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The identification problem for non-linear Wiener-Hammerstein-type systems is con- 
sidered. Unlike alternative techniques that are based on deterministic system representa- 
tions, a stochastic model structure that explicitly accounts for both the input-output and 
noise dynamics is postulated. The uniqueness properties of this structure are analysed, 
and appropriate necessary and sufficient conditions derived. A new time-domain iden- 
tification method based on the Maximum Likelihood principle is then introduced. Unlike 
alternative approaches that are mainly in the frequency and correlation domains, the 
proposed method offers statistically optimal estimates from a single record of normal 
operating data, and is capable of operating directly on the time-domain data and overcom- 
ing errors associated with the evaluation of correlation functions/Fourier transforms or 
multi-stage procedures. The effectiveness and accuracy of the proposed method are verified 
via numerical simulations with a number of different systems and noise to signal ratios. 

1. INTRODUCTION 

Most physical and engineering systems are in reality non-linear, and although they may 
admit an approximate linear representation in a restricted operating range, they can, in 
general, be adequately characterised only through appropriate non-linear models. As is 
well-known, oftentimes this characterisation has to be done via identification techniques 
that operate on available input-output data. 

For the identification of non-linear systems, methods that are based on functional series 
expansions (such as the Volterra and Wiener series), specific forms of non-linear differen- 
tial/difference equations, semi-linear models with signal-dependent parameters, block- 
oriented forms, and other appropriate representations, have been considered Billings [ 11. 

This work is concerned with the identification of block-oriented non-linear systems, 
and specifically stochastic Wiener-Hammerstein-type systems of the form illustrated in 
Fig. 1. This form is of particular physical significance as it provides an appropriate 
representation for systems that are often encountered in engineering practice, and are 
composed of two linear dynamic elements separated by a static (memory-less) non- 
linearity and have their output corrupted by zero-mean stationary random noise charac- 
terised by a rational spectral density function. This class of systems also includes the 
well-known [l] Hammerstein and Wiener representations as special cases. 

Although non-linear identification methods based on functional series expansions of 
the system under study can, in principle, be applied to the identification of Wiener- 
Hammerstein-type systems, they are by no means preferable as they are faced with 
problems of excessive computations, very cumbersome model structure selection pro- 
cedures, and are characterised by significant weaknesses such as their inability to preserve 
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Figure 1. Block diagram representation of the non-linear system Y. 

the structure of the system under study, incorporate a priori information, and relate 
estimated quantities to important physical characteristics; all of them due to their black 
box-type nature. Specialized methods appropriate for the identification of Wiener- 
Hammerstein-type systems are therefore needed. Such methods can offer significantly 
reduced computational complexity, and, by preserving the structure of the system to be 
identified, they can overcome the aforementioned drawbacks of the black-box-type 
methods and provide a very concise and physically meaningful representation of the 
underlying physical system. 

As a consequence, significant interest has been generated, and a number of such methods 
have been developed in the past several years. Most of them operate on the correlation 
or frequency domains, and, either implicitly or explicitly, make use of the fact that the 
Volterra (or other appropriate) kernels of a Wiener-Hammerstein-type system can be 
factored, and the factors related to the components of the original system. Also, although 
some of these methods do account for random noise effects, they are essentially restricted 
to the deterministic case in the sense that they do not postulate stochastic Wiener- 
Hammerstein-type representations that explicitly account for both the input-output and 
noise dynamics and are desirable in many applications involving modeling, analysis, 
prediction, diagnosis, and control. In addition, as it will be shortly seen, they cannot 
operate on normal operating data records as they require especially designed excitations, 
and, in certain cases, multiple tests. A brief account of the various identification approaches 
that are currently available is given in the sequel. It should be noted that only the 
approaches that have been developed for Wiener-Hammerstein-type systems are reviewed 
here; for a review of identification methods applicable to simple Wiener, Hammerstein, 
or other block-oriented non-linear systems, the reader is referred to the detailed survey 
papers of Billings [ 11 and Billings and Fakhouri [2] and the references therein. 

A class of identification methods for Wiener-Hammerstein-type systems is based on 
the work of Lee and Schetzen [3], who derived expressions for the computation of the 
Wiener kernels of non-linear systems based on input-output cross-correlations. Isobe and 
Sato [4] have developed a method capable of extracting the magnitude and phase 
information of the linear transfer functions and the non-linearity characteristics from 
these kernels. The identification procedure, has however, to be repeated several times, 
noise effects are not accounted for, a number of errors are typically present in the kernel 
estimates [5], and estimation of the linear subsystem transfer functions from the magnitude 
and phase estimates requires the incorporation of additional steps in this approach. 

