmission through the 
particle while solving the equation of radiative ti-ans- 
fer, thus resuiting in the dependence included discrete 
ordinates method (DIDOM). The main conclusions 
obtained from this study are given below. 

l The scaling factor for opuque spheres is primarily 

a function of the porosity and is almost independent 

of the emissivity and the phase function. Thus the 

optical thickness obtained from the theory of inde- 
pendent scattering can be scaled by the scaling factor 
(S,) leaving the albedo and the phase function 
unchanged. 

l The tI-ans~ortation of rays through an optical 
thickness while passing through a s~t~j-6~unspu~~~?t 
particle can be modelled by allowing for this phenom- 
cnon while solving the equation of radiative transfer. 

l The DIDOM allows for the mnsportufion effect 

and is found to be in good agreement with the results 
obtained from the Monte Carlo method. 

*The results obtained from the Kamiuto correlated 
scattering theory do not in general show good agree- 
ment with the results obtained from the Monte Carlo 
method. 

I1 must be noted that radiative heat transfer in 
packed beds is influenced by the solid conductivity 
because radiation absorbed at one face of the particlc 
may be emitted frotn the other fact. Therefore the 
DIDOM as described here should not be used to 
predict radiative heat transfer in packed beds when 
the solid conductivity is large. The effect of solid con- 
ductivity on radiative heat transfer is currently being 
modelled and will be the subject of a forthcoming 

communication. 
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MODELISATION DU TRANSFERT THERMIQUE RADIATIF DANS DES LITS FIXES 

R&urn&-On presente une approche par mod~lisation du transfert thermique radiatif dans des lits fixes i 
grosses particules spheriques (domaine geometrique). Pour un tet systeme de grosses spheres opaques, les 
proprittes dependantes peuvent Btre obtenues a partir des grandeurs independantes par une analyse 
d’tchelle sur I’tpaisseur optique en laissant inchanges I’albedo et la fonction de phase. Le facteur d’echelle 
depend principalement de la porositb et il est plutot independant de l’tmissivite. On montre qu’une telle 
approche pour les particules semi-transparentes n’est pas possible. Celles-ci sont trait&es en considerant un 
d&placement si travers une epaisseur optique (a cause de la transmission a &avers une particule) pendant 
la resolution de l’equation du transfer? radiatif. Ceci conduit B une methode puissante de resolution appelee 
methode de dbpendance incluse dans les ordonnees disc&es (DIDOM). Les resultats obtenus par DIDOM 

sont en bon accord avec ceux don& par la methode Monte Carlo. 
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MODELLIERUNG DES STRAHLUNGSWARMEAUSTAUSCHS IN SCHUTTUNGEN 

Zusammenfassung-Es wird eine weithin giiltige Annlherung fur den modellabhangigen Strah- 
lungswarmeaustausch in Schiittungen mit geometrisch grol3en kugelfijrmigen Partikeln vorgelegt. Solch 
ein System grol3er Kugeln liegt selbst fur gro& Porositiiten im abhangigen Bereich. Es wird gezeigt, dal3 die 
abhangigen Stoffeigenschaften einer Schiittung opaker Kugeln aus ihren unabhlngigen Stoffeigenschaften 
gewonnen werden kiinnen, indem die opt&he Dicke skaliert wird. Dabei bleiben das Albedo und die 
Phasenfunktion unverandert. Der Skalierungsfaktor erwiest sich als primar von der Porositlt abhangig 
und ist fast unabhlngig von der Emissivitiit. In der Arbeit wird gezeigt, dal3 solch ein einfaches Ska- 
lierungsverfahren fur nicht-opake Partikel nicht durchfiihrbar ist. Transparente und halbtransparente 
Partikel werden behandelt, indem die Verschiebung parallel zu einer optischen Dicke (wegen der Trans- 
mission durch ein Partikel) bei der Losung der Gleichung fiir den Strahlungswiirmeaustausch berticksichtigt 
wird. In Kombination mit der Skalierungsannlhenmg ergibt dies eine tiberzeugende Losungsmethode, 

deren Ergebnisse gut mit Resultaten aufgrund des Monte-Carlo-Verfahrens iibereinstimmen. 

MO~EJIHPOBAHHE PAJIHAHHOHHOTO TEHJIOIIEPEHOCA B Yl-IAKOBAHHbIX CJIOIIX 

AnwTa~n&iCbIBaeTCK cnoco6 MoneJnipoeaHHn panwamioHHoro TennonepeHoca c yreToM Konnex- 
Taanoro paccenmin a cnonx xpyn~brx c+pa~ec~rix uacrriu (npa6nmxemie reoMerpw~ecxofi OIITBKH). 

Taxaa cncreMa ~pyn~b~x c&p nonmrla paccMarpnsaTbcn C yeTor KonneKninHoro paccertmn j3axce 
npn 6onbmax nopo3HocTnx. nOKa3aH0, ‘IT0 npa 3TOM CBOiiCTBa CJIOK HenpOsparHblX C#.p MOXCHO 

0npeaennTb no BX xapaxrepricrsixaM rie3anncnMoro paccenmir nocpencTnoM nepecuera onruuecxoii 
TOJ~~~HM 6es H3MeHeHHII aIIb6enO u aa3OBOfi @yHKUIIH. Haiineno, ¶To KO3!$@iWeHT nepecYeTa 

3aBHCUT npe4iMyUWCTBeHHO OT nOpO3HOCTW W nO’ITH He 3aBEiCUT OT CTeneHW ‘IepHOTbI. nOKa3aH0, YTO 

Taxoii npocroii nepecuer nea03Moxcen arm npo3pa9ibtx Sacrrin. Hpospasabre H nonynpospauabre 
sacrmrbr riccnenyromn c yreToM crb4ememin no 0nTn~ecxoti Tonmmre (06ycnoenetinoro nponycrcamieM 
repes uacreny) npu pemenmi ypannemin parulamioirnoro nepeaoca. Taxol nonxon npn ero KOM6&iHa- 

wia c M~TO~OM nepecqera naer yno6~yro Monw@ixamito Meroaa ~HCK~~THUX OpwHaT (DIDOM). 
PesyJtbTaTbt, nOJly’ieHHbre MeTOnOM DIDOM, XOpOUIO COrJIaCyIoTCK C pe3yJIbTaTaMH, HaiineHHbIMli 

MeTOnOM MOHTe Kapno. 


