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Data used for machinery condition monitoring contains mainly the same information 
as that obtained under normal operation conditions. The traditional practice of feature 
extraction, which uses such data directly, suffers from low signal-to-noise ratio. This paper 
presents a method that uses an inverse filter to separate the information contents of the 
data, so that the feature extraction can be done by statistical analysis algorithms, which 
would otherwise be difficult. It is shown that the inverse filtering process is equivalent to 
that of prediction error estimation based on a signal model in the form of an autoregressive 
moving-average (ARMA) model. The construction of the inverse filter can therefore be 
carried out by ARMA modeling. An application example of this method for the monitoring 
of a paper handling system is also given. 

1. INTRODUCTION 

Machinery condition monitoring is generally performed by evaluating the characteristic 
changes of the system at different operation periods. This change, if any, is usually 
revealed by detecting variations in its signature. Figure 1 is a schematic flow-chart of a 
typical monitoring process, which involves feature extraction under both normal and 
operating conditions, and then a comparison between them in decision making. Many 
sensing devices, such as vibration, force, temperature, etc. and several signal processing 
algorithms have been developed [ 1,2]. The increased investment and improved produc- 
tivity, however, dictates a need for a monitoring system that is capable of detecting a 
possible abnormal condition at its earliest stage, and should be fast enough for on-line 
implementation. That is to say, the features extraction algorithm should be simple to 
implement, yet should also be sophisticated enough to reveal any change at the earliest 
moment. While these requirements sound contradictory to each other, there are ways to 
accommodate these demands. 

A careful examination of the monitoring procedure shown in Fig. 1 reveals a drawback 
to this approach: there are a lot of redundant processing efforts in signal processing, due 
to the fact that signatures at different operating periods contain essentially the same 
information. Let us assume that x0 is the signal representing normal condition, and x, 
the current measurement. The signature acquired in monitoring process, xt, contains two 
portions of information: the one representing the same characteristics of normal condition 
(identical portion), and the other containing the differences from the normal condition 
(different portion). In the early stage of failure, the different portion of information is 
embedded in signature x,, where the identical portion dominates. In other words, the 
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Figure 1. Schematic signal processing flow-chart of a typical monitoring process. 

information carrying the difference between x,, and x, is so small that it is difficult to 
apply simple algorithms to extract features that are sensitive to this change. The purpose 
of monitoring, however, is to detect any change in a system. Only the different portion 
of the signal is really useful, and others, including the identical portion, are just ‘noise’ 
in signal processing. It is easy to see from Fig. 1 that in the process of feature extraction, 
very low signal-to-noise ratio can be expected. A natural question may be: Is there a way 
to suppress the identical portion so as to improve the signal-to-noise ratio before the 
feature extraction during monitoring process? 

This paper presents a practical scheme to improve the signal-to-noise ratio in signal 
processing for machinery condition monitoring. As shown in Fig. 2, the proposed scheme 
employs an inverse filter to separate the two portions (identical and different) of the 
monitoring signal before feature extraction. The formation of the inverse filter is based 
on the prediction error analysis. A signal model representing the machinery characteristics 
is first constructed from the measured signal under normal operating condition. Then, 
data under both normal condition and current operation period will be passed inversely 
through this signal model, which yields a new process: prediction error series (or residual 
series, innovation process [3-51). In this way, the identical portion of the signal will be 
retained in the filter, while only the difference portion of the signal will go with the 
prediction error series. Further feature extraction will use the prediction error series 
instead of the original data. 

The linear prediction and inverse filtering (or pre-whiting technique [6]) is a tool which 
is widely used in many aspects of signal processing, such as speech analysis [7], spectral 
estimation [8], adaptive filtering [5], and EEG signal processing [6]. The problem, 
however, is the construction of the inverse filter. Most of them are based on the ‘least 
square error (LSE)’ criterion, which is not the exact inverse, but rather an approximate 
inverse of the system. It will be shown in this paper that an autoregressive moving-average 
(ARMA) model obtained directly from the measurement of a physical system can be 
used to construct the inverse filter, and the inverse filtering process is equivalent to the 
one-step prediction based on this ARMA model. The inverse filter can then be used in 
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Figure 2. Proposed schematic signal processing flow chart for condition monitoring. 
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separating the signal for the purpose of condition monitoring. The feature extraction 
scheme, which evaluates the statistical properties of the prediction error series, can then 
be applied to the prediction error series, instead of the original measurement. In this 
way, the signal-to-noise ratio can be significantly improved and the feature extraction 
algorithm in monitoring can be made relatively simple, without sacrifice in reliability. 