On the other hand, a number of methods [6-91 have been developed based on 
identification of the linear and higher-order Volterra kernels. These methods, however, 
often result in excessive experimentation time as they require a number of experiments 
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with different types of inputs to be conducted. Korenberg [lo, 111 has proposed a 
correlation method for the identification of each one of the system components by using 
a single experiment under white Gaussian excitation. Billings and Fakhouri [12] have 
extended earlier results on separable processes and used them to formulate a correlation 
method that can be used with white Gaussian excitation, and, similarly to Korenberg’s 
method, separates the static non-linearity from the impulse response functions of the 
linear dynamic subsystems. The linear transfer functions and non-linearity parameters 
are subsequently estimated by a multi-stage least-squares algorithm. This method has 
been extended to operate with pseudo-random inputs [ 131 and Gaussian non-white 
excitations [14]. A comprehensive summary of these results is provided in Billings and 
Fakhouri [2]. In other related developments Parker and Moore [ 151 proposed a modified 
Volterra series approach based on correlation analysis that allows for the identification 
of Wiener-Hammerstein-type systems by using three-level input signals of small amplitude 
and non-zero bias level. De Boer et al. [16] simplified the correlation analysis by using 
a representation of the static non-linearity in terms of Hermite polynomials, and Korenberg 
[17] showed that the correlation method under Gaussian excitation will not be affected 
by the presence of additive random noise in the system input and output variables (the 
former noise assumed to be propagating through the system). 

Some alternative approaches that have been proposed include those of Cooper and 
Falkner [18], who used time-domain data obtained from a series of experiments with 
pulse excitations of different amplitudes, and Yasui [ 191, who used an orthogonal Fourier 
functional representation of the system. 

From this brief overview it is evident that the currently available methods for the 
identification of Wiener-Hammerstein-type systems are in the correlation or frequency 
domains, require careful selection of the excitation signals, and, in certain cases, multi-test 
procedures. As a consequence, a number of errors associated with the evaluation of 
correlation functions or numerical Fourier transforms are present, and can be often 
,magnified by the multi-stage procedures required for the estimation of the linear transfer 
functions and the static non-linearity characteristics from the originally obtained kernels. 
In addition, identification based on normal operating data, that is most desirable or even 
necessary in practice, remains a prohibitive task, and many of the available methods are 
restricted to the deterministic (no noise) case, while even those that allow for noise effects 
in the data to be accounted for, do not postulate the identification of a stochastic system 
model that can provide an appropriate characterisation for both the input-output and 
noise dynamics. 

The main objective of the present work therefore is the introduction of a new method 
suitable for the accurate identification of stochastic Wiener-Hammerstein-type systems 
of the form of Fig. 1, and capable of effectively overcoming the limitations of the currently 
available approaches. The method developed to achieve this objective is based on the 
Maximum Likelihood principle [20], and offers the following unique advantages: 

(i) The ability to accurately estimate stochastic Wiener-Hammerstein-type systems 
that expicitly account for both the input-output and noise dynamics. 

(ii) The ability to perform identification from a single, even short, record of normal 
operating data corrupted at any realistic noise to signal (N/S) ratio; a very 
significant advantage for many practical applications. 

(iii) The ability to operate directly on time-domain data and simultaneously estimate 
all of the system parameters in a statistically optimal sense. Errors related to the 
evaluation of correlation functions, Fourier transforms, and multi-stage procedures 
are effectively avoided, while a priori system information may be directly incorpor- 
ated into the identification procedure. 
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The rest of this paper is organised as follows: The problem statement, along with a 
study of the uniqueness properties of the stochastic Wiener-Hammerstein-type model 
structure postulated, are presented in section 2, and the proposed identification method 
in section 3. The effectiveness and accuracy of the proposed method are examined in 
section 4 by using numerical simulations with a number of different systems and data 
corrupted at various N/S ratios, and the conclusions of this study are finally summarised 
in section 5. 

2. PROBLEM STATEMENT AND THE MODEL STRUCTURE 

In this section the precise form of the underlying physical system to be modeled Y 
and the corresponding model structure & are introduced, the identification problem is 
defined, and the uniqueness properties of JU are investigated. 

The system to be estimated is composed of a memoryless polynomial non-linearity 
imbedded ‘between two linear dynamic elements and has its output corrupted by a 
stationary stochastic noise process characterised by rational spectral density. A formal 
mathematical representation of this system may be given as follows?: 

I 

C”(B).y(t)=D”(B).u(r)+F”(B). w(t) (la) 

Y: u(t)= 5 r;* ui(t) (lb) 
i=l 

A”(B) . u(t) = B”(B) * x(t) (lc) 

where {x(r)), {y(f)), {w(t)) re P resent the input, output, and innovations signals, respec- 
tively, {u(t)}, {t)(r)} the input and output of the static non-linearity, respectively, and 
A”(B), W(B), C”(B), D”(B), F”(B) polynomials in the backshift operator B [Bx(t) = 
x( t - l)] and of the respective forms: 

A”(B)Al+a:B+. ..-ta;,~B”~” (2a) 

B”(B) 4 b;B+ * * * + b;bJ3”bo (2b) 

C”(B) p 1+ c;B+ * * - + c;,d?“‘” (2c) 

D”(B)~d;B+. . .+d;,43”d” (2d) 

F”(B) 2% 1 +j-;J3+ * * * +f$oB”fO (2e) 

