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Abstract-We consider the problem of growth prediction in the context of Rao’s [l] one-sample 
polynomial growth curve model and provide a PC program, written in GAUSS, to perform the 
associated computations. Specifically, the problem considered is that of estimating the value of 
the measurement under consideration for a “new” individual at the Tth time point given 
measurements on that individual at T- 1 previous points in time and the values of the 
measurement on N “similar” individuals at al1 T time points. The times of measurement t, , fz, 

. , tT need not be equally spaced, but we assume that each of the N individuals comprising the 
normative sample were measured at these times. The method and the program are illustrated 
using the leave-one-out method on a sample of N = 12 male rhesus monkeys whose mandibular 
ramus height was measured five times at yearly intervals. 
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INTRODUCTION 

We have previously described Rao’s [l] one-sample polynomial growth curve model [2] 

and provided GAUSS programs to perform the associated computations [3,4]. Given a 
longitudinal data set consisting of the values of the measurement under consideration for 
N individuals at T time points, namely, 

. . . 

XN, xm . . . 

(1) 

and assuming that each row of X has a multivariate normal distribution with mean or 
expected value 

E(q) = wt (2) 

and (arbitrary) covariance matrix Z, our programs can be used to: 
(i) Find the lowest degree polynomial in time adequate to fit the average growth curve 

(AGC); 
(ii) Estimate the coefficients of this polynomial and provide confidence intervals for 

them; 
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(iii) Obtain confidence bands for the AGC; and 
(iv) Plot the individual growth profiles and the AGC along with its associated 

confidence bands, 
In (2), W is the within-individual (or time) design matrix and t the vector of regression 

coefficients for the AGC, namely, 

! 

1 t1. . .tf 

1 t2. . .tf 
w= . . . 

. . . 
.*. 

; t;: . .tF 1 and V= (3) 

where D is the degree of the polynomial being fit and P( =D + 1) the corresponding 
number of polynomial regression coefficients. Thus for any t = tl , t2, . . . , tT 

E(xiIt)=t,+tzt+23t*+. . e+tptD. (4) 

The purpose of the present paper is to extend this methodology-and our program-to 
accommodate a simple form of growth prediction, i.e. to allow the user to estimate the 
value of the measurement under consideration for a “new” individual at the Tth time 
point given measurements on that individual at T- 1 previous points in time and the 
values of the measurement on N “similar” individuals at all T time points. The times of 
measurement tl, t2, . . . , tT need not be equally spaced, but we assume that the time 
design matrix, W is the same for each of the N+ 1 individuals (the N individuals 
comprising the normative sample and the individual whose growth we wish to predict). 

This method can be applied to longitudinal data sets, where one is interested in 
predicting future values for subjects. The most obvious areas for application are to child 
growth studies and the clinical practices of pediatrics and orthodontics. Often such 
investigators and practitioners are interested in predicting where a particular child will 
be, in terms of stature or weight, or facial dimensions, at some future time. The 
availability of an appropriate standardizing sample, i.e. one having subjects with 
characteristics similar to those of the subject under consideration, and observations at 
the time points of interest, is required for using this approach. For example, a 
pediatrician interested in predicting how tall a lo-year-old male achondroplastic patient 
will be at age 12 when treated with a particular hormone therapy, having 6 years of data 
on the patient, would need a comparable reference sample of achondroplastic boys 
treated in the same way, with complete data from 4 to 12 years. We demonstrate in this 
paper, with a real example, that it is possible to generate quite accurate estimates of 
future values, even on the basis of a small reference sample-12 subjects in this case. 
Application of this method to “filling-in” missing data in incomplete longitudinal data 
sets is also considered in this paper. 

Formally, we may state the problem as follows: Given X and given the first T- 1 
entries of 

(5) 

estimate the value of x,r. 

