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Abstract 

Stembridge, J.R., Eulerian numbers, tableaux, and the Betti numbers of a toric variety, 

Discrete Mathematics 99 (1992) 307-320. 

Let Z denote the Coxeter complex of S,, and let X(X) denote the associated toric variety. 

Since the Betti numbers of the cohomology of X(Z) are Eulerian numbers, the additional 

presence of an &-module structure permits the definition of an isotypic refinement of these 

numbers. In some unpublished work, DeConcini and Procesi derived a recurrence for the 

&-character of the cohomology of X(Z), and Stanley later used this to translate the problem of 

combinatorially describing the isotypic Eulerian numbers into the language of symmetric 

functions. In this paper, we explicitly solve this problem by developing a new way to use 

marked sequences to encode permutations. This encoding also provides a transparent 

explanation of the unimodality of Eulerian numbers and their isotypic refinements. 

Introduction 

The Coxeter complex 2 of the symmetric group S, is the arrangement of 

convex cones defined by the intersections of the hyperplanes associated with the 

root system A,_1. In some unpublished work, DeConcini and Procesi derived a 

recurrence for the $-character of the cohomology of the toric variety associated 

with 2, presumably for the purpose of computing the Betti numbers of the 

S,-isotypic components. Stanley gave a reformulation of this problem in the 

language of symmetric functions in [6], but still lacked a combinatorial description 

of these ‘isotypic’ Betti numbers. 

An intriguing combinatorial aspect of this problem (mentioned by Stanley) is 

the fact that the kth Betti number of the overall cohomology is the (k + 1)th 

Eulerian number, i.e., the number of w ES, with k descents. Thus, the isotypic 
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Betti numbers would represent some sort of refinement of Eulerian numbers. 

Furthermore, the machinery of algebraic geometry (namely, the hard Lefschetz 

Theorem) would imply that these numbers must be symmetric and unimodal. 

(Although Brenti has shown that the unimodality of these sequences can also be 

established by elementary methods [l] .) 

In this paper, we give an explicit description of these Betti numbers in terms of 

certain types of Young tableaux with marked entries. The fundamental idea 

which leads to this description is a new way to use marked sequences to encode 

permutations. This coding has several other interesting implications. For ex- 

ample, it yields a new interpretation of the Eulerian numbers which transparently 

explains their unimodality. Moreover, this transparency passes through to the 

isotypic Betti numbers and explains their unimodality as well. Also, we will see 

that S, acts in a natural way on the set of marked sequences that encode 

permutations, and this action turns out to be isomorphic to the action of S,, on the 

cohomology of the toric variety. 

The paper is organized as follows. In Section 1, we describe the encoding 

algorithm which converts a permutation into a marked sequence. In Section 2, we 

show (Lemma 2.1) how this encoding can be used to prove that sets of 

permutations that satisfy certain closure properties have unimodal generating 

functions. In Section 3 we analyse the action of S,, on the set of marked sequences 

so that we may apply Stanley’s symmetric function characterization of the 

cohomology in Section 4. Finally, we describe the isotypic Betti numbers in 

Theorem 4.2, and we also describe (Theorem 4.3) a related family of parameters 

(first considered by Stanley) that refine a derangement analogue of the Eulerian 

numbers. 

1. The code of a permutation 

For any nonnegative integer sequence cx E N”, let S’(a) denote the positive 

content of (Y, i.e., the set of positive integers occurring in (Y. We will say that cx is 

k-admissible if S+(a) = (1, 2, . . . , k}. (In particular, a sequence of O’s is said to 

be O-admissible.) If cx is k-admissible for some k 2 0, we will say that cx is 

admissible. Thus, 210320 is a 3-admissible sequence, whereas 103130 is not 

admissible. 

