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Axially moving material problems consider the dynamic response, vibration and stability 
of long, slender members which are in a state of translation. This study focuses on the 
response of axially moving beam-like elements at translation speeds that exceed the classical 
“critical speed stability limit”. A non-linear model for an axially moving beam is derived 
that accounts for the initial beam curvature induced by supporting pulleys or wheels. 
Presently, the model is used to determine steady responses at critical and supercritical 
translation speeds. The properties of the equilibrium problem are examined using an 
approximate linear solution and an exact, non-linear solution. The deficiency of the linear 
solution is illustrated by its inability to capture essential features of the equilibrium problem 
particularly near and above the critical speed. In this high-speed region, the translating 
beam undergoes large overall buckling deformations leading to multiple and bifurcated 
equilibrium states. The stability of the equilibria is assessed in Part II. 

1. INTRODUCTION 

Many mechanical systems utilize a slender, translating element as a means of transmitting 
power, information and material. The term axially moving materials [I] collectively refers 
to the translating elements found in diverse applications including magnetic tape recording 
devices, belt and chain drives, thread and fiber winders, band saws, paper and web handling 
machinery, overhead conveyer systems and cable pay-out/reel-in systems. Recent develop- 
ments in the literature on axially moving materials are reviewed in reference [2]. 

Models for the dynamics of axially moving materials consider the transverse response 
of the element as it translates with prescribed speed between supporting wheels, pulleys or 
guides. During operation, the element is subjected to tension forces which originate from 
the support and drive mechanisms. Traditionally, the tension is assumed to be sufficiently 
large so that the element is, initially, drawn perfectly straight. The analysis of such geowzet- 
rically perfect elements leads to the following important conclusions regarding vibration 
and stability. 

For flexible materials (e.g., chains, fibers, tapes and threads) the element is modeled as 
a taut string with negligible flexural rigidity [3,4]. For this model, the linear equation for 
free, transverse motion is a one-dimensional wave equation for a moving medium [5], and 
admits a d’Alembert solution involving two component waves with distinct propagation 
speeds in the downstream and upstream directions. When the translation speed equals the 
sound speed, the component wave propagating in the upstream direction becomes station- 
ary and standing wave resonance leads to divergence instability. This instability occurs 
simultaneously for all free vibration modes. Thus, stable operations are limited to transla- 
tion speeds below a theoretical critical speed which, in the case of flexible materials, is 
simply the sound speed. 
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A critical speed also limits the stability of translating elements that possess flexural 
rigidity (e.g., bands, belts, conveyor webs and paper) which are modeled as translating 
beams [6-81 or plates [9]. However, in these cases separate critical speeds govern the 
stability of each vibration mode due to the dispersive nature of these fourth order models. 
In axially moving material applications, the boundaries are modeled as simple or clamped 
supports and stability is first lost by divergence. Depending on the degree of support 
compliance, however, the tension can increase with translation speed and result in a higher 
critical speed [6, 71. Free boundary conditions arise in the closely related system of a 
cantilevered pipe conveying a flowing fluid. In this case, the non-conservative fluid reaction 
forces at the free end of the pipe do work and stability is first lost by flutter. This latter 
problem has attracted considerable attention; see, for example, references [IO] and [ 1 I]. 

The above conclusions are derived from models of highly tensioned, geometrically per- 
fect axially moving materials. However, in applications, imperfections, such as initial 
curvature, arise which can never be fully eliminated within the practical limits imposed on 
system tension. Sources of initial curvature include bending moments generated by sup- 
porting wheels and pulleys, sag due to gravity, material imperfections and guide misalign- 
ment. Although often small in practice, these imperfections can play a dominant role in 
determining the system response. 