The following assumptions are now made: 
Al. The polynomials A”(B) and C”(B) are strictly minimum phase (stability con- 

ditions), and so is F”(B) (invertibility condition). 
A2. The innovations signal {w(t)} is zero-mean uncorrelated Gaussian, and also 

uncross-correlated with the excitation {x(f)}, that is: 

E{w(t)}=O E{w(t) . w(s)1 = &*s(dY E{w(t) - x(s)}=0 Vf, s (3) 

where E{ -} denotes expectation, 6,,, the Kronecker delta, and (a”,)’ the variance of { w( 2)). 
A3. The excitation signal {x(r)} is persistently exciting of sufficiently high order. 
The one-step-ahead minimum-mean-square-error prediction $( t/ t - 1) of y(t) given 

input and noise-corrupted output data up to time t - 1, may be then shown to be: 

i(r/t-l)=[I-$$(l)+$$(t) (4) 

t The superscript o is used to indicate-quantities associated with the true system 9 and distinguish them 
from those of candidate models. 



WIENER-HAMMERSTEIN-TYPE NON-LINEAR SYSTEMS 139 

with u(t) given by (lb), (lc), and the corresponding prediction error is: 

e(t/t-1)&y(t)-j(t/t-1)= w(r). (5) 

These equations, combined with (lb) and (lc), define the prediction error form of the 
system. 

The problem of concern in this work may be then stated as follows: “Given input and 
output observations x~~{x(l), . . . ,x(.N)} and vl”“{y(l), . . . ,y(N)}, respectively, 
select a model A(8) from an appropriate model structure A, that best matches the 
input-output and noise characteristics of the actual system 9.” 

The model structure A4 is hereby selected as the set of all models A(0) of the form 
(compare with the prediction error form of the system): 

f e(t/O>=~(t)-j(t/O) Var[e(t/tI)]=&(O) (6a) 

(6b) 

u(t/e) = t rice) - d(t/e) (64 
i=l 

B(B, @I 
we) = AtB, eI -----X(f) (64 

in which 8 represents the parameter vector to be estimated: 

tlP[coefA,coefB,r ,,..., rP, coef C, coef D, coef F, c&IT, (7) 

j( t/e) the one-step-ahead prediction based on the model, and e( t/e) the corresponding 
prediction error. The polynomials A(B, e), B(B, e), C(B, e), D(B, e), and F(B, e) are 
assumed to be of degrees na, nb, nc, nd, and nf, respectively, and of the respective forms 
indicated in expression (2). The model structure may be then formally defined as: 

Jllq4d(e)/eEsyA)x!wbx~~xX(C)x!wdxx(F)xse+} (8) 

in which X(A), X(C), and X(F) represent those subspaces of S”“, Se”‘, and SZti for 
which the polynomials A( B, e), C( I?, e), and F( I?, e), respectively, are strictly minimum 
phase. 

Before proceeding with the development of the identification method, it is necessary 
to investigate the conditions under which the system Y’ can be accurately and uniquely 
represented within the model structure A. This is important as it is clearly desirable to 
ensure both the existence and uniqueness? of a model A(@) E A such that A(g) = .Y. 

In order to derive necessary and sufficient conditions for both existence and uniqueness, 
the system and model representations are rewritten as: 

Y: y(t) =f”(Xr-2, w’) (9) 
.44(e): y(t) =f(~'-~, e’, e) 00) 

where 
X t-2 s {x( 2 - 2), x( t - 3), . . .}, 

w’A{w(t), w(r-l),...}, 

e’“{e(t/tI), e(t-l/e), . . .}, 

t It is well known that in case of non-uniqueness severe numerical problems may occur during the implementa- 
tion of any appropriate estimation procedure. 
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and 9(9, A) is defined as the set of those parameter vectors 0 for which d(0) = 9, that 
is: 

9(9, A) “{0/f”(x’-‘, w’) =f(x’-‘, e’, O), (a”,)‘= ~2,) (11) 

The problem is then equivalent to that of determining the necessary and sufficient 
conditions for 9(9’, A) to be empty or consist of one or more elements. 

In achieving this objective the following additional conditions are imposed on 9’: 
A4. The polynomials A”(B), B”(B), as well as C”(B), D”(B), F”(B) have no common 

factors. 
A5 The leading coefficients of the B”(B) and D”(B) polynomials are equal to unity 

(6; = d; = 1). 
The first condition is required in order to ensure the controllability and observability 

of the two linear subsystems and the noise transfer function, whereas the second condition 
is necessary for achieving uniqueness. This may be readily seen by compactly rewriting 
the system equations (1) as: 

9’: y(t)=(b;d;r;) . [C”(B)]-’ . D”(B) * 5 2. (b;)‘-‘[[A”(B)]-’ *B”(B). x(t)]’ 
i=l 

+[C”(B)]-’ * F”(B) * w(t) (12) 

where 

B”(B)P(b;)-’ * B”(B), D”(B)A(d;)-’ . D”(B), 

and 
ae ri -(rf))’ *rp (i=1,2 )..., p). 

From this expression it is evident that the static gain of the system is proportional to the 
product b~d~r~. In order to achieve a unique parameterisation, and without any loss of 
generality, the parameters b: and d: are thus set equal to unity. 