2. SIGNAL MODEL OF A MECHANICAL SYSTEM 

A mechanical system in normal operation condition can be described as a dynamic 
system whose output or state variable can be represented by the stochastic differential 
equation [3]. While the analytic derivation of the stochastic differential equation is difficult, 
if not impossible, the dynamic model is often estimated from the measured signals. Such 
a signal model possesses physical properties and dynamic characteristics of the mechanical 
system, and can be used for the purpose of inverse filtering. 

2.1. ARMA MODEL 

The differential equation governing a linear continuous process is given as 

d”x(r& _ d”-‘x(t)+ 
- * * *+x(f)=f(t) dr” n 1 &“-’ (1) 

where x(t) is the stochastic response vector, f(t) is the stochastic input excitation vector, 
and (I’S are the coefficients. If the continuous process is sampled uniformly at a proper 
sampling interval, A, the corresponding discrete stochastic model representing the response 
of the system will be [3] 

x, = @lxt-l + * * . + Qnxt_ +a, - 6,a,_l - * . + - @mal-m (2) 

where at is the residual series that is a discrete white noise process (i.e. independent, 
Gaussian distribution with zero mean and variance a:), xt is the sampled response vector, 
and @, 8 are the discrete coefficients matrices. The model given by equation (2) is called 
autoregressive moving average vector model (ARMAV). For simplicity, but not lost 
generality, a univariate response model is considered here as ARMA (n, m): 

xt = &x,-1 + * * * t$nXt-n + a, - * * * emur_m (3) 

where n, m represent the orders of autoregressive and moving average part respectively. 
Equation (3) is indeed a stochastic difference equation, which can be used as the signal 
model of a mechanical system with x, as the output time series and a, as the input excitation. 

The estimation of the model parameters, namely C#J and OS, can be found in many 
references, e.g., references [3,8]. Though many criteria exist regarding the ‘best fit’ of 
the model, the fundamental principle is based on the fact that the residual series a, should 
be an independent and Gaussian process with minimum variance. The adequate model 
of a mechanical system contains pertinent dynamic information about the physical system. 
For instance, the frequency response is given by 

s(f)= 
SaWJ’-jl B,eXP[ -(?)]I’ 

11-,4 BieXP[ -ty)]i2 

(4) 

where S,(f) is the spectral of the residual time series at, and fs is the sampling frequency. 
The natural frequency fn and damping ratio &, of the corresponding mode can be obtained 



180 Y. CHEN 

as 

fn =f JIln ***1’+4[cos-’ ($g)]’ 

Ln=jL +4[cos-1 (S)]’ 

(5) 

(6) 

where A, A * are the characteristic roots of the autoregressive part which appear in complex 
conjugate pairs. 

2.2. INVERSE FILTERING AND PREDICTION ERROR SERIES 

An ARMA model can be treated as an IIR filter with a, as the input and x, as the 
output. The discrete transfer function of this filter is given by 

H(z) = 
1_ elz-l _ . . . emZ-m 

1_&z-‘_ . . . _4”Z-“’ (7) 

The output x, can be represented as 

x(z) = H(z)A(z) (8) 

where X(z), A(z) are the Z-transforms of x, and a, respectively. For a minimum phase 
system [3,9], an inverse filter, G(z), can be defined as 

G(z) = l/H(z) (9) 

such that 

A(z) = G(z)X(z). (10) 

It is easy to see from equation (3) that the input series a, can be calculated recursively by 

Ug =X,- i +iX,-* - f ( OiUt-j * 

i=l j=l > 
(11) 

On the other hand, the ARMA (n, m) is a state-space equation that represents the 
relationship of the measurement (response) at different sampling instances. Specifically, 
the current measurement x, is a function of the past n - 1 measurements, xr_, , . . . , xt_,, 
and the noise disturbance a,_, , . . . , a,_,,, . The one-step prediction at time t - 1 is, therefore, 
defined as 

&I,-1 =x,-,(l) = E(x, lx,-,). 

From equation (2) it follows that 

x,1,-1 = 4&k* + * * *+ cj”X,_” - &a,_, - * * * - emur-m (12) 

whichisbasedonthefactthatattimet-l,thevaluesofx,_, ,..., x,_,anda,_, ,.,., u,-,,, 
are known constants. 