PREDICTION OF x,r 

The solution to this prediction problem is most easily described in terms of partitioned 
matrices [5]. We partition the vector x, into its known and unknown parts, namely, 



183 

(6) 

so that xt is (T- 1) X 1, the observed values for the Y th individual, and x,r is the (scalar) 
quantity to be predicted. The time design matrix W is partitioned similarly into the 
(T- 1) x P matrix W, and the 1 x P matrix (vector) W,, namely, 

r 1 t, . . . $1 
. . 

WC : : ..* : 

-I [I 1 tT_, . . . e-1 

= ;. 

2 

L 1 tr . . . t$J 

Finally, the covariance matrix E is written 

(7) 

where I;,, is (T- 1) x (T-l), YZi2=X’;, is (T- 1) X 1 and Z22 is a scalar. Then from 
standard multivariate normal theory [6], the conditional mean and variance of x,r given 
x: are 

E(X”TIX:) = wg+ X&‘(x:: - W,z) (9) 

and 

%,I4 =x122 - ~21F11~12. (10) 

The so-called empirical Buyes predictor [7] of x,r and its estimated variance are then 
obtained by substituting estimates of z and I: in the above equations. That is, if S is the 
sample covariance matrix (partitioned analogously to C in (8)) and if 2 is the T x 1 vector 
of means at each time point, z is estimated by [2] 

t= (W’S -‘w)-‘W’S -‘x (11) 

and hence 

and 

J!?(x,TIx:) = w,.i + s21s ,‘(x:; - W,i) (12) 

P(x,Tlx:) = s22 - s*,sfi’s*2. (13) 

An approximate 95% prediction interval for x,r is then 

JC(x,T(x:) f 2<V(&&5. (14) 

The approach to prediction outlined above is entirely similar to that taken by Ware 
and Wu [7] in the context of the so-called two-stage (or random coefficients) polynomial 
growth curve model. The essential difference between their model and the one con- 
sidered here is that in the two-stage model X is assumed to have a special structure. In 
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our development, C is an arbitrary positive-definite matrix. Also, Ware and Wu tie 
prediction to the concept of trucking [8]. This is perfectly natural in as much as accurate 
growth predictions are an indication of tracking behavior. Stated otherwise, one would 
not expect to be successful in predicting growth when the sample under consideration is 
tracking poorly. This point of view is given explicit consideration in the example to 
follow. We show how our program can be used to predict growth and provide the values 
of the corresponding tracking indices [8] for the sample under consideration. Before 
turning to this example, a few general remarks concerning the program and its use may 
be in order. 

THE PROGRAM 

A data set of the form (1) is assumed to be available. This may be in either GAUSS or 
ASCII format; the user is asked first to indicate which and to provide the name of the 
file. If the file is ASCII (A), the user must know the values of N and T to proceed: 
He/she is prompted for these values. If a GAUSS (G) data set is used, the value of N is 
determined by the program. The user is then asked whether or not the time points are 
equally spaced. If yes (Y), the user may select the default values 1, 2, . . . , T or type in 
the actual time points (one per line). If no (N), the user is asked to enter the values of the 
time points. The user is also asked to specify the level of significance for the step-up 
goodness-of-fit tests used to determine the degree of the polynomial fit to the AGC. 
Finally, the user is asked to enter the values of x,, at the first T- 1 points in time as in (5). 

The output includes D, the smallest degree polynomial adequate to fit the data; the 
estimated values of the elements of t and their corresponding 95% confidence intervals; 
the 95% confidence bands for the AGC at each time of measurement; the estimated 
value of xVT; and an approximate 95% confidence interval for this quantity. The AGC 
and its confidence bands are then plotted and the predicted value for the first “new” 
individual is highlighted. The user is then asked whether or not another prediction is to 
be made. If yes, the user is prompted for the observed values of the second “new” 
individual at the first T- 1 time points. The numerical output at this stage consists only of 
the predicted value and the prediction interval. The graphical output again highlights the 
predicted value for this individual against the backdrop of the AGC and its 95% 
confidence band. The program continues in this fashion until the user responds no (N) to 
the question concerning another individual’s prediction. The user is then given the 
opportunity to save the original data set, X, augmented by the observed and predicted 
values for the new individual(s). That is, the N x T data matrix X may be expanded to 
(N+ n) x T where n is the number of predictions made. This feature may prove useful 
when the investigator wishes to fill-in an incomplete data set due to dropouts at time tT. 
The enlarged data set can be saved in ASCII format in a file named by the user and 
subsequently used in any of our (or others’) programs. 