Let mI(cy) denote the number of occurrences of the integer j in cx We define a 

marked sequence to be a pair ((u, f) consisting of a sequence a: E N” and a map 

f : S+(a)+ N such that 1 <f(j) < mj( (u) for j E S+(a). The index of ((Y, f) is 

defined by setting 

Note that there are no marked sequences ((w, f) in case mj(cu) = 1 for any j > 0. 
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It is convenient to represent a marked sequence (a, f) by decorating CX. More 

precisely, for each j E s’(a), let us replace one of the j’s in LY by the symbol j so 

that there are f(j) occurrences of j to the left of the j. For example, if 

(Y = 12012122 and f(1) = 2, f(2) = 1, we may represent (cu, f) by the sequence 

12012i22. 

An admissible marked sequence will be referred to as a code. For example, 

there are 6 codes of length 3: 

000, Oli, lOi, 110, 111, lli; 

their indices are 0, 1, 1, 1, 1, 2, respectively. Also, there are 9 positive codes of 

length 4: 

lill, llil, 1111, li22, 12i2, 21i2, 1221, 2121, 2211; 

the first and third have indices 1 and 3 and the remaining seven have index 2. 

Regard S, as the group of permutations of 1,2, . . , n. Recall that the 

excedunce number of any w E S,, is the quantity e(w) := [{i: w(i) > i}l [5]. We 

remark that the 6 permutations in S, have excedances 0, 1, 1, 1, 1, 2, and that 

among the 9 permutations in S, without fixed points (i.e., derangements), there 

are 7 with excedance 2, and one each with excedances 1 and 3. 

We are now ready to state the main result of this paper. 

Theorem 1.1. There is a natural one-to-one correspondence w @L (a, f) 
between permutations w E S, and codes (a, f) of length n such that: 

(a) w is a derangement iff @(w) is positive. 

(b) C$ maps the excedance to the index, i.e., e(w) = ind G(w). 

We remark that it is possible to establish the purely enumerative content of this 

result by means of generating functions; it is our purpose here to give an explicit 

construction of a suitable map #. Later we will use nonconstructive methods (i.e., 

generating functions) to prove a generalization in Section 3. 

Proof. The correspondence C$ will be obtained by iterating a reduction algorithm 

that takes as input a triple (w, (Y, f) consisting of a code (a, f) of length n and a 

nontrivial permutation w of the zero-set {i: cu, = 0} of a. The algorithm produces 

as output a new triple (w ‘, a’, f ‘) of the same type, but with a smaller zero-set. 

Moreover, if (Y is k-admissible, then LY’ will be (k + 1)-admissible, and f’ will be 

obtained by extending f. 
To define the reduction algorithm, let (w, CY, f) be a suitable triple as described 

above, and assume that (Y is k-admissible. Define m to be the largest integer not 

fixed by w. (Such an integer exists since w is assumed to be nontrivial.) Let 

C=(i,, i,, . . . , i,_,) be the cycle of w containing m, labeled so that m = i,,, 

w(iO) = il, w(i,) = iz, . . . , w(i[_,) = iO. Determine the unique index r (1~ r < 1) 
for which i,>i,>...>i,<i,+, (subscripts taken modf). Finally, let s be the 
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least index (r < s < I) such that either i, > i,+1 or i,_1 < i,+i. Thus i,, ir+lr . . . , is 

forms an increasing sequence of integers less than i,_l and is maximal with respect 

to this property. For example, if C = (97412586), then r = 3 and s = 4. 

Case I: s = 1 - 1. 

Define w’ to be the permutation obtained by deleting C from w, and define (Y’ 

to be the admissible sequence obtained by setting cui = k + 1 for i = ic,, . . . , i,-,, 

and cri = ai otherwise. Extend the definition of the map f by setting f(k + 1) = 

e(C) = I- r, and define f’ =J? Note that 1 G 1 - r < 1 so this does define a legal 

mark. 

CaseII:s<f-1. 