The problems of existence and uniqueness are then dealt with in the following propo- 
sition: 

Reposition : Existence and Uniqueness 
Consider the system 9’ of equations (1) subject to assumptions (Al)-(AS), the model 

structure JX of equation (8), and the set 9(9,&) defined by equation (11). Also let 
n:amin{na-naqnb-nb”} and n:A min{nc-nc”, nd-nd”, nf-nf”}. The set 
9(3’, A) then consists of: 

a. no elements if and only if min { p - p“, n f , nt} < 0 
b. exactlyoneelementifandonlyifp-p”>OandnT=nl=O 
c. infinitely many elements if and only if min {p - p’, nf , n:} 3 0 and max {n f , nf} > 0. 
Proof: By using (Al) the system equations (1) may be compactly written as: 

9’: y(t) = [C”(B)]-’ * D”(B) * [ $! r;{[A”(B)]-’ . B”(B) . x(t#] 
i=l 

+[C”(B)]-’ * F”(B) * w(t). 

By defining the impulse response functions: 

H~(B)P[A”(B)]-‘~B”(B)=B+h~~‘,B*+... 

H;(B)~[C”(B)]-’ * D”(B)=B+h;*,B2+‘. * 

H,“(B)~[C”(B)]-‘.F”(B)=l+h~lB+h~~,B~+... 

(13) 

(144 

(14b) 

(W 
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in which (As) was already accounted for, (13) may be alternatively expressed as: 

9: y(t) =f0(C2, 

141 

x(t-11-k).x(t-Z2-k)...x(t--li-k)+ : h&e w(t-k). 
k=O 

(1% 

The model form A(@) can be analogously expressed, and the identity 9’ = A(0) then 
becomes: 

i$,r;kElh;k f **a f h~,;h~,;..h~,;x(t-I,-k).x(t-I,-k)... x(t--i-k) 
I,=1 I,=1 

+ f hik * w(r- k) 
k=O 

= ii, C(e) kEl &k(e) f * * * i h,(e) - h,(8) * * - hII, * x( t - 1, -k) * x( t - 12-k) 
11-1 I, = 1 

--*X(t-&-k)+ f h&).e(t-k/e). (16) 
k=O 

By assuming, for the moment, that the impulse responses {h&i)}, {h&q}, {h3k(e)} 
can be freely determined and that p -p“ 2 0, it is obvious that equation (16) will have at 
least one solution (the true one) in terms of the non-linearity coe5cients and the 
aforementioned impulse responses. It will be now shown that this solution is unique. 
Towards this end it is sufficient to consider only a subset of the identities implied by 
equation (16). 

Indeed, by considering the coefficients of the terms x’( t - 2) for i = 1,2,. . . , p in both 
sides of equation (16), one obtains: 

ri(e) = rY (i’l, 2,. . . ,p). (174 

For the impulse responses {hlk} and {h2k} any one of the non-linear terms (quadratic, 
cubic, etc.) can be considered. By considering, for instance, the coefficients of the terms 
x(t-2)*x(t-i) for i=3,4,... in both sides of equation (16), the expressions: 

r,(e) * hci-dfJ) = 4 * hY(i-1) 

are obtained, from which: 

hIi = hfi (i = 1,2,. . . ). (17b) 

By considering the coefficients of the terms x2( t - i) for i = 3,4,. . . , the expressions: 
i-l i-l 

Q(e) * ,z, hkw * hf(i-kj(e) = r2” ’ c h;k * (hY(i-k,)’ 
k=l 

are obtained, which, given equations (17a) and (17b), yield: 

hzi(0) = hzi (i = 1,2,. . . ). (17c) 

Finally, by considering the coefficients of the white noise terms, one obtains: 

hJi(tl) = hgi (i = 1,2,. . . ). Wd) 

Since the subset of equations considered admits only one solution, namely the true 
one given by expressions (17), and the totality of equations implied by equation (16) has 
at least one solution, it is readily concluded that expressions (17) indeed compose the 
unique solution of equation (16). 
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The problem therefore becomes equivalent to finding the conditions, in terms of p, p”, 
and the system and model polynomials, under which the totality of equations (17) may 
be simultaneously met for one or more values of the parameter vector 0. Towards this 
objective, and by using the definitions (14), the conditions (17) may be equivalently 
expressed as: 

r,(0) = rp (i=1,2,...,p) (18a) 

A(B,e).B”(B)-A”(B).B(B,e)=O (18b) 

c(B, e) . w(B) - C(B) . D(B, e) = 0 (18~) 

c(B, e) . F”(B) - co(B) . F(B, e) = 0 (184 

a. Existence: A parameter vector 8 simultaneously satisfying equations (18) will exist 
if and only if: 

p-p020 

nT=min{na-na”,nb-nb”}~O (19) 
nz* = min { nc - nc’, nd - nd ‘, nf - nf”} 3 0. 