Finally, as an option, the user may choose to apply the leave-one-out method to his/ 
her data set to evaluate the accuracy of the predictions made. This method is described in 
the following section. 

AN EXAMPLE 

Our example is based on the data set previously considered in [2] consisting of 
mandibular ramus height measurements (in mm) for 12 male rhesus monkeys at T=5 
yearly intervals (coded 1,2,3,4,5). A second degree (D = 2) polynomial was found to fit 
the data adequately (p = 0.14), the AGC being estimated by 

x(t) = 18.56 + 8.819t - 0.8198t2. 

For a new individual with observations 25.89, 30.09, 35.30 and 37.86 at the first four 
times of measurement, the predicted value was 38.647 with prediction variance 0.3375, 
leading to the approximate 95% prediction interval of (37.49, 39.81). If this were the 
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only prediction made, the user might then opt to save the expanded 13 x 5 data matrix 
consisting of the original 12 x 5 matrix, X, augmented by a 13* row with values 

25.89 30.09 35.30 37.86 38.647. 

If we choose to employ the leave-one-out (LOO) method, N= 12 additional predic- 
tions are made: we leave one monkey out of the computations involving the normative 
sample at each stage and predict his value at T= 5. Since the actual values at T= 5 are 
known for each monkey, a comparison of these values with the predicted values provides 
some insight into the accuracy with which predictions are being made. This method was 
used in growth prediction contexts by Rao [9, lo] and other applications were indicated 
in [ll]. The results are shown below: 

Monkey T = 5 actual T = 5 predicted 

1 35.8 35.56 
2 43.5 43.41 
3 38.9 39.42 
4 44.4 43.46 
5 37.9 38.63 
6 43.8 44.01 
7 43.1 43.17 
8 44.0 44.79 
9 43.8 44.02 

10 42.0 42.12 
11 43.8 42.85 
12 43.8 44.44 

It is seen that the predictions are quite close for this data set. This occurs despite the 
fact that these monkeys do not track especially well as judged by the values of the 
tracking indices we have implemented, these being an index based on the kappa statistic 
[12], and two forms of the index developed by Foulkes and Davis [ 131, denoted here by 
FDI and FDII. In fact, their values and the 95% confidence intervals for the correspond- 
ing parameters are: 

Kappa (with three tracks): 0.24242 f 0.12990 
FDI: 0.39394 + 0.14902 

FDII (with D = 2): 0.53030f 0.13018. 

This is somewhat unexpected [7], perhaps reflecting the facts that tracking indices 
measure particular aspects of growth patterns, and small values do not preclude 
prediction. One can expect that prediction will be quite good when tracking is in 
evidence, but tracking is not a necessary condition for the ability to predict. 

A measure of the overall accuracy of prediction which can be used to compare rival 
methods of prediction and/or the accuracy of a given method on several data sets is the 
root mean square error 

J 
___- 

RMSE = ;i (A-P)‘. (15) 
i=l 

In (15), A denotes the actual value and P the predicted value. this quantity is also 
computed when the user chooses to perform the LOO method on his/her data. The 
smaller the value of the RMSE, the more accurate the predictions which have been 
made. The value of this quantity for our example data set is RMSE = 0.56. 
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When this analysis is repeated on maxillary length measurements in the same 
monkeys, RMSE = 1.13 providing an indication that it is somewhat easier to predict 
ramus length than maxillary length in these monkeys. When done on ramus height in 
human males aged 8,8.5,9 and 9.5 years (these data have been analyzed, among others, 
by [14,15]), RMSE = 0.64, suggesting that the accuracy of the predictions of ramus 
length measurements in male rhesus monkeys and humans are comparable, at least over 
the age ranges considered. 

