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We present a stereo algorithm to recursively compute a 
boundary-level structural description of a static scene, 
from a sequence of dynamic stereo images. This 
algorithm is based on connected line segments as the 
basic match primitive, which yields a description com- 
posed primarily of boundaries of objects in the scene. 
The algorithm is integrated into a dynamic stereo vision 
system to compute and incrementally refine such a 
structural description recursively, using belief measures. 
The approach is illustrated with a real dynamic stereo 
sequence. 
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Dynamic stereo vision deals with the problem of 
processing sequences of stereo images of a scene, 
acquired from different viewpoints, to recover the 
underlying structure. Dynamic stereo is useful to 
construct a complete map of the environment as only a 
portion of the actual environment is visible from each 
viewpoint. In addition, there is usually an overlap 
between the portions of the environment visible from 
two successive viewpoints. It is then feasible to utilize a 
prediction-verification approach to combine the indi- 
vidual estimates of features visible from both view- 
points to obtain a more accurate estimate. 

In this paper we present a stereo algorithm to 
compute a boundary-level structural description of a 
scene, from a sequence of stereo images. This algor- 
ithm, based on connected line segments as the basic 
match primitive, is integrated into a dynamic stereo 
vision system, and is used to incrementally refine such a 
structural description using belief measures. 
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The problem of recovering structure from stereo 
vision has been studied extensively for several years. 
Various algorithms have been proposed based on 
matching points’,‘, line segments-,” and surface?. A 
comprehensive review of the structure from stereo 
problem is presented by Dhond and Aggarwa16. 
However, a satisfactory solution to the problem has not 
been discovered so far. A recent trend in stereo vision 
research is a move towards dynamic vision’ where the 
goal is to combine multiple measurements, which are 
invariably noisy, to obtain reliable de th estimates. 
Related research is presented elsewhere R 12 

The use of high-level features in stereo vision has 
been less popular due to the complexity of extracting 
and matching such high-level features from images. We 
depart from the traditional approach of attempting to 
resolve all ambiguities in matching in each stereo pair 
of images, based on global constraints such as ‘locally 
smooth disparities”. We utilize a notion of a belief 
assignment’” to each stereo match, reflecting its reli- 
ability. We attempt to resolve ambiguities by enhancing 
the beliefs of the correct matches by recursively 
processing a stereo sequence. 

COMPUTATIONAL FRAMEWORK 

Images of the environment are acquired using a lateral 
stereo camera pair mounted on a mobile robot which 
moves under computer control along a predetermined 
path. The objective is to recursively obtain a boundary- 
level (wire-frame) representation of the depth map of 
the environment with respect to the initial camera 
position. A coordinate system placed at the optical 
centre of the right camera and aligned with the image 
plane is treated as the inertial coordinate system. The 
computations involved in our framework are detailed in 
block diagram form in Figure 1. The computations 
proceed as follows: 

1. For each acquired stereo pair, the basic proces- 
sing involves line-segment detection, segment 
triplet (connected triples of segments) detection 
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Figure 1. Computational framework 

in each image, and then triplet matching between 
the left and right camera images. For each 
matched triplet in the image plane, we can com- 
pute a triplet in 3D space with respect to camera 
viewpoint. 
By matching corner points on matched triplets 
between two stereo pairs acquired from two 
viewpoints, the camera motion between the two 
viewpoints is recovered. 
The recovered motion is used to project the 
locations of the matched triplets from the second 
viewpoint to the first. 
The matched triplets from the first viewpoint and 
the projected matched triplets from the second 
viewpoint are then fused, and the wire-frame 
representation with respect to the first viewpoint 
is updated. 
Steps l-4 are performed recursively as additional 
stereo pairs are acquired. 

Triplet detection 

One of the problems with dealing with line-segments as 
the basic matching primitive is that a one-to-one match 
between the end-points of the detected segments does 
not always exist. We circumvent this problem, to an 
extent, by choosing to match connected triples of 
segments. For each such triplet, there exists a central 
segment which forms a corner at each end-point with 
another segment as illustrated in Figure 2. The region 
enclosed by each such triplet (when the triplet bounds a 
convex region) typically lies on a surface in the scene. 
We seek matches between such triplets, primarily 
seeking a one-to-one match between the central seg- 
ments of each triplet. 