Define w’ to be the permutation obtained by deleting the subsequence 

11, . . . , is from C, i.e., replace the cycle with the cycle C’ = (io, is+l, . . . 9 &I). 
Note that C’ is of length ~2, so this operation does not create new fixed points. 

Define a’ to be the admissible sequence obtained by setting al = k + 1 for 
. . 

. 1 =11, . . . ) Is, and LX; = LYE otherwise. Finally, extend the map f via the rule 

It is easy to check that 1 sf(k + 1) <s so this does define a legal mark. For 

example, if C = (97412586), then C’ = (9586), the positions of a’ with k + l’s 

would be 1, 2, 4, 7, and f(k + 1) = 2. 

Now, to define the correspondence #, let w E S,, and form the triple (w, E, O), 

where (E, 0) denotes the zero code. Iteratively apply the reduction algorithm to 

(w, E, 0), thereby producing a sequence of triples ( wci), &), f(‘)), i = 0, 1, 2, . . . . 

The iterations will necessarily terminate as soon as we obtain a triple 

(w(“), LX(~), fck’) for which wck) is the trivial permutation of the zero-set of ack). 

We then define 9(w) = (LY (k), fck’). Since the algorithm does not create new fixed 

points, it follows that w is a derangement iff G(w) is positive. Also note that the 

reduction algorithm is designed so that if (w, a, f) reduces to (w’, cu’, f’) then 

e(w) + ind(cy, f) = e(w’) + ind(a’, f’). Thus, we have e(w) = ind G(w), as 

desired. 

To complete the proof, we must verify that $ is a one-to-one correspondence. 

For this it suffices to show that the reduction algorithm is invertible. More 

precisely, let (w’, a’, f’) be an arbitrary triple consisting of a (k + 1)-admissible 

code (a’, f’) and a (possibly trivial) permutation w’ of the zero set of LY’. We will 

show that there is a unique triple (w, (Y, f) that reduces to (w’, (Y’, f’). 

To prove this, let J = {ji < . . . <is} be the set of positions occupied by k + l’s 

in a’. Clearly (a; f) must be obtained from (a’, f’) by reassigning O’s to each 

position in J and restricting the domain off’ to (1, . . _ , k}. Thus, we need only 

to analyze the possibilities for w. 

If js is larger than any of the indices not fixed by w’, then (w, (Y, f) will reduce 

to (w’, ~y’,f’) only if Case I of the algorithm applies. (In Case II, the largest 

nonfixed point m = i,, of w is not reassigned in a’; it remains part of the zero-set.) 
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Therefore, the only possible choice for w is obtained by adding the cycle 

C=(LL1,. . . rjr+l,jl,.L.. . ,ir) (r=f’(k+l)) 
to w’. Moreover, it is easy to check that the triple (w, cr, f) 

inverse. 
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does serve as an 

Otherwise, we may assume that the largest integer m not fixed by w’ exceeds js. 

In that case, (w, a, f) will reduce to (w’, a’, f’) only if Case II of the algorithm 

applies. Let C’ = (iO, il, . . . , il.-,) be the cycle of w’ that includes m = io, and set 

r =f’(k + 1). Since m is not fixed by w’, we have 12 2. If we define 

permutation obtained by replacing C’ with the cycle C given by 

c = 

1 

(i0, is, . . . , jr+*, il, . . . ,jr+l,‘~~l, . . . , LI) ifjr+l > h, 

(k, is, . . . , jr+bil, . . . ,L, 4, . . . , Ld ifL+l<h, 

then we have r = e(C) - e(C’) and (w, (Y, f) reduces to (w’, (Y’, f’). 

w to be the 

To see that 

this is the only choice for w, note that it is necessary for the elements of J to be 

arranged as a subsequence of C in the order js, . . . , jr+l, jl, . . . , jt, for some f. 