The prediction error e,(l), or simply e,, is given by 

e,=x,-x,1,-, (13) 
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which is the difference between the true measured value x, and its one-step prediction 
x,I+~. The process e, is usually termed as a prediction error series or innovation process 
[3,8]. Combining equations (1 l)-( 13) yields 

e, = x, - ( ii, h-1 -jEl 44-j) 

= (I,. (14) 

Therefore, the calculation of prediction error series e, defined by equation (11) is actually 
the same as passing x1 through its inverse-filter G(z). 

3. CONDITION MONITORING SCHEME 

3.1. PRINCIPLE 

As mentioned earlier, the basic criterion for a ‘best fit’ of a signal model H(z) to a 
physical system is that the residual, or prediction error series, should be an independent, 
Gaussian process with minimum variance. In other word, if the system response x, is 
passed through its inverse filter G(z), the resulting prediction error series should be an 
independent, Gaussian process with minimum variance. Suppose x,, is the data obtained 
in a known normal condition, and x, is the current measurement. The condition monitoring 
task is done by evaluating the difference between x0 and xt. Instead of comparing x0 and 
x, directly, a method is proposed to first pass the two time series, x0 and x,, through the 
inverse filter G(z) of the system, and then to evaluate the difference between their 
prediction error series, eo,” and e ,,“. This process is shown in Fig. 2, where the inverse 
filter G(z) is constructed based on the ARMA model H(z) obtained according to the 
normal operating condition of the system. In principle, if there is nothing changed in the 
system and the current condition is normal, the H(z) will still be an adequate model for 
the system and the statistical properties of the e,,” will be the same as e,,. However, by 
contrast, if there is any change in the system away from the normal condition for any 
reason, the previously obtained model H(z) will no longer be adequate, leading to a 
change of the statistic properties of eren away from that of e,,,. It is this variation that 
can formulate a simple, yet sensitive feature for condition monitoring. 

This approach possesses several advantages from the viewpoint of signal processing. 
First of all, as shown in Fig. 2, the dynamic characteristics of the normal system will be 
‘filtered’ out and retained in the inverse filter G(z), and only the different portion of the 
information will go into e,,“, which fulfills the demand of information separation before 
feature extraction. The comparison of statistical properties of e,,” with that of e,,, is 
relatively easier than that of x, and x0 since, theoretially, eoWn is a white noise process. 
This is a model-based approach, yet in the monitoring stage where timing is critical, no 
model parameter estimation is involved. The normal model can be determined in advance 
either on-line or off-line. Therefore, this scheme is suitable for on-line implementation 
where the signal processing time is a critical factor. The limitation, however, is that the 
normal operation process of the system should be stable or stationary. Otherwise, more 
than one normal model may be needed to commentate the different normal conditions. 

3.2. FEATURE EXTRACTION AND CLASSIFICATION 

To evaluate if the prediction error series e,,, is still an independent Gaussian process 
with minimum variance, a set of feature including the normalized variance (NV), kurtosis 
(KT), and the autocorrelation (AC) is proposed. 
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Normalized variance (NV). The power (or variance) of the prediction error will indicate 
the closeness of the current data to the model obtained under normal condition. The 
variance of e, can be estimated by 

Var(e,)= F e:/N (15) 
,=l 

where N is the data number. In order to suppress the influence of the other factors such 
as instrument gains or variation of the machine load, the variance of equation (12) is 
normalised by dividing the variance of x, [lo]: 

NV = Var (e,) 
Var (x,)’ (16) 

Kurtosis (KT). The kurtosis of a random variable x with a probability density function 
(PDF) p(x) is defined as [ll] 

W 
KT=(M*)2-3 (17) 

where M4 and M2 represent the fourth and second moments, and 

I 

+CU 
Mk= x”p(x) dx. (18) 

--oo 

Geometrically, KT is a statistical concept related to the ‘flatness’ of the distribution of 
the vibration waveform, and is a good measure of normality of a random process. 

Autocorrelafion (AC). The autocorrelation coefficients of random data describe the 
general dependence of the values of data at one time on the data at another time. For 
an independent, or white, process, the AC should approach to zero. Therefore, AC can 
be used to evaluate a process to see if it is a white process. The AC can be estimated by 

w,-, 
AC=‘=; . 