The first step in detecting triplets is to compute 
segment neighbourhoods, i.e. the list of all segments 
neighbouring a given segment, thus forming potential 
corners with it. We utilize bucketing techniques” for 
this task. The next step involves the computation of the 

MATCHING STEREO PAIRS 

The various computational stages in matching indi- 
vidual stereo pairs are segment detection, triplet 
extraction, and triplet matching. Each of these stages is 
now described in detail. 

Segment detection 

Edges are detected in each image using the Sobel 
operator. For each edge point, an approximate orienta- 
tion is computed from the gradient value and a label, in 
the range 1-8 (corresponding to O-360 degrees), is 
assigned. Next, an &connected component algorithm is 
used to group together edge points with the same 
label14. Finally, a continuous representation for each 
such connected component is computed in the form 
aX+ bY+ c = 0, using linear regression. Several para- 
meters are associated with each detected segment 
including the line segment parameters (a,b,c), the end- 
points of the segment, the segment label, orientation 
angle, length, and the pixel coordinates of the bound- 
ing rectangle. 

Left image Right image 

Detected connected line segments 

Left triplets Right triplets 
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Figure 2. Segments triplets as the basic matching 
primitives 
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list of corners each segment forms with each of its 
neighbours. Following this step, we seek segments 
forming at least one corner near each end-point with a 
neighbour which directly yields the list of segment 
triptets. Such segments form the central segment in the 
triplet structure we wish to detect and match. The two 
segments forming corners at each end-point of the 
central segment correspond to the side segments of this 
triplet. 

Matching triplets 

For each triplet in one image, the mid-point of the 
central segment is first computed. Starting with the 
location of this mid-point in the other image, all 
windows within a rectangular region, bounded by a 
maximum allowed vertical offset and a maximum 
allowed disparity range, are searched for intersecting 
segments. Each such intersecting segment which hap- 
pens to be the central segment of a triplet in the second 
image is a potential triplet match. Each such potential 
triplet match is verified based on similarity of labels of 
the segments forming the triplets, the structure of the 
triplets, and the vertical offsets between the corner 
matches. 

For each triplet match, the central segment has both 
its end-points matched. The two side-segments have 
only one of the corners matched. The other corner is 
computed by first picking the end-point of the shorter 
side-segment and finding a corresponding location on 
the longer side-segment by scanning along the epipolar 
fine. After this step, the side-segments also have 
disparities assigned to two points lying on them. 

Belief assignments 

For each matched triplet, we assign a belief of 0.6 to the 
central segment as it is considered to have been reliably 
matched. The two side-segments are assigned beliefs of 
0.3. We actually retain multiple triplet matches if they 
exist. We attempt to resolve these ambiguities by 
assimilating additional stereo data. Each segment that 
is correctly measured in more than one viewpoint has 
its belief assignment enhanced. After all the stereo data 
has been assimilated, a threshold based on the resultant 
belief values is used to resolve the ambiguities in 
individual segment matches. 

The final description of the underlying structure is in 
the form of segments in the image plane with known 
disparities at their end-points. This description can 
directly be transformed to 3D coordinates using the 
camera calibration parameters. Each segment also has 
a degree of belief assigned to it reflecting the reliability 
with which it has been matched. 

REGISTERING STEREO IMAGES 

In order to combine stereo data acquired from two 
viewpoints. it is necessary to relate the individual stereo 
measurements to a common coordinate system. In our 
experiments. the camera (which is mounted on a 
mobile robot) motion between successive viewpoints is 
approximately known. For each matched triplet, the 
end-points (corners) of each matched central segment 
can be considered to have been reliably matched. The 

3D coordinates of these matched corner points can be 
computed from the camera calibration parameters. We 
attempt to establish a one-to-one correspondence of 
such corner points between two stereo frames, and 
then attempt to refine this motion estimate using the 
motion estimation algorithm described by Horn er nl. ” 
on these matched corner points. 