The relative sizes of jr+1 and i, thus determine a unique possibility for t. For 

example if C’ = (9586) and J = (1, 2, 4, 7}, then C = (97421586), (97412586), or 

(91247586), according to the cases r = 1, 2, or 3. 0 

As an illustration, consider the permutation w = (296)(17358)(4). We obtain 

(w, E, @)-+ ((17358)(4), 01000i001)-+ ((358)(4), 21OOOi201) 

* ((4) 21303i%l), 
A,... 

and therefore, @(w) = 213031231. 

2. Unimodal applications 

For any set of permutations A ES,, let F(A, q) denote the associated 

excedance generating function, i.e., 

F(A, q) = c q”“‘. 
WEA 

For example, F(&, q) = 1 + 4q + q* and F(D,, q) = q + 7q2 + q3, using 0, as an 

abbreviation for the set of derangements of 1,2, . . . , n. 

If P(q) = Ck akqk is any polynomial of degree r with lowest nonzero term of 

degree s, we will say that P is symmetric or unimodal when the coefficient 

sequence (a,, a,,,, . . . , a,) satisfies these properties. We remark that it is 

well known and easy to prove that the set of symmetric unimodal polynomials 

in N[qJ is multiplicatively closed. 

In this section, we will show that the correspondence # can be used to provide 

transparent proofs that for some permutation sets A, the polynomials F(A, q) are 

symmetric and unimodal. 
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Let S be a set of codes of length ~1. We will say 
membership of (a:f) in S depends only on CX, 
(cu,~‘) ES for all cu,f, f’. We will say that S 

that S is mark-invariant if the 
i.e., (a, f) E S if and only if 
is shift-invariant if for each 

admissible LY with m,(a) 3 2, the number of codes (a, f) E S equals the number 
of codes (cu*, f *) E S with cr.? = CX~ + 1 (16 i G n). By abuse of notation, we will 
say that a set of permutations A is mark-invariant or shift-invariant whenever 
$(A) satisfies these properties. 

Lemma 2.1. Let A c S,,. 
(a) if (p(A) is a set of mark-invariant positive codes, then F(A, q) is symmetric 

and unimodal with center of symmetry at n/2. 
(b) If $(A) is both mark-invariant and shift-invariant, then F(A, q) is 

symmetric and &modal with center of symmetry at (n - 1)/2. 

Proof. If (P(A) is mark-invariant, Theorem 1.1 implies that 

VA 4) = x K(q), F,(~) : = 2 qindfa,f), 
a f 

where cx ranges over the admissible sequences that occur in #(A). Since the only 
constraints on f are the conditions 1 of < mj(cr) for j E S’(a), we have 

F,(q) = n (q + q2 + + - e + qm@)-l). 
je.S+(a) 

This shows that Fb, is symmetric and unimodal and that it has a center of 
symmetry at 

,zO mj(a)/2 = (n - m0(a))/2. 

If the codes in $(A) are all positive (part (a)), this shows that F(A, q) is a sum 
of symmetric unimodal polynomials with a common center of symmetry at n/2. 

Otherwise, if @(A) is shift-invariant (part (b)) note that we have 

6% 9) = c F,(q) + F&)t 
a 

where cz ranges over the admissible sequences in +(A) with mO(a) 2 1, and cy* 
denotes the admissible sequence obtained by setting a’ = a, + 1. In particular, 
note that if mO(cw) = 1, then F,.(q) = 0. Since 

F,(q) + F,.(q) = (1 + q + . . - + qmn(+l)F,(q)t 

it follows that F, + F,- is symmetric and unimodal and has a center of symmetry 
at (n - m&/2 + (mO - 1)/2 = (n - 1)/2. Cl 

It is an easy exercise to construct an injection that proves directly that any 
product of the form fl (q + q2 + - . - + qOl) is unimodal. In conjunction with the 
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correspondence +, it would therefore be easy to give an explicit injective proof of 

the unimodality of F(A, q) for any set A satisfying the above hypotheses. 

Since the set D, of derangements is obviously mark-invariant, we obtain the 

following. 