DISCUSSION 

We have anticipated that some users will realize that this program can be used to 
“fill-in” longitudinal data sets that are incomplete (contain missing data) due to drop- 
outs. While several authors have proposed methods for analyzing incomplete repeated 
measurements data [ 16-191, use of these methods in practice awaits the development of 
appropriate software. And, while we are working at filling this void, it must be 
emphasized that whether one estimates the values of the missing observations or uses an 
analysis which can accommodate missing data, it is important to be sure that the drop- 
outs have occurred “at random,” i.e. that the incomplete measurement sequences are 
not atypical. Diggle [20] gives a good discussion and outlines a test which may be used to 
check on this assumption. In any case, we suggest that users prudently limit the numbers 
of observations filled-in using the methods of this paper. 

Having said this, as mentioned earlier, we do allow users to save the enlarged data set 
which results when several individuals’ observations have been estimated. That is, if 12 
predictions have been made, the original NX T data matrix, X, can be augmented to 
produce an (N+ n) x T ASCII data set, named by the user, which can be read into any 
program requiring complete data. We suggest that n should be small relative to NT, 

certainly less than 10%) and note that the effect(s) of using the enlarged data set can be 
at least partially assessed by comparing the outputs from a given program obtained when 
the original and augmented data sets are used in turn. Finally, we suggest that the 
investigators report, in all subsequent uses of the augmented data set, the proportion of 
observations that have been estimated. 

SUMMARY 

We have considered growth prediction in the context of Rao’s [l] one-sample 
polynomial growth curve model and provided a PC program to perform the associated 
computations. Specifically, the problem considered was that of estimating the value of 
the measurement under consideration for a “new” individual at the Tth time point given 
measurements on that individual at T - 1 previous points in time and the values of the 
measurement on N “similar” individuals at all T time points. The times of measurement 
t,, t2,. . . , tT were not assumed to be equally spaced, but we did assume that each of the 
N individuals comprising the normative sample were measured at these times. The 
method and the program were illustrated using a sample of N = 12 male rhesus monkeys 
whose mandibular ramus height was measured five times at yearly intervals. 

This method has applications in the study of growth, development and treatment 
effects in humans and other species. For example, it can be used to predict, with a known 
level of confidence, the future height of a child, given the availability of a suitable 
normative sample. In addition to predicting the Tth value for one or several subjects, the 
program computes the root mean squared error, which reflects the accuracy of the 
predicted values. In the example considered, we demonstrated that it was possible to 
obtain accurate predictions even in an instance when the standardizing sample was small 
and did not track particularly well. 

Finally, it was noted that while our program could be used to fill-in longitudinal data 
sets containing missing data due to drop-outs, care should be taken when doing so to 
ensure that the incomplete measurement sequences are not atypical. 
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APPENDIX. COMPUTER IMPLEMENTATION 

This program can be obtained on a 5.25” double density floppy disk by sending $10 to defray the cost of 
handling and licensing fees. The program will ruin on a IBM-PC/XT or AT compatible computer. The 
computer must be equipped with a numerical coprocessor from the 8087 family and 640 K of memory. The 
computer must be configured so that at least 430K of memory is available, i.e. not tied up with memory 
resident programs such as Windows. EGA or VGA graphics capability is required to display the color graphics. 
No additional software is required (other than what one would normally use to enter a data set); run-time 
modules are supplied with the program so that no compiler or interpreter is necessary. The program, written in 
GAUSS, version 2.0, revision 20, requires no additional installation or modification, and is run with a single 
command. When requesting the program, address inquiries to EDS and make cheques payable to Baylor 
College of Dentistry. 
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