ASSIMILATING STEREO DATA 

In our experiments, we affix a camera centred coordin- 
ate system with respect to stereo frame 1. All measure- 
ments (new structural descriptions composed of 
connected segments) made in subsequent frames are 
first transformed to this coordinate svstem, using the 
recovered motion. and then assi&lated with the 
existing structural description. Basically, we seek 
matches between segments on an individual basis. For 
those segments for which matches are found, the beliefs 
are updated (enhanced). The unmatched segments are 
also retained without having their beliefs enhanced, 
with the objective of finding matches in a subsequent 
frame. After the stereo data acquisition has been 
completed, only the segments with beliefs higher than a 
threshold are retained which yields the final structural 
description. 

The ~~ssirnilati~~n of beliefs is based on Bern~)ulli’s 
rule” of combinati~)n. Bern(~ul1i.s rule provides a 
method for combining two mass distributions (beficfs 
assigned to propositions of interest) M(N,) and M(&) 
obtained from two independent sources to produce an 
update mass distribution M(R,) that represents a 
consensus opinion of the two sources. Mathematically. 
it is expressed as: 

M(R,) =iM(B,)+M(R2)-M(n,):M(H,) 

EXPERIMENTAL RESULTS 

In this section we present several results from cxperi- 
ments conducted with a laboratory sequence of stereo 
images. 

Stereo image sequence acquisition 

Our basic active vision system consisted of a camera 
mounted on a pan-tilt-translate (PTT) head. The PIT 
head in turn was mounted on a mobile robot which 
allowed image data acquisition from multiple view- 
points. We constructed an environment in our labora- 
tory consisting of common, mostly polyhedral objects. 
Our objective was to recover a boundary-level struc- 
tural description of this environment. A total of ten 
stereo pairs was collected by translating the robot 
directly forward along the optical axis of the camera 
IOcm at a time, a total of about 1OOcm. A parallel 
stereo camera configuration was used here. A camera 
centred coordinate system in frame 1 (placed at the 
optical centre of the right camera with X-Y axes aligned 
with the image plane) was chosen as the inertial 
coordinate system. Depth measurements made from 
frames 2-10 were first transformed to this inertial 
coordinate system. and then ~~ssi~lilat~d into the 
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Figure 5. Connected line segments and the correspond- 
ing corners in the stereo pair in frame 1 

Figure 3. Left and right stereo camera images in frames 1 
(top) and 10 (bottom) 

current description in a recursive fasion. The labora- 
tory scene is depicted in Figure 3, wherein the left and 
right stereo camera images from frames 1 and 10 are 
shown. 

Matching individual stereo pairs 

The first processing stage involved line segment feature 
detection. This involved edge detection (based on the 
Sobel operator), edge-grouping, and linear regression 
as described earlier. For each segment, the orientation, 
the length, and end-point locations were computed. 
These parameters were later used to hypothesize 
segment matches. Figure 4 depicts the gradient magni- 
tude image (scaled to the range O-255), along with the 
computed line segments from the right camera image in 
frame 1. The line segments shown here were recon- 
structed from the regression parameters which yielded 
a continuous representation for the segments. 

The next processing stage involved the detection of 

connected line segments in each stereo pair, which was 
based on bucketing techniques as described earlier. 
Figure 5 depicts the connected line segments and the 
corresponding corners from the stereo pair in frame 1. 
Segment triplets were then computed from these 
connected segments. 

At this point, triplets of connected segments were 
available in both the left and right camera images. Each 
triplet consisted of a central segment with a corner at 
each end formed with a neighbouring segment. The 
bucket lists (list of pixels intersecting a given segment), 
computed in the triplet detection stage, were used once 
again to hypothesize potential triplet matches as 
explained earlier. Figure 6 depicts the matched triplets 
between the left and right camera images in frame 1. 
We retained multiple triplet matches, if they existed. 
We assigned beliefs of 0.6 and 0.3 to the central 
segment and the two side-segments, respectively, for 
each triplet match. 