Corollary 2.2. F(D,,, q) is symmetric and unimodal. 

An elementary (but indirect) proof of this result has also been given by Brenti 

PI. 
For any w E S,, let d(w) = I{ . i. w 1 > w(i + l)}] denote the number of descents (‘) 

in w. Recall that the Eulerian number A(n, k + 1) is the number of permutations 

w ES, with d(w) = k. Less well known is the fact that A(n, k + 1) may also be 

interpreted as the number of w E S, with e(w) = k. Moreover, the equivalence of 

these two interpretations can be established with a bijection [5, p. 231. Thus, 

qF(S,, q) is the so-called Eulerian polynomial, i.e., 

qF(S,, q) = c A@, k)qk. 
k 

Since S, is obviously mark- and shift-invariant, Lemma 2.1 implies the next 

corollary. 

Corollary 2.3. F(S,,, q) is symmetric and unimodal. 

Although the unimodality of Eulerian numbers is well known, this appears to 

be the first combinatorial proof. Another proof appears in [l]. The standard 

proofs in the literature (e.g., [2, p. 2921) rely on the fact that the roots of the 

Eulerian polynomial are real. 

3. Permutations of codes 

The symmetric group S,, acts naturally on the set of codes of length n as 

follows: w~(tx,f)~(wa;f), where (Wa)i = a,-l(i) (1 si in). Since the index is 

preserved by this action, we thereby obtain a (graded) permutation repre- 

sentation of S,, with graded components having Eulerian numbers as their 

degrees. Using the correspondence @-’ as a cryptomorphism, one could 

represent this as an action of S, on itself, but in this form it would appear less 

natural. 

Let Xn,k denote the character of the &-action on codes of index k. Thus X,,&(w) 

is the number of codes of index k fixed by w. To analyze the structure of these 

characters we will take advantage of the isomorphism between $,-characters and 

symmetric functions afforded by the characteristic map [3]. 
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Let 2(&J denote the space of &-class functions, and let A = @, AR denote the 

N-graded algebra of symmetric formal power series in the variables xi, x2, . . . . 

The characteristic map is a linear isomorphism ch: Z(S,) + A” defined as follows: 

where Y(W) = (vi, va, . . .) denotes 

denotes a product of power-sum 

the cycle type of w, and py =py,pv2. . . 
symmetric functions. Let h, denote the 

characteristic of the trivial &-character. We remark that there is an explicit 

formula for the generating function H(t) = CnzO h,t”, namely, 

See [3] for details. 

Lemma 3.1. We have 

Proof. The orbits of codes are indexed by pairs (p,f) consisting of (1) a 

composition p = (pO, pi, . . . , p!) of IZ into nonnegative integers such that pj 2 2 

(1 <j< I), and (2) a marking function f such that 1 <f(j) < pj (1 ~j ~1). The 

orbit indexed by (cl, f) consists of all codes ((u, f) in which (Y is f-admissible and 

mj(cu) = pj. The stabilizer of any such code is a Young subgroup of S, isomorphic 

toS,:=S,,x.*. X S,,. Hence, the characters X,,k may be decomposed as follows: 

c qkXn,k = (5, qind(p%l > (1) 
ks0 

where qr denotes the character of the action of S,, on the left cosets of S,. 

Since it is known that ch(n,) = h, = h,, . . . h,, [3, 1.71, it follows that for a 

fixed choice of p, we have 

c ch( r],)qi”d(Psf) = h,,, 
fy 

q + q2 + . . . + q“-‘)h,. 
f 

After collecting the contributions from each CL, we therefore obtain 

n,zo ch(X&4kt” = [To T t’““h,,, ti (4 + q2 + . . . + @‘-‘YO“ 
i=l 

= H(t) ,c, (mz2 (4 + q2 + . . . qm-lPm~m)’ 
a z= 

= H(t)[ 1 - c (q + q* + * * * + q 
ma2 

“-l)h,rm]-l. 