For flexible materials (notably cables), any initial curvature due to sag leads to a stabiliz- 
ing “speed-tensioning effect” [ 12, 131 which permits the sagged equilibrium to remain 
stable at speeds far above the “critical speed” predicted by the perfect (taut) string model. 
Also, for flexible materials, a second equilibrium exists in which the element may stand 
vertically up in the shape of an arch. Both theory and experiment demonstrate that this 
arch-like equilibrium can be stabilized at sufficiently high translation speeds [ 14, 151. Small 
initial curvature also plays a key role in the analysis of coupled band/wheel systems 
[ 16, 171. In such systems, the bending moments and initial curvature generated at the 
band/wheel interface produce a coupling mechanism which leads to the transfer of vibra- 
tion energy between spans. 

The recent studies above demonstrate that neglecting even small imperfections may lead 
to serious errors in predicting the equilibrium, stability and dynamic response of axially 
moving materials. While the stability of flexible materials with imperfections is well under- 
stood, it is not known how imperfections alter the stability of systems which possess flexural 
rigidity. In particular, since the equilibrium of such fourth order systems is governed by 
a buckling-type stability problem [6, 181 the sensitivity to imperfections is potentially great. 

The purpose of the present study is to investigate the stability of beam-like elements at 
speeds near to and above the classical “critical speed stability limit”. The study focuses 
on the important effects of initial beam curvature that arises from the bending of the beam 
about two pulleys or wheels. In the first part of the paper, a theoretical model is derived 
that describes the non-linear, planar motion of a curved and translating beam. The model 
considers large, static beam deformations, and motion from equilibrium is described using 
a non-linear rod theory. The non-linear equations of equilibrium are extracted from the 
equations of motion and recast into a form which resembles the classical problem of the 
elastica. Exact equilibrium solutions, written in terms of elliptic integrals, are obtained to 
illustrate the steady response of the beam at both subcritical and supercritical translation 
speeds. Solution bifurcations occur near the critical speed, leading to multiple beam equilib- 
rium states. The stability of these supercritical equilibrium states is described in detail in 
Part II [19]. 

2. THEORETICAL MODEL 

A theoretical model is derived which governs the planar motion of a translating beam 
(e.g., band, belt, paper or web) with initial curvature. Figure 1 defines the problem of 
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Figure I. Definition diagram for a curved, axially moving beam. ‘The beam centerline profile is shown In 
three states: (I) unbuckled configuration (dotted line), (2) buckled equilibrium configuration x’. and (3) final 
configuration x’, C denotes the particle translation velocity relative to ,y’ and x ‘. 

interest, and shows a beam which is translating between two supports and is initially held 
in equilibrium under tension N and moments M applied at the supports. The bending 
moments result from the curvature of the supporting wheels or pulleys (not shown) and 
the tension derives from an externally applied pre-load. Support flexibility is included in 
the model by allowing the left support to be elastically restrained in horizontal translation 
by a spring of stiffness K. The curve xi denotes the equilibrium configuration of the beam 
centerline profile which has length L between the supports and lies in the X- Y plane. The 
planar motion of the beam centerline profile about its equilibrium configuration is 
described by U(S, T), where S denotes the arc length co-ordinate, measured along xi, and 
T denotes time. This motion, U(S, T) = U,e’, + t!J,e:, describes the final configuration of 
the centerline profile x-‘, and is resolved into components aligned with the local tangential, 
el , and normal, e’z, directions defined by ;y’. In Figure 1, C represents the beam particle 
translation velocity relative to the centerline profiles x’ and x ‘. 

Hamilton’s principle is used to derive the equations of motion which are based on the 
following assumptions : (I ) the beam is a homogeneous, one-dimensional elastic contin- 
uum obeying a linear stress-strain relationship; (2) extensions of the beam are described 
by the Lagrangian strain of the centerline; (3) the motion of the beam is restricted to the 
X- Y plane; (4) the beam may undergo large static deflections, and additional deflections 
from the curved equilibrium are described using a non-linear rod theory [20] ; (5) rotary 
inertia due to bending and strain energy due to shear may be neglected assuming that the 
beam cross-sectional dimensions are small compared to its length; (6) gravitational and 
dissipative forces may be neglected; (7) the beam mass flux is constant. With these 
assumptions, expressions for strain energy, kinetic energy and work are derived for use in 
Hamilton’s principle. 