From this point, we processed each segment on the 
matched triplets somewhat independently. A one-to- 
one match existed for two corners on either side of the 
central segment. For this central segment we retained 
the X, Y image coordinates of each matched corner, 
and also the disparity, computed from the triplet 
match. The two side-segments had only one corner 
matched. The disparity of the other end-point was 
computed as explained earlier. After this step, the 3D 
location of each segment (with respect to the inertial 
coordinate system) could be computed using the 
camera calibration parameters. As we were using a 
lateral stereo configuration, the disparity of a corner 
point and its location in image coordinates was adequ- 
ate to recover its corresponding 3D coordinates. 

Figure 4. Sobel gradient magnitude (left) and the Figure 6. Matched triplets of connected segments and 
detected line segments (right) in the right camera image corners in the left and right camera images in frame 1 
in frame I ( ---: central segment; -----: side segments) 
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Figure 7. Matched (left) and projected (right) line 
segments in the right camera image in frame 8, 
superimposed on the right camera image in frame I 

Registering stereo images 

For each viewpoint, after the triplet matching process 
was complete, the corners on the central segment of 
each triplet could be considered to have been reliably 
matched. The 3D locations of these matched corners 
were known with respect to that viewpoint. In our 
experiments the motion between two viewpoints was 
approximately known. Using this approximate motion 
estimate, the detected corners from the second view- 
point were projected back to the first viewpoint. Next, 
we attempted to find one-to-one matches between 
these back-projected corners and the measured corners 
in the first viewpoint. This matching process was based 
on similarity of the segments composing the corners 
and also in the estimated disparities. After this step, we 
had a set of corners (points with known 3D locations), 
which were in correspondence between the two view- 
points. Using these matched corners, an improved 
motion estimate was derived as described earlier. 

In Figure 7, the success of the motion recovery 
process in registering camera images between two 
viewpoints is illustrated. On the left. the matched line 
segments in the right camera image in frame 8 are 
shown, superimposed on the right camera image in 
frame 1. On the right, the same matched line segments 
are shown, after projecting them back to frame 1 using 
the recovered camera motion. Note the projected line 
segments coincide almost exactly with expected edge 
locations in the image. 

Assimilating stereo data 

Each matched segment in the new viewpoint was first 

Figure 8. Matched segments in the right camera image 
from frames I (left) and 2 (right), after projecting them 
back to frame I 

Figure 9. Left: segments matched between frames I 
and 2; right: segments marched in only ,frame I or only 
frame 2 

back-projected to the viewpoint in the first frame using 
the improved motion estimate. Next. we sought one-to- 
one matches between the projected segments and the 
segments in the current estimate of the spatial layout. 
Segments for which matches were found were fused by 
simple averaging and the beliefs were updated by 
Bernoulli’s rule, as described earlier. Segments which 
were not matched were also retained with the objective 
of finding matches from future frames. 

In Figure 8, the matched segments from the right 
camera image in frames I and 2 (after projecting them 
back to frame 1) are depicted. Note that a 1-I 
correspondence existed between some, but not all, of 
the matched segments in frames I and 2. Only those 
segments matched between the two frames would have 
their beliefs enhanced after the assimilation stage. In 
Figure 9, the matched and the unmatched segments arc 
shown, superimposed on the right camera image in 
frame 1. Finally, in Figure 10, different views (perspec- 
tive front view, side view. top vievv. and isometric view) 

Figure IO. Different views of the reconstructed 
boundary-level structural description after processing 
frames I-10. Top left: perspective front view; top right: 
side view; bottom left: top view; bottom Icft: isometric 
view 
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of the reconstructed boundary-level structural descrip- 
tion, after processing frames l-10, are depicted. Only 
segments with beliefs greater than 0.6 are shown. 

CONCLUSIONS 

We have presented a dynamic stereo algorithm to 
compute a boundary-level structural description of a 
scene. The basic approach is designed to work with 
scenes containing polyhedral objects. Extensions to this 
work under investigation include generalizing this 
framework to deal with curved objects, application of 
geometric reasoning techniques to compute higher- 
level representations from the boundary-level repre- 
sentations, the integration of other depth sensors (laser 
rangefinder, sonar) with the binocular stereo sensor 
used in this work, and the application of this work for 
mobile robot path planning. 
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