The first condition is required for equation (18a), the second for (18b), and the third for 
the combination of (18~) and (18d). 

b. Uniqueness: By using assumption (A4) it may be shown that a unique parameter 
vector 8 simultaneously satisfying all of equations (18) will exist if and only if: 

p-p030 

nT = min {na - nuO, nb - nb”} = 0 (20) 

nT=min{nc-nP,nd-nd”,nf-nf”}=O 

The first of these conditions is required in order for the model to allow for at least as 
many non-linear terms as the actual system, whereas the second and third conditions 
may be shown to guarantee the existence of unique polynomials A(B, 0) and B(Z3,0) 
satisfying equation (18b), and C( B, e), D(B, g), F(B, @) satisfying equations (18c)-( 18d), 
respectively. 

C. Multiple solutions: Multiple solutions will be obtained if and only if p-p0 20 
(required for existence) and there exist more than one set of polynomials satisfying 
equations (18b) and/or (18c)-(18d). Based on assumption (A4), it may be shown that 
equation (18b) will have infinitely many solutions of the form: 

A(B, e) = A”(B) * L(B, e) B(B, e) = W(B) . L(B, e) 

with L( B, 0) being an arbitrary manic polynomial of degree n:’ = min { na - na”, nb - nb“}, 
if and only if n? > 0. Similarly, equations (18c)-( 18d) will have infinitely many solutions 
of the form: 

c(z3, e) = co(B) . L(z3, e) 

D(B, e) = D”(B) . L(B, e) 

F(B, e) = P(B). L(B, e) 

with L(B, 8) being again an arbitrary manic polynomial of degree nz*= 
min {nc - ncO, nd - nd“, nf- nf”}, if and only if n? > 0. By also considering the existence 
conditions (19) it may be con&&cl that infinitely many solutions will exist if and only 
if: 

p-p”z=o min{nT, n:}sO max{nt, nf}>O. 01) 
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3. THE IDENTIFICATION METHOD 

The problem of estimating a model &(a) of the form (6) from available input and 
noise-corrupted output observations X; and yfy , respectively, is now considered. The 
proposed method is based on the Maximum Likelihood (ML) principle [20], as it is 
well-known that ML-based estimation approaches are characterised by optimal asymptotic 
(N + 00) properties (namely consistency and efficiency) under rather mild conditions [20]. 

Towards this objective the conditional likelihood function is constructed by assuming 
that the innovations sequence {w(t)} is Gaussian. Based on the prediction error form of 
the system and model, the conditional probability density of e( t/e) given all the data up 
to time t - 1 may be shown to be also Gaussian and of the form: 

The conditional likelihood function may be then expressed as: 
N 

WC YK e) = rI fe(t),(r-l) (e(t/OVt-1) 
I=1 

which, by using equation (6a) and standard procedures [20], may be shown to be optimised 
for: 

i& = arg min v&I,) A arg min+ i i e’(t/%) 
L 1 

(234 

(23b) 

In these expressions 8, is defined by the partition: 

e4[e::&JT (24) 

and arg min denotes minimising argument. 
Because of the non-quadratic nature of the dependence of vN(%) on &, the estimator 

(23a) cannot be put into a closed-form; instead vN(el) has to be numerically optimised. 
A general iterative approach that may be used for such optimization problems is of the 
form [21]: 

h(li+l) = 6:‘) _ PL(i) . [R(i)]-’ . v&(i’,i)) (25) 

where @’ denotes, the estimate obtained in the i-th iteration, /lCi) the step size selected 
such that Vp,(6~+“) c VN(6(11’)), R(‘) a square matrix of appropriate dimensions that 
modifies the search direction, and vfN(el) the gradient of vN(&) given as: 

with: 

(27) 

For the computation of the negative gradient of the one-step-ahead prediction error 
with respect to 0,) the following expression is obtained by combining equations (6a) and 
(6b): 

- W, e,) a We,) = NB, 0,) . ww - W, e,) . y(t) (28) 
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which may be subsequently differentiated with respect to all 
differentiation with respect to ai yields: 

-F(B) !?$ = z, dk d”;uy k, (29) 
I I 

the elements of 8,. Indeed, 

where the argument g1 has been dropped for simplicity of presentation. Ry using the fact 
that the non-linearity is static and differentiable [equation (6c)], (29) may be rewritten as: 

where 

=“c” id, .m.r,[u(t-k)]“-‘.q,(t-k) (i=l,...,na) (30) 
k=l m=l 

qi(t-k)du@-;k) (i=l,...,na). 
I 

(31) 

The derivatives qi( t -k) may be computed by differentiating (6d) to obtain: 

u(t-k-i)+A(B) 
au(t-k) o 

aai = 

e A(B) * qi(t-k)=-u(t-k-i) (i=l,...,na) (32) 
which may be solved recursively in time for the sequence {qi(t)}. 

Next, by differentiating (28) with respect to bi and using (6c), the following expression 
is obtained: 

where 

= F f dk.m.r;[u(t-k)]“-‘.si(t-k) (i=l,...,nb) (33) 
k=l WI=, 

s,(t--k)A 
au(t-k) 

abi 
(i = 1, . . . , nb). 