The strain energy of the beam is composed of terms associated with the extension of 
the beam centerline and flexure about the binormal (out-of-plane) axis. The Lagrangian 
strain .cf of the centerline in its final configuration x’ is related to the displacements CT, 
and CJz and the curvature Xi of the centerline in its initial configuration xi through [ 131, 

E’= d+Ac, (1) 

where 

As= U,,s-~‘U~+:[(U~~.~+~i~,)2+(U,,s-~’U~)’]. (2) 

In these equations, ( ).s denotes partial differentiation with respect to S, and E’ is the 
Lagrangian strain of the beam centerline in xi. In a similar fashion, the final curvature of 
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the beam centerline Xf is related to the initial curvature X” and the displacements I ;! and 
U2 through 

where 

AX=W*,s, al = 1 + UI.~- X’U,, a2= U2.s+XiUI. (4 6) 

The expression for LIX is derived from a non-linear extension of the rod theory developed 
in [20]. The strain energy of the beam in its final configuration x.’ is given by 

I> 
+ 

ss 
;E( c/-- zX-/)* dA dS, (7) 

0 A 

where z is a position co-ordinate in the normal direction measured from the beam cen- 
troidal axis (Figure 1), E is Young’s modulus, and A is the beam cross-sectional area. 
Integration in equation (7) across the symmetrical beam area and use of equations (1) 
and (3) leads to 

s 

I> 
A;= n: + [P’~E+EM’LM-]IS+; f~[EA(d~)2+EI(dX)2]dS. (8) 

0 5 0 

where a: is the strain energy of the curved beam in xi, P’(S) = EAc’(S) is the beam tension 
in xi and I is the principal area moment about the out-of-plane axis. 

The kinetic energy of the curved beam in x I is given by 

s 

L 
+; (V-r * V’)pA dS, (9) 

0 

where Vf represents the absolute velocity of a beam particle and p is the beam density. 
The absolute velocity, 

v.‘= [ U,T+ CU.,] + Cej) (10) 

is the superposition of the velocity of xf and the velocity of the particle relative to x ‘. 
The work done by the bending moment M and by the tension force N is 

K,, = -M(a2 + @lo” - N[ U, (0, T) cos fIo + Uz(O, T) sin o. + D] 

+$[U,(O, T) cos 8,+ U,(O, T) sin 80+D]2, (11) 

where 0(S) is the angle of inclination of the beam centerline in x’, eo= 0(O), and D is the 
horizontal distance the left support moves during the static deformation leading to xi 
(Figure 1). The distance D is related to 0(S) through 

D=L- 
s 

L 
cos e(S) dS. (12) 

0 

Following Benjamin [IO], the correct statement of Hamilton’s principle for this system 
with mass transport is 
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Substituting equations (2)-( 12) into equation ( 13) and taking the first variation leads to 
the following non-linear equations governing planar motion : 

tangential component, U, , 

[(p’+ AEAE)u,],~- [(p’+ AEAE)~~u~]-~~.~‘.X~~U, + EI[.X’(U~,~+.X’U,)],.~ 

=pA((U,.~+Cu,~,~+C(U,.r+Cu,).s-C.~’~~~2,~+Cu2)J~ 

normal component, U2, 

[(P’+AEA~)uz],sf3triu,[P’+AEA~]+E13Y’,~iu~~S-E~3trfu,],~~ 

=~A((U~,~+CU~),~+C(~~.~+CU~)..~+C~’(~,.~+C~,)}, 

with the boundary terms: 

[(P+AEA+z,+EZX~f(u2,,+XX’u,)+MXi]6U,=0 at S= L, 

{(P+AE~E)~,+EI~~(u~,~+~Y~'u,)+M.~' 

-[N+K(U,cos80+U2sinB0+D)]cos60}6UI=0 at S=O, 

[(P’+AEAE)u~+EI(X~‘U~),~]GU~=O at S=L, 

((I”+ AEAc)uz- EI(X-‘u,),~ 

-[N+K(U,co~8~+U~sin0~+D)]sin0~~}6U~=O at S=O, 

(EL%%, +IW)~U~,~=O at S=O, L. 