After routine simplification, the claimed result follows. 0 
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Note that if we restrict our attention to the positive codes, we obtain a 

permutation representation of total degree l&l and of graded degree F(L),, q). 
Furthermore, essentially the same analysis as above applies, the only difference 

being that the relevant orbits (p, f) have p. = 0. Therefore, if 0+ denotes the 

&-character associated with this action, we have 

n;. ch(%,&kt” = [ I- z* (4 + $ + . . . + q”-lPmf’j-l, 

which is equivalent to the following. 

Lemma 3.2. We have 

Although the above results completely determine the characters Xn,k and 6n,k, 

the following is a more explicit description of Xn&. (We have used [r] = 

1+q+*. . + q’-’ as an abbreviation in what follows.) 

Proposition 3.3. Zf Y = ( vl, . . . , Y,) is the cycle type of w E S,,, then 

kzo qkXn.ktW) = %% q)[yll ’ ’ . [d. 

Proof. Define a class-function X, E Z(S,) by setting X,(w) = F(S,, q)[vl] . . . [q] 

for all w of cycle type y = (VI, . . . , vl). Since the characteristic map is injective it 

SUffiCCS to prove that ch(X,) = ck qk Ch(X,,k). 

From the definition of the characteristic map, we have 

z. ch(XJt” = F ; t”‘~G,,+ 4) ;fl+$ pv,> 
Y 

summed over partitions Y, where z, denotes the size of the &-centralizer of any 

w E S, of cycle type Y. Hence, the following property of Eulerian polynomials [2, 

P. 2451, 

F(St’ q, = C (k + l)lqk, 
(1 - q)‘+’ ka0 

allows us to conclude that 

nTo ch(X&” = (I - 4) kTo qk 7 1 tlV’ ;fl (k + I)(1 - q’k,- 
Y 

(2) 

However, as a function of power sums, H(t) is the generating function of the 

cycles indices of the symmetric groups S,, and so we have [3, I.21 

H(t) = I$ f py = exp( rzI fph-) . 
Y 
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Therefore, the inner sum in (2) can be identified as the image of H(t) under the 
ring homomorphism of A[[q, t]] determined by pr c-, (k + l)(l - q’)pr (r 3 1). 

Under this homomorphism, we have 

H(t) * exp (c (k + 1)(1 - q’)p,t’lr) = (H(t)/H(qt))k”. 
r*1 

Hence, (2) can be rewritten in the form 

and so Lemma 3.1 implies ch(X,,) = & qk Ch(X,,k). q 

This result shows that the generating functions C, qkX,,k(W) are products of 
symmetric unimodal polynomials, and hence are themselves symmetric and 
unimodal. This observation could also be deduced directly from the interpretation 
of x~,~(w) as the number of w-invariant codes of index k; these codes are clearly 
mark- and shift-invariant, and so Lemma 2.1(b) applies. Another explanation of 
the unimodality that relies on representation theory will be given in the next 
section. 

There does not seem to be an analogue of Proposition 3.3 for the characters 
I3 n,kt i.e., the generating functions do not seem to factor in any significant way. In 
spite of this, it is interesting to note that since O,.,(w) is the number of 
w-invariant positive codes of index k, Lemma 2.1 implies that Ck qke,,k(W) iS 

symmetric and unimodal. 
Finally, we remark that the special case w = 1 of Proposition 3.3 is equivalent 

to (the enumerative content of) Theorem 1.1(b). Considering the fact that the 
w-invariant codes are so easy to identify and that their index generating function 
has such a simple form, it would be interesting to find an extension of the 
correspondence # that explains this proposition in general. 