The derivative Si( t - k) may be computed by using equation (6d) as follows: 

A(B) * 
au(t-k) 

abi 
=x(t-k-i) 

($ A(B)*si(t-k)=x(t-k-i) (i = 1,. . . , nb). (35) 
The remaining partial derivatives may be computed from (28) by considering the model 

(6). Indeed: 

-F(B) .%~~;,d~~~(df;~)z “c” dk.[U(f-k)]i (i=l,...,p) (36) 
I I k=l 

aeW -F(B) ac_ .-=--(t-i) (i = 1,. . . , nc) 
I 

Wt) 
-F(B) ad, *-=u(t-i) (i=l,...,nd) 

I 

(37) 

$[F(B)*e(f)]=O + -F(B)*?= e(t - i) (i = 1,. . . , nf). (39) 
r I 
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Based on expressions (30), (33), and (36)-(39), the negative gradient of the one-step- 
ahead prediction error with respect to 8, may be expressed as: 

F(B) - 44wM = +(MM 

where the vector +( t/e,) is defined as: 

z 5 dk* rn. r,,,*[u(r-k)]m-‘. q,(r-k) 
k=l m=l 

F f dk*m*?,,, * [u(r-k)]“-’ - qna(r-k) 
k=l m=l 

F i dk.m.r,,,.[u(r-k)]“-‘*s,(r-k) 
k=l m=l 

we,) = 

5 f d~~m~&,‘[U(r-k)]m-l+,(r-k) 
k=l m=, 

; dk* u(r-k) 
k=l 

; dk.[U(r-k)]P 
k=l 

-y(r-nc) 
u(r-1) 

u(r--nd) 
e(r-1) 

w 

(41) 

with qi(r) (i=l,..., PUZ) and s,(t) (i=l,..., nb) given by equations (32) and (35), 
respectively. 

Within the context of the proposed method the estimation of the vector 0, is accom- 
plished by minimising the ML criterion V,(O,) by using a two-phase combined gradient 
and Gauss-Newton scheme. During the first phase a gradient technique based on equation 
(25) with: 

R(i) = I (42) 

is used, until the norm of the difference of the parameter vector 8, in two successive 
iterations becomes smaller than a prespecified threshold value: 

I@!‘) - &+‘)(I < a* (43) 

The estimate thus obtained is subsequently used as the initial estimate in the second 
phase which employs a Gauss-Newton technique in which R(‘) is approximated as: 
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In this expression V%(g,) represents the Hessian o[ V, with respect to 8,) and the 
indicated approximation is satisfactory for values of 8, that are ‘close’ to the actual ef . 
For computational purposes this phase is further divided into a number of stages within 
which different step sizes p(i) are used, and is terminated as soon as a convergence 
criterion of the form (43), with an appropriately selected threshold value, is satisfied. 

The proposed method may be now formally summarised as follows: 
1. 

2. 
3. 

4. 

5. 
6. 
7. 
8. 

Assume zero initial conditions and assign an appropriately selected initial value 
t0 el. 

Select an appropriate step size CL(~) and set R”’ = I. 
Compute u(r/g) from equation (6d), v(t/fl) from (6c), and e(t/@) from (6a) and 
(6b), for t = 1,. . . , N. 
Compute qi(t) (i= 1,. . . , na) and Si( t) (i = 1,. . . , nb) for t = 1,. . . , N from 
equations (32) and (35), respectively. 
Compute +(t/t&) for t = 1,. . . , N by using equation (41). 
Compute #(t/e,) for t = 1,. . . , N by using equation (40). 
Obtain ftl A(i+1) by using (25) and (26). 
Increase the iteration index by one and repeat steps 3-8 until the convergence 
criterion (43) is satisfied. 

9. Select an appropriate step size p(i) and compute R(‘) from equation (44). 
10. Increase the iteration index by one and perform the computations of steps 3-8. 
11. Repeat steps 9 and 10 until a convergence criterion of the form (43) is satisfied. 
12. Obtain 6: from equation (23b). 
Remarks: (a) The two-phase combined gradient and Gauss-Newton scheme of the 

proposed method has been designed in order to best use the advantages of each technique 
and circumvent their respective limitations. Hence optimisation is started by using the 
gradient technique which is computationally simpler, and is later switched to the Gauss- 
Newton as the former becomes very slow in the neighbourhood of the optimum. 

(b) The optimisation scheme cannot, of course, distinguish between local and global 
minima. If a local minimum of V, (0,) is reached, the estimated model will be inaccurate, 
and should be detected as such by the validation procedure outlined in the next section. 
In that case the estimation will have to be repeated by using a new set of initial guess 
parameter values. 

(c) It should be noted that partial a priori information regarding the system to be 
identified may be directly accounted for by incorporating it into the model (6) and 
appropriately modifying the parameter vector 8 to be estimated. 