The boundary conditions at the right support in Figure 1 are 

U,=(/,=O at S=L, EI.X’a, =--M at S= L. 

i 14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21.22) 

.4t the left support, 6U, and 6U2 must satisfy the geometric constraint 6Ur(0, T) = 
tan 806U,(0, T) required for vanishing vertical support motion. Utilizing this constraint, 
the boundary conditions are: 

Uz = tan &I/, at S=O, (23) 

(P’+AEA&)(u, cos 8,,+u2sin 8,,)--N-K(U, cos 8,+ Uizsin 0,,+D) 

+ MXi cos 8,, + EIXf(a2,s+ &a,) cos & - EI(.X’U,),~ sin & = 0 at S=O, (24) 

EIX’u, =-M at S=O. (25) 

where equation (24) is a statement of horizontal force equilibrium. 
For convenience in the subsequent analysis, the above model is non-dimensionalized 

using the following variable definitions : 

.r = S,lL, K = L,r’, MI = u, /I,. u2 = UT/L, d= D/L, 

n = NL’IEI, 111= ML/El, k = KL7/ El. y=AL2iI, J’= Y:L. 

t = T JEWL’, c”=pA(LC)=/EI. p = P’L’/ El, x=X/L. 

3. EQUILIBRIUM AND BIFURCATION ANALYSIS 

The equations of equilibrium are extracted from the equations of motion (14) and (15) 
and the boundary conditions (2 1 )- (25) by equating the displacement components Ul and 
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Uz to zero. This procedure gives the following non-linear boundary-value problem for 
solution of the (non-dimensional) equilibrium beam curvature K(S) and tension p(s) : 

j.J’+ KK’=O, o<S< 1, Ku++_P)K=o, O<.T<l. (2627) 

with the boundary conditions 

K(O)=K(l)=-m, p(O) cos e. - K’(O) sin & = n + kd. 6% 2% 

The equilibrium of an axially moving beam was partially analyzed by Chubachi [6], 
whose linear analysis was used to predict the critical speeds of a simply supported belt 
that is initially drawn straight under large tension. Here, the complete non-linear equilib- 
rium problem is presented, which leads to entirely new conclusions regarding the steady 
behavior of an axially moving beam. These new conclusions follow from the approximate 
(linear) analysis and the exact (non-linear) analysis described herein. 

3.1. APPROXIMATE ANALYSIS FOR SMALL CURVATURE 

As a first approximation, consider the case of small beam deflection and curvature 
for which the small angle approximations sin 0% 0 and cos 8 x 1 are valid. Under these 
conditions, the boundary-value problem takes the linearized form : 

p’=O, o<s< I, K’+a2K=0, o<S< 1, (30,3l) 

K(O)=K(l)=-m, P(0) = 4 (32,33) 

where the parameter a = fi is a measure of the translation speed. Note that this 
problem admits the elementary solution : 

p(s) = n, 
Pl 

K(s)=&, +------ 
ins - ias 

I + eia l+e-iae ’ 

provided that a is not an eigenvalue of the related homogeneous problem. If a = Jlr, J= 
1,2,..., then neither the existence or uniqueness of a solution to the linear problem is 
guaranteed. These eigenvalues provide the critical speeds, c = ,,/w, which produce 
divergence instability (buckling) in the simply supported straight beams studied in [6-81. 
The existence of the eigenvalues in the linear boundary-value problem suggests the exist- 
ence of multiple solutions and bifurcations of solutions in the complete non-linear problem 
defined by equations (26)-(29). 