4. Marked tableaux and isotypic Eulerian numbers 

Let X be the (complex) toric variety associated with the Coxeter complex 2, as 
mentioned in the Introduction. The cohomology H*(X) = H*(X, C) is nonzero 
only for even degrees less than 2n, so the grading of H*(X) assumes the form 

H*(X) = H”(X) @ H2(X) d3. . . CI3 H’“-“(X). (3) 

We remark that the sequence of Betti numbers flk := dim H’“(X) (0 S k < n) are 
known to be the Eulerian numbers (i.e., Pk = A(n, k + l)), and so the Poincare 
polynomial P(q) = xk Pkqk of H*(X) 1s in fact equal to F(S,, q) (cf. the remarks 

following Proposition 7.7. in [6]). 
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Since 8, acts as the Weyl group of An-l, it follows that there is a natural 

(graded) action of S, on H*(X). It is therefore possible to refine the Poincare 

polynomials according to the S,-isotypic components of H*(X). More precisely, 

for each partiton A of n let us define /3,(A) to be the multiplicity of the Ath 

irreducible &-module in H2k(X), and let 

denote the associated generating function. Note that 

(4) 

where fA is the dimension of the Ath $-module. 

Let x* denote the Ath irreducible &-character, and let sA = ch(xA) denote the 

associated Schur function. By adapting a recurrence derived by DeConcini and 

Procesi, Stanley [6, Proposition 7.71 has shown that the polynomials P,(q) may be 

characterized via the expansion 

c t’“‘Pk(q)sn = 
(1 - q)Wt) 

A H(qt) - qH(0 

In view of Lemma 3.1, we may immediately deduce the following. 

Proposition 4.1. The (graded) &-module structure of H*(X) is isomorphic to the 
action of S,, on codes (graded by the index). 

Note that this implies that H*(X) carries a permutation representation of S,; it 

would be interesting to explain this geometrically. 

To describe the polynomials P*(q) explicitly (a problem suggested by Stanley 

[6]), we will first define the tableau-analogue of a marked sequence. 

Let A be a partition of n into I parts, and let Dh = {(i, j) E 2’: 1 c i G 1, 1 ~j G 

Ai} denote the diagram of A. For our purposes, a tableau of shape A will be a map 

T: Dn+ N such that T(i, j) S T(i, j + 1) ( nondecreasing rows) and T(i, j) < T(i + 
1, j) (increasing columns). We will say that T is a k-admissible tableau if the 

positive range S+(T) := { T(i, j): T(i, j) > 0) of T is the form { 1, . . . , k} for some 

k 20. 
For example, using matrix-style coordinates, the following arrays both repre- 

sent tableaux of shape (5,4,2): 

0 0 0 1 4 0 0 1 2 3 

T,=l 1 2 2 , T,=l 1 2 3 . 

2 4 2 2 

However, note that Tl is not admissible, whereas T2 is 3-admissible. 

Finally, we define a marked tableau to be a pair (T, f) consisting of an 

admissible tableau T and a map f : S+( T)+ N such that 1 s f (j) < m,(T) for 
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j E S+(T), where mi(T) denotes the number of j’s in T. The index of a marked 

tableau is defined in the same way as the index of a marked sequence. Note that 

there are no marked tableaux of the form (T, f) if mj( T) = 1 for any j > 0. 

Theorem 4.2. For any partition A, we have 

P,(q) = 2 qi”w-,f), 
(T.f) 

summed over all marked tableaux (T, f) of shape A. 

Following our conventions with codes, we may graphically represent a marked 

tableau (T, f) by replacing one occurrence of j in T with the symbol i so that 

there are f(j) occurrences of j in columns to the left of i. For example, the 

following is a list of the 6 marked tableaux of shape (4, 1, 1). 

0 0 i 2 0 i 1 2 0 1 i 2 

1 1 1 

2 2 2 

0 1 2 2 0 i 2 2 1 i 2 5 

1 1 2 

2 2 3 

In particular, Theorem 4.2 predicts that P,,,(q) = 3q2 + 3q3. Note also that 

has more than (n + 1)/2 parts, then there are no marked tableaux of shape A, 

so P*(q) = 0. 