C a: 
1=2 

(19) 

4. APPLICATION IN MONITORING OF A PAPER HANDLING SYSTEM 

Paper jam is the most prominent failure mode in a recirculating document feeder 
(RDF). It is desired to have a monitoring system that can detect any possible malfunctions 
of RDF which will cause paper jam. Such a system has been developed, and the inverse 
filter has been used in monitoring the condition of one of the most important components- 
the nip roller structure-of the RDF system. A schematic diagram of a nip roller and its 
working mechanism is given in Fig. 3. When the paper is fed through this structure, an 
appropriate force is applied to the paper through the roller, which is provided by a 
preloaded nip spring. Paper jam will most likely occur under the conditions of (1) lower 
force due to a softening-spring, (2) higher force due to a stiffening-spring, (3) force 
fluctuation due to looseness of the structure, and (4) bad paper. As shown in Fig. 3, the 
pre-load of the spring can be adjusted by turning the adjusting screw in a loosening or 
fastening direction. 

To make sure that the nip roller structure works at a pre-set condition, a non-contact 
vibration sensor (eddy current type) is used to pick up the motion of the leakage at the 
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I Eddy -current ‘probe 

Figure 3. Schematic of the nip roller-spring structure. 

location as shown in Fig. 3. Such a system can be modeled as a mass-spring-damper 
system. Figure 4 is a plot of raw data under various conditions. With 20 sets of data 
cathered under normal operation condition, an ARMA (6,4) model was found to be 
adequate following the procedures outlined in reference [3]: 

x,+0*6233x,_, -0~1552x,_,+0~2516x,_,+0~0398x,_,-0~0402x,_,-0~1409x,_, 

= a,+0~0215a,_,+0~1916a,_,+0~0372x,_,+0~1542a,_,. (20) 

Then, data under each of the following conditions was acquired by (1) loosening spring 
by turns of 2,4,7; (2) fastening spring by turns of 2,4,5; (3) loosening screw A by 2,4 
turns; (4) adding one bad paper. 

A digital band-pass filter with a passing frequency range of 80-200 Hz was first applied 
to the data in order to suppress the noise unrelated to the nip roller structure. The signals 
were then passed inversely through the filter defined by equation (20), which was done 
simply by applying equation (14) recursively. In the final decision-making stage, a 
multiple-voting scheme was employed [15]. The monitoring results are given in Table 1 
and Figure 5. It is shown that there is a clear distinction between normal and abnormal 
conditions, as seen from the indices of NV, KT and AC of the prediction error series. 

5. DISCUSSION 

As shown in Table 1, as long as the system is under normal operating conditions, the 
values of the feature are bounded within a normal range. There are clear changes in the 
features after inverse filtering corresponding to the variation of the system conditions. 
For comparison, the same statistical features of the raw data before inverse filtering are 
also listed in Table 1 and depicted in Fig. 5, which showed less coherence to changes of 
operation conditions. For instance, Figs 5(c) and (e) show that the features of KT and 
AC are good for the prediction error series to identify the abnormal condition, while Figs 
5(d) and (f) suggest that they are poor if used for the data before inverse filtering. The 
reason is that the system characteristic information dominates the data before inverse 
filtering, and the variation portion is too small to be identified directly from them. T’he 
similarity among the spectra of the raw data, shown in Fig. 6, further verifies this point. 

Figure 7 is the plots of the spectra of the prediction error series after inverse filtering 
for different conditions. For normal condition, as shown by Fig. 7(a), the spectrum of 
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Figure 5. Plot of the indices under different conditions. (a) NV of prediction errors; (b) variance before 
inverse filtering; (c) KT of prediction errors; (d) KT before inverse filtering; (e) AC of prediction errors; 
(f) AC before inverse filtering. 

the prediction series appears to be flat since, ideally, the prediction error under normal 
condition should be a white noise process. It is relatively easy to check changes of any 
spectrum against a flat (white noise) one. For instance, Figs 7(b)-(d) all show some peaks 
in their spectral plots, which suggests that some dynamics in the signal leaked into the 
prediction error series. This could occur only when the normal model is no longer adequate 
for the current condition. From equation (4), we have 

(21) 

It is clear that the inverse filtering process is actually a model comparison process: the 
power spectrum of current measurement is compared against the standard spectrum of 
the normal model [Hi*. They are the same, i.e. there is no change in system characteris- 
tics, the resulting ratio would tend to be flat. Otherwise, peaks or valleys will appear in 
a certain band, as shown in Fig. 7(b)-(d). Actually, the prediction error series can be 
treated as a new (innovation) process, and many signal processing methods, including 
modeling, could be applied to reveal any dynamics retained in it. 