3.2. EXACT ANALYSIS FOR ARBITRARY CURVATURE 

The non-linear equilibrium problem is examined after recasting it into a form resembling 
the classical problem of the elastica [20]. Integrating equation (26) and substituting the 
result into equation (27) provides the uncoupled problem: 

K”+(C’-p+;K’)K=o, o<S<l, K(O)=K(l)=-m, (35,36) 

where p is a first integral of equation (26) given by 

/? =p(s) + :K’(S) = c2 sin & + (n -t kd) cos 80 + $m2. (37) 

This formulation of the equilibrium problem leads to the simple Duffing equation (35) 
and fundamental and higher order periodic solutions can readily be determined in terms 
of elliptic integrals. 
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Integrating equation (35) leads to 
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ds=& 
dK 

; J[K2- K2(S*)][4(p- C2) - K2- K2(S*)]’ 
(38) 

where s* denotes a point at which K is an extremum. The extremum K(P) is determined 
from equation (37) after first computing p(s*) from a free body diagram of the beam 
between s = 0 and s = s*. At s = s*, the tangent e{ is horizontal and the free body diagram 
provides 

p(s*) = c2( 1 - cos 0,) + n + kd, (391 

and therefore 

K(S*) = f J 4sin2~(~2cos00-n-kd)+m2. (40) 

Note that two unknown constants 13~ and d, which appear in equation (40), depend on 
the solution K(S). These constants and the solution must also satisfy the relation for D, 
equation (12) which (in non-dimensional form) provides 

l-d= 
s 

I 
cos e(S) d.s. (41) 

0 

The above integral can be evaluated from the solution K(S) using 6’(s) = K(S). 

3.2.1. Fundamental periodic solution 
The fundamental periodic solution corresponds to an equilibrium xi which resembles 

the fundamental buckling mode of a simply supported beam. This solution is symmetric 
about the mid-span, s* =i. 

Consider first the solution in the so-called ion” in which the translation 
speed is less than the first classical critical speed, c < Using the change of variable 

cos q= J K2 - K2(S*) 

&n+kd-c2 cos t3,) 

in equation (38), and integrating provides the solution K(S) in terms of an incomplete 
elliptic integral of the first kind: 

where 

{sub = 
2 

(43) 

cos’ 2 (n + kd- c2 cos 0,) + m2 

2 - 
psub - 

4(n + kd - c2 cos 0,) 

4 cos2 2 (n + kd- c2 cos 6,) + m2 

(44) 
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&uh(~~) = arcsin 

cos’ 2 (n + kd- c2 cos 0,) + in2 - K’(S) 

4(n + kd- c* cos 0,) 
(45) 

Note that application of the boundary condition K(O) = -m in equation (42) reduces it to 
a single non-linear equation in the two unknown constants 13~ and d: 

drl 
*J_’ 

O<s,<P=f. (46) 

Using equation (42) and the change of variable 217 = R - 8 in equation (41) reduces equa- 
tion (41) to a second equation in o0 and d: 

The constants & and d are determined by simultaneous (numerical) solution of the non- 
linear equations (46) and (47). Note that while four possible formulations of this result 
occur for the four combinations of signs in the expressions for K’(S), equations (38) or 
(46), and K(s*), equation (40) a solution exists only for the combination, K'(S) > 0 on 
0 < s < s* and K(s*) < 0. For this solution, which is illustrated in section 4, the angle 6,, > 0. 

By contrast, multiple solutions are found in the “supercritical speed region” which is 
defined by c> ,/‘. The first of these is found for the combination K’(S) ~0 on 
O<s<s*, equations (38) or (46) and K(s*) CO, equation (40). The change of variable 

rj=cos--’ K(S) 

- J 4sin2-:(C*COS CA,-n-kd)+m’ 

in equation (38) leads to 

where, in the supercritical speed region, 

2 - 
4sin2$(c2cos 80-n-kd)+m2 

Pw- 4(c2 cos &-n-kd) ’ 

c#Q,(s) = arccos K(S) 

(48) 

(49) 

(50) 

(51) 
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Utilizing equation (48) in equation (41) with the change of variable 

0 
sin - 

sin rj = 
2 

389 

- J 4sin22(c2cosBo-n-kd)+m’ 

provides 

As in the subcritical case, evaluation of equation (48) at the boundary condition K(O) = 
-m leads to a single equation in & and d which is then solved numerically with equation 
(52). This solution provides a value for 6. ~0, which is the continuous extension of the 
unique solution in the subcritical speed region. 