4. SIMULATION RESULTS AND DISCUSSION 

In this section the performance characteristics of the proposed method are evaluated 
via numerical simulations. In all cases considered the process response was generated by 
using mutually independent normal pseudo-random sequences with zero mean and 
approximately flat spectra acting as input and innovations processes, and the ratio of the 
variance of the innovations over that of the excitation is defined as the N/S ratio, that is: 

N/S= Var [w(t)1 x lwo/ 

Var [x(t)1 
cl. (45) 

Unless otherwise indicated, in each case data records consisting of 2100 points each 
were generated, with the first 2ooO points composing the estimation and the last 100 the 
validation subsets. The latter is exclusively used for model validation, which consists of 
two phases: In the first phase the model-based one-step-ahead predictions of the system 
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output, computed via equations (a), are compared to the actual output, whereas in the 
second phase the uncorrelatedness of the model-based one-step-ahead prediction errors 
is examined. For a good model these errors must be uncorrelated, and therefore model 
quality is judged by examining the normalised sample autocorrelation function of the 
prediction error sequence via a standard statistical test [22]. 

It is finally noted that in the simulation results that follow, estimation accuracy is 
judged in terms of parametric error indices, which, for the case of a parameter vector 8, 
are defined as: 

(W 

with 11. II II indicating octahedric vector norm. 

IDENTIFICATION RESULTS 

Table 1 presents identification results for System A with block diagram representation 
shown in Fig. 2. Three cases, corresponding to N/S ratios of 1, 10, and 30%, are considered, 
and the estimation accuracy is excellent in all of them with errors not exceeding 35%. 
A Monte Carlo analysis of the method with the same system based on 20 data records 
is presented in Table 2 for the N/S = 1% case, and, as it may be immediately observed, 
the sample means of the parameter estimates are very close to their actual values (the 
parametric errors being smaller than 1%) and their sample standard deviations quite small. 

Table 3 presents estimation results from data records of various lengths (N = 500,1000, 
2000) for a somewhat more complicated system (System B) with block diagram representa- 
tion shown in Fig. 3. Similarly to the previous case three N/S ratios (1, 10 and 30%) are 
considered, and excellent accuracy is achieved in all cases while the method performs 
equally well with all the data records (the maximum parametric errors in this case barely 

TABLE 1 

Estimation results for System A 

System 
parameters 

Estimated parameters 

N/S = 1% N/S = 10% N/S = 30% 

aI -0*500 -0*500 -0.501 -0.501 
rl 0.100 0.100 0.102 o-103 
r2 -0.700 -0.700 -0.700 -0.698 
Cl -0.200 -0.198 -0.195 -0.193 

&(%I 040 o-20 o-20 
ER(%) 040 o-25 0.63 
&(W 1.00 2.50 3.50 

Figure 2. Block diagram representation of System A. 
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TABLE 2 

Monte Carlo results for System A 

System 
parameters 

Estimated parameters 

Mean value Standard deviation 

ai -0.500 -0.501 0.0024 
r1 0.100 0.103 0.0053 
rz -0.700 -0.700 0.0038 
cl -0.200 -0.199 0.0050 

Number of data sets used: 20 
N/S ratio: 1% 
Parametric errors: EA = 0.20% ER = 0.38% EC = 0.50% 

x(t) 
B 

l-l.5B+065Bf 
0.24~ + 0.12~~ + Q35u3+ 005~~ y(t) 

Figure 3. Block diagram representation of System B. 

I.6 

- I.2 

f 0.0 

; 0.4 

P 0 

-0.4 I 1 -0.2 
0 IO 20 30 

(b) 

:L 

Discrete Time 

-4 4 IO 
Input(u) 

Figure 4. Estimation results at three different N/S ratios (System B; N = 2000). (a) Impulse response I; 
(b) impulse response II; (c) static non-linearity. (-: Theoretical; ---: estimated at N/S = 1%; . . * * *: estimated 
at N/S = 10%; -. -. -: estimated at N/S = 30%). 
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TABLE 3 

Estimation results for System B with data records of uarious lengths 
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Data record System 
length parameters 

Estimated parameters 

N/S= 1% N/S = 10% N/S = 30% 

N=500 al 
a2 
r1 
r2 

r3 

14 

Cl 

c2 

N=lOOO al -1.500 -1.500 -1.500 -1.500 
a2 0.650 0.650 0.650 0.650 
r1 0.240 0.240 0.239 0.238 
r2 0.120 0.120 0.121 0.123 
r3 0.350 0.350 0.350 0.350 
r4 0.050 0.050 0.050 0.050 
Cl -1.400 -1.400 -1.400 -1400 
c2 0.550 0.550 0.550 0.551 

N=2000 al -1.500 -1.500 -1.500 -1.500 
a2 0.650 0.650 0.650 0.650 
rl 0.240 0.241 0.243 0.245 
r2 0.120 0.121 0.122 0.123 
*3 0.350 0.350 0.350 0.350 
r4 0.050 0.050 0.050 0.050 
Cl -1.400 -1*400 -1.400 -1.400 
c2 0.550 0.550 0.550 0.550 

-1.500 -1.500 -1.500 -1.500 
0.650 0.650 0.650 0.650 
0.240 0.240 0.239 0.238 
0.120 0.120 0.121 0.121 
0.350 0.350 0.350 0.351 
0.050 0.050 0.050 0.050 