It should be mentioned that in the monitoring process, it is relatively easy to distinguish 
normal condition from the abnormal conditions, if any. It is, however, difficult to isolate 
what causes the abnormal condition. Further classification, or diagnosis, needs more 
sophisticated algorithms, which usually take a longer processing time. Most time-critical 
monitoring tasks require stopping the operating process as long as an abnormal condition 
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TABLE 1 

Result of monitoring for the nip roller structure 

187 

Conditions NV KT AC Var(X) KT(X) AC(X) 

1. Normal 
2. Normal 
3. Normal 
4. Spring loosening 2 
5. Spring loosening 2 
6. Spring loosening 4 
7. Spring loosening 4 
8. Spring loosening 7 
9. Spring loosening 7 

10. Spring fastening 2 
11. Spring fastening 
12. Spring fastening 
13. Spring fastening 
14. Spting fastening 
15. Spring fastening 
16. Screw loosening 2 
17. Screw loosening 2 
18. Screw loosening 4 
19. Screw loosening 4 
20. Bad paper 
21. Bad paper 

0.0244 0.0112 0.1030 1.5684 1.3687 0.9290 
0.0236 0.0254 o-1150 1.6698 1 a6698 0.927 1 
0.0239 0.0211 0.0980 1.9863 0.9875 0.9590 
o-0425 0.1320 0.2740 2.3685 1.2369 0.9550 
0.0495 0.1560 0.2890 2.3398 1.5568 0.9650 
0.0435 0.2560 0.3360 3.1756 2.1077 O-9690 
0.0553 0.3450 0.2980 34468 3.5587 0.9790 
0.0665 0.5560 04450 4.6325 1.2568 o-9970 
0.0695 0.9690 0.3150 3.9687 2.6542 O-9538 
0.0489 0.3544 0.4850 2.9975 1.9983 0.9986 
0.042 1 0.4187 o-5590 3.1451 1.1256 0.7687 
0.0745 0.6980 O-8870 4.2153 3.2258 O-8865 
0.0782 O-8880 0.5890 39981 2.1547 0.8974 
0~0900 1.1000 0.5360 4.5682 1.2258 0.9597 
0.1080 0.9680 0.8580 4.9573 1.3695 0.9982 
0.1540 0.9980 O-6650 5.6875 2.6574 0.9655 
0.1120 1.2350 O-4580 5.4327 1.2659 O-9758 
0.1950 1.6690 0.5950 5.9683 1.2256 0.9539 
0.2010 1.3510 0.6720 5.6784 l-3654 0.9856 
0.3020 1.1120 0.3250 4.3258 2.1452 0.9024 
0.2191 0.9650 0.5680 6.9984 l-6984 0.9038 

is pending, no matter what it it. Further answer to ‘what it is’ could be sought after the 
alarm is sent, and the process is stopped. 

The implementation of the monitoring scheme outlined above requires learning the 
adequate signal model for the machinery system, which could be time consuming. 
However, with the advent of computing technology, this becomes less of an obstacle. It 
should also be pointed out that the system is assumed to be stable under normal operating 
conditions so that single normal model could be used to represent the normal condition. 
Otherwise, several normal signal models may be needed. In the worst case when there is 
a slow variation even under normal operating conditions, an adaptive filter can still 
feasibly be constructed [5]. 

6. CONCLUSION 

The signals for machinery condition monitoring basically carry two portions for infor- 
mation: the one which represents the same characteristics of normal condition, and the 
other which represents the difference from the normal condition. It is appropriate to 
separate these two portions before feature extraction in order to improve the signal-to-noise 
ratio, which can be done by the inverse filtering method. It was shown that the inverse 
filtering process is equivalent to the estimation of prediction errors based on a signal 
model obtained for a physical system. Thus the construction of the inverse filter can be 
carried out by ARMA modeling, provided the system response can be measured. Applica- 
tion of this algorithm to a paper handling system showed that the separability of features 
using statistical analysis from data after inverse filtering can be improved significantly 
against those without inverse filtering. In this way, it is feasible to apply simple statistical 
analysis algorithms for machinery condition monitoring where processing time is critical. 
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