In the supercritical speed region, a second (and possibly third) fundamental solution is 
found for the combination K’(S) > 0 on 0 <S < s*, equations (38) or (46), and K(s*) > 0, 
equation (40). In this case, equation (38) leads to 

and equation (41) leads to 

In deriving equations (53) and (54), the same changes of variables were employed as in 
the derivation of equations (48) and (52). Simultaneous solution of equations (53) (evalua- 
ted at K(O) = -m) and (54) leads to either one or two solutions, depending on the magni- 
tude of the translation speed c. For these latter solutions, 80<0. 

3.2.2. Higher order periodic solutions 
In the supercritical speed region, a set of three higher order periodic solutions appears 

each time the translation speed approaches a higher order critical speed c = Jm, 
J= 2,3,4, . . , associated with the straight beam model. For example, near c= 
,j’@z)qG a set of three (J=2) equilibrium solutions appear which closely resemble the 
second (antisymmetric) buckling mode of a simply supported beam. Here, this set of 
solutions will be collectively referred to as the “second order solutions”. Second and higher 
order solutions are computed using the same change of variables and parameters defined 
in section 3.2.1 for the supercritical speed region. For odd J, the solution for K(S) is 
described by 

(55) 
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from which the definition for d, equation (41), provides 

l-d ---z 
2 

f s ‘W(O) (1 -2p&, sin2 n) dn 

0 J1 -pf sin’ r7 I ’ 

For even J, these become 

and 

l-d 
--= 

2 5 

J 

[S 

z (1 - 2,& sin2 n) dq 
sup - 1 2, J_ * 

(56) 

(57) 

(58) 

For a given solution order (i.e., specified value of J), the “V and “*” sign combinations 
appearing in equations (55)-(57) distinguish solutions having positive and negative values 
of eo. For 0,>0, the upper sign in each pair is selected and a unique solution is always 
found. By contrast, for e. < 0, the lower sign in each pair is selected and either one or two 
solutions exist. The fundamental solution in the supercritical speed region, equation (48) 
with equation (52) and equation (53) with equation (54), are obtained from equations 
(55) and (56) for the special case J= 1. 

4. RESULTS 

The axially moving beam equilibrium problem resembles an elastica buckling problem 
[20] wherein the translation speed plays the role of the buckling parameter [18]. This 
similarity is evident in Figure 2, in which it is shown how 19~, the angle of inclination of 
the beam centerline at the left support, depends on the translation speed. Results are 
shown for the fundamental, second and third order solutions for the simplest case of 
vanishing bending moment and support stiffness m = k = 0. The condition m = 0 renders 
the equilibrium problem (35)-(36) homogeneous, and the trivial solution K(S) = e(s) = 0 
is always a solution. In this case, the solution in the subcritical speed region, equations 
(42)-(47), provides only the trivial solution. Non-trivial solutions first appear as bifurca- 
tions from the trivial solutions at the first critical speed c=Jx; see the solid curves 
in Figure 2. These non-trivial solutions represent the fundamental periodic solutions which 
satisfy equations (55) and (56) for J= 1. Subsequent bifurcations of the trivial solution 
occur at higher order critical speeds and result in the non-trivial solutions represented by 
the dotted curves. These latter solutions represent the higher order solutions and they 
satisfy equations (57) and (58) for J=2 and equations (55) and (56) for J= 3. 