-1.400 -1.400 -1400 -1401 
0.550 0.550 0.550 0.551 

EA(%) 0.00 0.00 0.00 
J& (%) OX@ 0.26 0.52 
EC(%) 0.00 0.00 0.05 

E,(%) 0.00 0.00 o@o 
ER (%) 0.00 0.26 0.65 
EC(%) 0.00 0.00 0.05 

&(%I 0.00 0.00 O*OO 
&(%) 0.26 0.66 1.05 
EC(%) 0.00 0.00 0.00 

exceed 1%). The estimated impulse response functions of the two linear subsystems and 
the static non-linearity for the N = 2000 case are depicted in Fig. 4, and are virtually 
indistinguishable from the theoretical curves for all the N/S ratio cases. Figure 5 presents 
the model validation results for the 10% N/S ratio and N = 2000 case. As it may be 
readily observed the model-based one-step-ahead predictions are very close to the actual 
process output, and the normalised sample autocorrelation function of the prediction 
errors lies within the *1*96/m band, as required for an accurate model. 

Table 4 finally presents estimation results for System C with block diagram representa- 
tion shown in Fig. 6. The same three N/S ratios (1, 10 and 30%) are considered, and 
excellent accuracy is once again achieved with parametric errors not exceeding 1.5%. 
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k x 0.10 - 
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FG ‘Z 
z -3.0 - 
L 
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0.0 IO.0 20.0 30.0 40.0 

Lag 

Figure 5. Validation of the estimated model. (a) Model-based one-step-ahead predictions of the system 
output; (b) the normahsed autocorrelation of the residuals. (System B; N/S = 10%; N = 2000). -, Process 
output; 0, model-based prediction. 

w(t) 

I 
1+0,568 

l-I.488 + 0.5488* 

Figure 6. Block diagram representation of System C. 

TABLE 4 

Estimation results for System C 

System 
parameters 

Estimated parameters 

N/S = 1% N/S = 10% N/S=30% 

al 
r1 
r2 

h 
Cl 
c2 

fi 

-0.770 
0.500 
OWO 
0400 

-1480 
0.548 
O-560 

JL(%) 
&W 
&W) 
EF@) 

-0.770 -0.771 -0.771 
0.497 0.491 0485 
0.801 0.803 0.806 
0.600 0.599 0.598 

-1480 -1.481 -1481 
0.548 0.549 0.549 
0.564 0,564 0.564 

0.00 
0.21 
0.00 
0.71 

0.13 
0.68 
0.10 
0.71 

0.13 
1.21 
o-10 
0.71 
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Figure 7. Estimation results at three different N/S ratios (System C; N = 2000). (a) Impulse response 1. (b) 
impulse response II; (c) impulse response III; (d) static non-linearity. (-: Theoretical; ---: estimated at 
N/S=l%;.....: estimated at N/S = 10%; - . - * -: estimated at N/S = 30%). 
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Figure 8. Validation of the estimated model. (a) Model-based one-step-ahead predictions of the system 
output;(b)thenormalisedautocomlationoftheresiduals.(SystemC;N/S = 10%; N = 2OOO).-,Rocessoutput; 
0, model-based prediction. 
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The estimated impulse response functions of the two linear subsystems and the noise 
dynamics, as well as the static non-linearity characteristics, are all shown in Fig. 7, and 
are completely indistinguishable from the theoretical curves for all the N/S ratio cases. 
Figure 8 presents the model validation results for the 10% N/S ratio case. The model-based 
one-step-ahead predictions are excellent, and so is the normalised sample autocorrelation 
function of the corresponding prediction errors. 

5. CONCLUSIONS 
In this paper the identification problem for non-linear Hammerstein-Wiener-type 

systems was considered based on normal operating data. Unlike alternative methods 
based on deterministic representations, a stochastic model structure that explicitly accounts 
for both the input-output and noise dynamics was postulated. This structure offers obvious 
advantages, and is to be preferred in many applications involving modeling, analysis, 
prediction, diagnosis and control. 

The uniqueness properties of the postulated model structure were analysed, and 
necessary and sufficient conditions established. The stochastic identification problem was 
subsequently considered, and a new time-domain method based on the ML principle 
introduced. This proposed method overcomes the limitations of the currently available 
approaches that are primarily based on the frequency or correlation domains, by offering: 

1. Accwure (consistent and efficient) estimation of stochastic Wiener-Hammerstein- 
type systems. 

2. The ability to perform identification based on a single record of normal operating 
data. No multiple tests or especially designed excitations that are required by 
alternative approaches are needed. 

3. The ability to operate directly on time-domain data and simultaneously estimate all 
of the system parameters. Errors associated with the evaluation of correlation 
functions or Fourier transforms and multi-stage procedures for system parameter 
estimation, as required by some alternative schemes, are completely avoided. 

4. Excellent performance characteristics even at high N/S ratios and with short data 
records, and the ability to incorporate available a priori information. 

The effectiveness and accuracy of the proposed method were finally demonstrated through 
numerical simulations with a number of different systems and N/S ratios. 
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