Proof of Theorem 4.2. From (l), we have 

if A 

and 

c qkxn,k = 
ka0 

(& qi”d(p~f)vp = (5) 7 qind(~‘f)KnpX*, 

where K+, denotes the multiplicity of xA in r],. Hence, Proposition 4.1 implies 

P,(q) = c qindcpJ)KAP. 
(P.f) 

Since KnP is the number of tableaux T of shape A and content ,u (i.e., m,(T) = p; 
for i = 0, 1, . . .) [3,1.6], the result follows. •! 

There is a closely related family of polynomials Rn(q) that has been considered 

(but not explicitly described) by Stanley [6] and Brenti [l]. Stanley defined the 

polynomials RA by means of the expansion 

1-q 
Wqt) - 4w4 

= c t”‘R,(q)s,. 
A 
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In view of Lemma 3.2, we may equivalently define Rn via 

c qken,k = c &(q)xA. 

By restricting the proof of Theorem 4.2 to orbits of positive codes, it is easy to 

deduce the following description of RA. 

Theorem 4.3. For any partition A, we have 

R,(q) = 2 qind(**f), 
(Tvf) 

summed over all positive marked tableaux (T, f) of shape A. 

Since the set of marked tableaux of shape A. is both mark- and shift-invariant, a 

direct application of Lemma 2.1 yields the following. 

Corollary 4.4. PA and RA are symmetric and unimodal with centers of symmetry at 
(n - 1)/2 and n/2, respectively. 

The unimodality of RA was conjectured by Stanley and later proved by Brenti. 

By the hard Lefschetz Theorem one knows that there is an action of s12(@) on 

H*(X) for which (3) is the weight space decomposition. This observation 

provides another explanation of the unimodality of Eulerian numbers. Moreover, 

as observed by Stanley [6], the fact that the actions of S,, and sl, on H*(X) 

commute also implies the unimodality of P,(q). Another (more elementary) proof 

of this fact has been given by Brenti [l]. We note that the unimodality of the 

polynomials Ck qkX,,k(w) from Section 3 can also be explained in these terms: 

The space of w-fixed points of H*(X) is sl,-invariant (the actions commute), and 

thus must have a unimodal Poincare polynomial. 

As a final remark, we note that the correspondence @, together with 

Schensted’s correspondence [4], can be used to give a purely combinatorial 

explanation of identity (4). To see this, let w E S, be a permutation, and let 

((u, f) = G(w) be the code of w. By applying the row-insertion algorithm of 

Schensted’s correspondence to CZ, one may produce a pair of tableaux (T, Q) of 

the same shape in which the entries of T and (Y are the same and Q is standard. 

Thus, 

w %>f)+((T>f), Q) 

provides a bijection between S, and pairs of consisting of a marked tableau (T, f) 
and a standard tableau Q of the same shape. This clearly explains (4). Also, by 

restricting this bijection to derangements, we obtain a combinatorial explanation 

of the identity [l, Proposition 61 



J. R. Stembridge 320 

Acknowledgment 

I would like to thank Ian Goulden for suggesting 

‘first-order approximation’ of the reduction algorithm. 

References 

what could be called a 

[l] F. Brenti, Unimodal polynomials arising from symmetric functions, Proc. Amer. Math. Sot. 108 
(1990) 1133-1141. 

[2] L. Comtet, Advanced Combinatorics (Reidel, Dordrecht, 1974). 

[3] I. Macdonald, Symmetric Functions and Hall Polynomials (Oxford Univ. Press, Oxford, 1979). 

[4] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961) 

179-191. 

[.5] R. Stanley, Enumerative Combinatorics, Vol. I (Wadsworth and Brooks/Cole, Monterey, 1986). 

[6] R. Stanley, Log-concave and unimodal sequences in algebra, combinatorics and geometry, Ann. 

New York Acad. Sci. 576 (1989) 500-535. 