Multiple solutions also exist when an external bending moment is applied, as shown by 
the cases m=0.25 (solid curves) and nz=O*5 (dashed curves) in Figure 3. In such cases, 
the fundamental solution begins with the solution in the subcritical speed region, equations 
(42)-(47), which is continuous with the solution in the supercritical speed region given by 
equations (55) and (56) for J= 1 and &>O. Also, in the supercritical speed region, two 



SUPERCRITICAL AXIALLY MOWNG BEAM 391 

new fundamental periodic solutions appear slightly above the first classical speed, and they 
are computed as the multiple solutions of equations (55) and (56) for J= 1 and OO ~0. 
The three branches of the fundamental solution are presently termed the “right-branch” 

-25 - 

- I.5 -I 0 -05 00 05 10 15 

Angle of inclination at ktt support. Boiad) 

Figure 2. Bifurcations and multiple equilibria for the simplest case. m = k = 0. Results are shown in the (I’ 8, 
plane for the case n = 100. J denotes the order of the solution and f& is the dependent variable. 

-25 

-50 
-I 5 -I 0 -3 5 C? 35 ‘0 ‘5 

Angle of ~nc,~nat~on at eft support, Bobad) 

Figure 3. Multiple equilibria. bifurcations and unfoldings in the equilibrium problem. Results are shown in 
the a*-@,, plane for the cases WI =0.5 (- - -), 0.25 (----) and 0 (. .). In all cases n = 100 and k = 0. The index 
J denotes the order of the solution and B0 is the dependent variable. 
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(80 > 0), the “middle-branch” ((A, < 0 nearest trivial) and the “left-branch” ( 8” < 0) equilib- 
ria, and are central to the stability analysis described in Part II of the paper. The previous 
solution corresponding to the case of an initially perfect beam (m=O) is repeated for 
comparison; see the dotted curves. Note that the imperfection introduced by the bending 
moment m leads to unfoldings of all the odd order bifurcations (J= 1, 3, ) seen in the 
case m = 0 [2 1 J. The odd order bifurcations are associated with symmetric buckling modes 
which are extremely sensitive to even slight bending moments. By contrast, the (symmetri- 
cally applied) bending moments have no influence on the antisymmetric buckling modes 
associated with the even order bifurcations (J=2,4, , . ). Consequently, the even order 
bifurcations do not unfold, and the solutions for J=2,4, . . . are independent of m. Note 
also that in the cases in which m # 0, the translation speed first required to produce multiple 
solutions, denoted c,, , is always greater than the fundamental classical critical speed and 
increases with increasing bending moment m. Note also that the middle-branch solution 
for J= I is continuous with the right-branch solution for J= 3 at the second critical speed 
denoted by c2. 

The actual shape of the equilibrium beam centerline is computed from the curvature 
solution K(S) by integrating the equations dx(s) =cos 13(s) ds and dy(s) = sin 0(s) ds. Rep- 
resentative equilibria at subcritical and supercritical translation speeds for the case m= 
0.25 are shown in Figure 4. For this relatively small bending moment, the beam profile is 
nearly straight in the subcritical speed region and, for example, has a maximum deflection 
of only 0.3% of its length at 48% of the fundamental classical critical speed; see Figure 
4(a). By contrast, the maximum beam deflections at speeds 110% and 143% of the critical 
speed are approximately 20% and 30”/0 of the length, respectively; see Figures 4(b) and 

Figure 4. Representative equilibrium centerline profiles in the subcritical and supercr 
Equilibria shown for three translation speeds: (a) c/J~2+n=@48; (b) c/ 
c/m= 1.43. In all cases, m=0.25, n = 100 and k =O. J denotes the order of the solution. In the cases of 
multiple equilibria, the dotted curve denotes the equilibrium nearest to the trivial solution. 
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(c). At 110% of the critical speed, the upper, central and lower profiles illustrated in 
Figure 4(b) correspond to the right, middle and left-branch equilibria (J= 1) in Figure 3, 
respectively. At 143% of the critical speed, the translation speed exceeds the second classical 
critical speed. In this case, the middle profile in Figure 4(c), which again corresponds to 
a middle-branch in Figure 3, illustrates one form of the third order solution obtained using 
J= 3 and & > 0 in equations (55) and (56). 

It is shown in Figure 4 that the equilibrium configuration for the fundamental solution 
becomes progressively more curved with increasing translation speed. This fact is, of 
course, already depicted in Figures 2 and 3 which show that l&l approaches some large. 
limiting value as the translation speed approaches infinity. Note from equations (55) and 
(57) that, as the elliptic integrals are bounded, the factor I /tsup must also remain bounded 
as I’ -+ CD. This factor remains bounded only if 8. -+ *7r[2 as c -+ CC; refer to equation 
(49). Thus, unlike the classical elastica subjected to load-induced buckling, the ends of a 
translating beam can never rotate more than 90” through speed-induced buckling. 

The sensitivity of the equilibrium solution to support stiffness is illustrated in Figure 5, 
which shows how & depends on the translation speed for two extreme cases k = 0 (solid 
curve), and k= 20 000 (dotted curve). In both cases tn=O.25 is used. Note that the speed 
required to produce multiple solutions, c,,,, increases with k as does the second order 
bifurcation speed, denoted c2. As anticipated. a large support stiffness retards the forma- 
tion of multiple equilibria. 

-25 

-I 5 -I 0 -0 5 0 i:t 05 0 I5 

angle of lncllnatlon 0’ left support, tlp(rad) 

Figure 5. The sensitivity of the equilibrium solution to support stifTness. Results are shown in the a’- 8,) plane 
for the cases k = 0 (---) and 20 000 (- - -). In both cases m = 0.25 and n = 100 and f&, is the dependent variable. 

It is clearly indicated in Figures 3 and 5 that the speed at which multiple equilibria first 
appear, c,, , depends on the applied bending moment tn and the support stiffness k. As 
described in Part II, the speed c,,, plays a key role in determining stability. Here, the 
dependence of c,, on m and k is illustrated in Figure 6, which shows c,, (solid curves) as 
a function of the bending moment tn for the cases k = 0 and k = 20 000. In the special case 
of vanishing bending moment, c,, is equal to the fundamental classical critical speed; refer 
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Figure 6. The sensitivity of c, and c2 to bending moment and support stiffness. In both cases n= 100 was 
used. 

to Figure 2. As the bending moment increases, c,,, increases and asymptotically approaches 
from below the second order bifurcation speed, c2, which is represented by the dotted 
curve. 

An important comparison between the linear solution (section 3.1) and the non-linear 
solution (section 3.2) is made in order to illustrate the failure of the linear theory in the 
supercritical speed region. These solutions are depicted in Figure 7 for the case of m= 
0.25 and k = 0. Note that in the subcritical speed region, the linear solution (dotted curve) 
represents a good approximation to the non-linear solution (solid curve). However, this 
approximation becomes quite poor near the first classical critical speed, where the linear 
solution becomes singular. In the supercritical speed region, the linear solution remains a 
reasonable approximation only to the non-linear solution which is closest to the trivial 
solution. In this region it cannot, of course, capture the many other non-trivial equilibria 
predicted by the non-linear solution. 

5. CONCLUSIONS 

A non-linear mode1 for an axially moving beam is described which accounts for the 
initial curvature generated by supporting wheels and pulleys. The model considers geomet- 
rically non-linear beam deflections, and is therefore capable of describing systems operating 
at critical and supercritical translation speeds. The governing equations of equilibrium are 
presented and used to derive approximate (linear) and exact (non-linear) solutions for 
steady response. Both solutions indicate that the translating beam experiences large static 
deflections near the first critical speed and cannot remain straight. For the case of no 
applied bending moments, a bifurcation of the trivial solution occurs at the first critical 
speed and multiple equilibrium states are predicted from the non-linear analysis. This 
bifurcation unfolds when a slight bending moment is added, and the translation speed 
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Figure 7. The failure of linear approximation. Linear (. ‘) and non-linear (--) solutions are shown in 
the subcritical and supercritical speed regions for the case M = 0.25, n = 100 and k = 0, with f& as the dependent 
variable. 

required to first generate multiple equilibria increases. The stability of all supercritical 
equilibrium states is examined in detail in Part II [ 191. 
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